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LINEAR STOCHASTIC MODELS

Let {xτ+1, xτ+2, . . . , xτ+n} denote n consecutive elements from a stochas-
tic process. If their joint distribution does not depend on τ , regardless of
the size of n, then the process is strictly stationary. Any two segments of
equal length will have the same distribution with

(1) E(xt) = μ < ∞ for all t and C(xτ+t, xτ+s) = γ|t−s|.

The condition on the covariances implies that the dispersion matrix
of the vector [x1, x2, . . . , xn] is a bisymmetric Laurent matrix of the form

(2) Γ =

⎡
⎢⎢⎢⎢⎣

γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

γ2 γ1 γ0 . . . γn−3

...
...

...
. . .

...
γn−1 γn−2 γn−3 . . . γ0

⎤
⎥⎥⎥⎥⎦ ,

wherein the generic element in the (i, j)th position is γ|i−j| = C(xi, xj).
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Moving-Average Processes

The qth-order moving average MA(q) process, is defined by

(3) y(t) = μ0ε(t) + μ1ε(t − 1) + · · · + μqε(t − q),

where ε(t) = {εt; t = 0,±1,±2, . . .} is a sequence of i.i.d. random variables
with E{ε(t)} = 0 and V (εt) = σ2

ε , defined on a doubly-infinite set of
integers. We set can μ0 = 1.

The equation can also written as

y(t) = μ(L)ε(t), where μ(L) = μ0 + μ1L + · · · + μqL
q

is a polynomial in the lag operator L, for which Ljx(t) = x(t − j).
This process is stationary, since any two elements yt and ys are

the same function of [εt, εt−1, . . . , εt−q] and [εs, εs−1, . . . , εs−q], which are
identically distributed.

If the roots of the polynomial equation μ(z) = μ0+μ1z+· · ·+μqz
q = 0

lie outside the unit circle, then the process is invertible such that

μ−1(L)y(t) = ε(t),

which is an infinite-order autoregressive representation.
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Example. Consider the first-order MA(1) moving-average process

(4) y(t) = ε(t) − θε(t − 1) = (1 − θL)ε(t).

Provided that |θ| < 1, this can be written in autoregressive form as

ε(t) =
1

(1 − θL)
y(t) =

{
y(t) + θy(t − 1) + θ2y(t − 2) + · · ·

}
.

Imagine that |θ| > 1 instead. Then, to obtain a convergent series, we have
to write

y(t + 1) = ε(t + 1) − θε(t) = −θ(1 − L−1/θ)ε(t),

where L−1ε(t) = ε(t + 1). This gives

(7) ε(t) = − θ−1

(1 − L−1/θ)
y(t + 1) = −θ−1

{
y(t + 1)

θ
+

y(t + 2)
θ2

+ · · ·
}

.

Normally, this would have no reasonable meaning.
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The Autocovariances of a Moving-Average Process

Consider

(8)

γτ = E(ytyt−τ )

= E
{∑

i

μiεt−i

∑
j

μjεt−τ−j

}

=
∑

i

∑
j

μiμjE(εt−iεt−τ−j).

Since ε(t) is a sequence of independently and identically distributed
random variables with zero expectations, it follows that

(9) E(εt−iεt−τ−j) =
{ 0, if i �= τ + j;

σ2
ε , if i = τ + j.

Therefore

(10) γτ = σ2
ε

∑
j

μjμj+τ .
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Now let τ = 0, 1, . . . , q. This gives

(11)

γ0 = σ2
ε(μ2

0 + μ2
1 + · · · + μ2

q),

γ1 = σ2
ε(μ0μ1 + μ1μ2 + · · · + μq−1μq),

...
γq = σ2

εμ0μq.

Also, γτ = 0 for all τ > q.
The first-order moving-average process y(t) = ε(t)− θε(t− 1) has the