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IDENTIFICATION OF ARMA MODELS

A stationary stochastic process can be characterised, equivalently, by its
autocovariance function or its partial autocovariance function.

It can also be characterised by is spectral density function, which is
the Fourier transform of the autocovariances {γτ ; τ = 0,±1,±2, . . .} :

f(ω) =
∞∑

τ=−∞
γτ cos(ωτ) = γ0 + 2

∞∑
τ=1

γτ cos(ωτ).

Here, ω ∈ [0, π] is an angular velocity, or frequency value, in radians per
period.

The empirical counterpart of the spectral density function is the
periodogram I(ωj), which may be defined as

1
2
I(ωj) =

T−1∑
τ=1−T

cτ cos(ωjτ) = c0 + 2
T−1∑
τ=1

cτ cos(ωjτ),

where ωj = 2πj/T ; j = 0, 1, . . . , [T/2] are the Fourier frequencies and
{cτ ; τ = 0,±1, . . . ,±(T − 1)}, with cτ = T−1

∑T−1
t=τ (yt − ȳ)(yt−τ − ȳ), are

the empirical autocovariances.
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The Periodogram and the Autocovariances

We need to show this definition of the peridogram is equivalent to the
previous definition, which was based on the following frequency decompo-
sition of the sample variance:

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

[T/2]∑
j=0

(α2
j + β2

j ),

where
αj =

2
T

∑
t

yt cos(ωjt) =
2
T

∑
t

(yt − ȳ) cos(ωjt),

βj =
2
T

∑
t

yt sin(ωjt) =
2
T

∑
t

(yt − ȳ) sin(ωjt).

Substituting these into the term T (α2
j + β2

j )/2 gives the periodogram

I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2

]
.
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The quadratic terms may be expanded to give

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{ ∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}

,

Since cos(A) cos(B) + sin(A) sin(B) = cos(A − B), this can be written as

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωj [t − s])(yt − ȳ)(ys − ȳ)
}

On defining τ = t − s and writing cτ =
∑

t(yt − ȳ)(yt−τ − ȳ)/T , we can
reduce the latter expression to

I(ωj) = 2
T−1∑

τ=1−T

cos(ωjτ)cτ ,

which is a Fourier transform of the empirical autocovariances.
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Figure 1. The spectral density function of an MA(2) process
y(t) = (1 + 1.250L + 0.800L2)ε(t) .

4



EC3062 ECONOMETRICS

0

20

40

60

0 π/4 π/2 3π/4 π

Figure 2. The graph of a periodogram calculated from 160
observations on a simulated series generated by an MA(2) process
y(t) = (1 + 1.250L + 0.800L2)ε(t).
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Figure 3. The spectral density function of an AR(2) process
(1 − 0.273L + 0.810L2)y(t) = ε(t).
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Figure 4. The graph of a periodogram calculated from 160
observations on a simulated series generated by an AR(2) process
(1 − 0.273L + 0.810L2)y(t) = ε(t).
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Figure 5. The spectral density function of an ARMA(2, 1)
process (1 − 0.273L + 0.810L2)y(t) = (1 + 0.900L)ε(t).
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Figure 6. The graph of a periodogram calculated from 160
observations on a simulated series generated by an ARMA(2, 1)
process (1 − 0.273L + 0.810L2)y(t) = (1 + 0.900L)ε(t).
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The Methodology of Box and Jenkins

Box and Jenkins proposed to use the autocorrelation and partial autocor-
relation functions for identifying the orders of ARMA models. They paid
little attention to the periodogram.

Autocorrelation function (ACF). Given a sample y0, y1, . . . , yT−1 of
T observations, the sample autocorrelation function {rτ} is the sequence

rτ = cτ/c0, τ = 0, 1, . . . ,

where cτ = T−1
∑

(yt− ȳ)(yt−τ − ȳ) is the empirical autocovariance at lag
τ and c0 is the sample variance.

As the lag increases, the number of observations comprised in the
empirical autocovariances diminishes.

Partial autocorrelation function (PACF). The sample partial au-
tocorrelation function {pτ} gives the correlation between the two sets of
residuals obtained from regressing the elements yt and yt−τ on the set
of intervening values yt−1, yt−2, . . . , yt−τ+1. The partial autocorrelation
measures the dependence between yt and yt−τ after the effect of the in-
tervening values has been removed.
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Reduction to Stationarity.

The first step is to examine the plot of the data to judge whether or not
the process is stationary. A trend can be removed by fitting a parametric
curve or a spline function to create a stationary sequence of residuals to
which an ARMA model can be applied.

Box and Jenkins believed that many empirical series can be modelled
by taking a sufficient number of differences to make it stationary. Thus,
the process might be modelled by the ARIMA(p, d, q) equation

α(L)∇dy(t) = µ(L)ε(t),

where ∇d = (I − L)d is the dth power of the difference operator.
Then, z(t) = ∇dy(t) will be described by a stationary ARMA(p, q)

model. The inverse operator ∇−1 is the summing or integrating operator,
which is why the model described an autoregressive integrated moving-
average.
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Figure 7. The plot of 197 concentration readings from a chemical

process taken at 2-hour intervals.
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Figure 8. The autocorrelation function of the concentration readings

from a chemical process.
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Figure 9. The autocorrelation function of the differences of the con-

centration readings from the chemical process.
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When Stationarity has been achieved, the autocorrelation sequence of the
resulting series should converge rapidly to zero as the value of the lag
increases. (See Figure 9.)

The characteristics of pure autoregressive and pure moving-average
process are easily spotted. Those of a mixed autoregressive moving-
average model are not so easily unravelled.

Moving-average processes. The theoretical autocorrelation function
{ρτ} of an M(q) process has ρτ = 0 for all τ > q. The partial autocorre-
lation function {πτ} is liable to decay towards zero gradually.

To determine whether the parent autocorrelations are zero after lag
q, we may use a result of Bartlett [1946] which shows that, for a sample
of size T , the standard deviation of rτ is approximately

(4)
1√
T

{
1 + 2(r2

1 + r2
2 + · · · + r2

q)
}1/2 for τ > q.

A measure of the scale of the autocorrelations is provided by the limits
of ±1.96/

√
T , which are the approximate 95% confidence bounds for the

autocorrelations of a white-noise sequence. These bounds are represented
by the dashed horizontal lines on the accompanying graphs.
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Figure 10. The graph of 120 observations on a simulated series

generated by the MA(2) process y(t) = (1 + 0.90L + 0.81L2)ε(t).
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Figure 11. The theoretical autocorrelation function (ACF) of the

MA(2) process y(t) = (1 + 0.90L + 0.81L2)ε(t) (the solid bars)

together with its empirical counterpart, calculated from a simulated

series of 120 observations.
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Figure 12. The theoretical partial autocorrelation function (PACF)

of the MA(2) process y(t) = (1+0.90L+0.81L2)ε(t) (the solid bars)

together with its empirical counterpart, calculated from a simulated

series of 120 observations.
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Autoregressive processes. The theoretical autocorrelation function
{ρτ} of an AR(p) process obeys a homogeneous difference equation based
upon the autoregressive operator α(L) = 1 + α1L + · · · + αpL

p:

(5) ρτ = −(α1ρτ−1 + · · · + αpρτ−p) for all τ ≥ p.

The autocorrelation sequence will be a mixture of damped exponential
and sinusoidal functions. If the sequence is of a sinusoidal nature, then
the presence of complex roots in the operator α(L) is indicated.

The partial autocorrelation function {πτ} serves most clearly to iden-
tify a pure AR process. An AR(p) process has πτ = 0 for all τ > p.

The significance of the values of the empirical partial autocorrelations
is judged by the fact that, for a pth order process, their standard deviations
for all lags greater that p are approximated by 1/

√
T . The bounds of

±1.96/
√

T are plotted on the graph of the partial autocorrelation function.
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Figure 13. The graph of 120 observations on a simulated series

generated by the AR(2) process (1 − 1.69L + 0.81L2)y(t) = ε(t).
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Figure 14. The theoretical autocorrelation function (ACF) of the

AR(2) process (1 − 1.69L + 0.81L2)y(t) = ε(t) (the solid bars)

together with its empirical counterpart, calculated from a simulated

series of 120 observations.
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Figure 15. The theoretical partial autocorrelation function (PACF)

of the AR(2) process (1−1.69L+0.81L2)y(t) = ε(t) (the solid bars)

together with its empirical counterpart, calculated from a simulated

series of 120 observations.
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Mixed processes. Neither the theoretical autocorrelation or partial au-
tocorrelation functions of an ARMA(p, q) process have abrupt cutoffs.
The autocovariances an ARMA(p, q) process satisfy the same difference
equation as that of a pure AR model for all values of τ > max(p, q).

A rational transfer function is more effective in approximating an
arbitrary impulse response than is an AR or an MA transfer function

The sum of any two mutually independent AR processes gives rise to
an ARMA process. Let y(t) and z(t) be AR processes of orders p and r
respectively described by α(L)y(t) = ε(t) and ρ(L)z(t) = η(t), wherein
ε(t) and η(t) are mutually independent white-noise processes. Then their
sum will be

(6)
y(t) + z(t) =

ε(t)
α(L)

+
η(t)
ρ(L)

=
ρ(L)ε(t) + α(L)η(t)

α(L)ρ(L)
=

µ(L)ζ(t)
α(L)ρ(L)

,

where µ(L)ζ(t) = ρ(L)ε(t)+α(L)η(t) constitutes a moving-average process
of order max(p, r).
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Figure 16. The graph of 120 observations on a simulated series generated by

the ARMA(2, 2) process (1−1.69L+0.81L2)y(t) = (1+0.90L+0.81L2)ε(t).
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Figure 17. The theoretical autocorrelation function (ACF) of the ARMA(2,

2) process (1 − 1.69L + 0.81L2)y(t) = (1 + 0.90L + 0.81L2)ε(t) (the solid

bars) together with its empirical counterpart, calculated from a simulated series

of 120 observations.
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Figure 18. The theoretical partial autocorrelation function (PACF) of the

ARMA(2, 2) process (1 − 1.69L + 0.81L2)y(t) = (1 + 0.90L + 0.81L2)ε(t)
(the solid bars) together with its empirical counterpart, calculated from a sim-

ulated series of 120 observations..
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FORECASTING WITH ARMA MODELS

The Coefficients of the Moving-Average Expansion

The ARMA model α(L)y(t) = µ(L)ε(t) can be cast in the form of
y(t) = {µ(L)/α(L)}ε(t) = ψ(L)ε(t) where

ψ(L) = {ψ0 + ψ1L + ψ2L
2 + · · ·}

is from the expansion of the rational function.
The method of finding the coefficients of the series expansion can be

illustrated by the second-order case:

µ0 + µ1z

α1 + α1z + α2z2
=

{
ψ0 + ψ1z + ψ2z

2 + · · ·
}
.

We rewrite this equation as

µ0 + µ1z =
{
α1 + α1z + α2z

2
}{

ψ0 + ψ1z + ψ2z
2 + · · ·

}
.
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The following table assists us in multipling togther the two polyomials:

ψ0 ψ1z ψ2z
2 · · ·

α0 α0ψ0 α0ψ1z α0ψ2z
2 · · ·

α1z α1ψ0z α1ψ1z
2 α1ψ2z

3 · · ·
α2z

2 α2ψ0z
2 α2ψ1z

3 α2ψ2z
4 · · ·

Performing the multiplication on the RHS of the equation, and by equating
the coefficients of the same powers of z on the two sides, we find that

µ0 = α0ψ0,

µ1 = α0ψ1 + α1ψ0,

0 = α0ψ2 + α1ψ1 + α2ψ0,
...

0 = α0ψn + α1ψn−1 + α2ψn−2,

ψ0 = µ0/α0,

ψ1 = (µ1 − α1ψ0)/α0,

ψ2 = −(α1ψ1 + α2ψ0)/α0,
...

ψn = −(α1ψn−1 + α2ψn−2)/α0.
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The optimal (minimum mean-square error) forecast of yt+h is the con-
ditional expectation of yt+h given the information set It comprising the
values of {εt, εt−1, εt−2, . . .} or equally the values of {yt, yt−1, yt−2, . . .}.
On taking expectations y(t) and ε(t) conditonal on It, we find that

(21)

E(yt+k|It) = ŷt+k if k > 0,

E(yt−j |It) = yt−j if j ≥ 0,

E(εt+k|It) = 0 if k > 0,

E(εt−j |It) = εt−j = yt−j − ŷt−j if j ≥ 0.

In this notation, the forecast h periods ahead is

(22)

E(yt+h|It) =
h∑

k=1

ψh−kE(εt+k|It) +
∞∑

j=0

ψh+jE(εt−j |It)

=
∞∑

j=0

ψh+jεt−j .
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In practice, the forecasts are generated recursively via the equation

(23)
y(t) = −

{
α1y(t − 1) + α2y(t − 2) + · · · + αpy(t − p)

}
+ µ0ε(t) + µ1ε(t − 1) + · · · + µqε(t − q).

By taking the conditional expectation of this function, we get

(24)
ŷt+h = −{α1ŷt+h−1 + · · · + αpyt+h−p}

+ µhεt + · · · + µqεt+h−q when 0 < h ≤ p, q,

(25) ŷt+h = −{α1ŷt+h−1 + · · · + αpyt+h−p} if q < m ≤ p,

(26)
ŷt+h = −{α1ŷt+h−1 + · · · + αpŷt+h−p}

+ µhεt + · · · + µqεt+h−q if p < h ≤ q,

and

(27) ŷt+h = −{α1ŷt+h−1 + · · · + αpŷt+h−p} when p, q < h.
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Equation (27) ashows that, whn h > p, q, the forecasting function becomes
a pth-order homogeneous difference equation in y. The p values of y(t)
from t = r = max(p, q) to t = r− p+1 serve as the starting values for the
equation.

The behaviour of the forecast function beyond the reach of the start-
ing values is determind the roots of the autoregressive operator α(L) = 0

If all of the roots of α(z) = 0 are less than unity, then ŷt+h will
converge to zero as h increases.

If one of the roots is unity, then the forecast function will converge
to a nonzero consant.

If the are two unit roots, then the forecast function will converg to a
linear trend.

In general, if d of the roots are unity, then the general solution will
comprise a polynomial in t of order d − 1.
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The forecasts can be updated easily once the coefficients in the expansion
of ψ(L) = µ(L)/α(L) have been obtained. Consider

(28)
ŷt+h|t+1 = {ψh−1εt+1 + ψhεt + ψh+1εt−1 + · · ·} and

ŷt+h|t = {ψhεt + ψh+1εt−1 + ψh+2εt−2 + · · ·}.

The first of these is the forecast for h−1 periods ahead made at time t+1
whilst the second is the forecast for h periods ahead made at time t. It
can be seen that

(29) ŷt+h|t+1 = ŷt+h|t + ψh−1εt+1,

where εt+1 = yt+1 − ŷt+1 is the current disturbance at time t + 1. The
later is also the prediction error of the one-step-ahead forecast made at
time t.
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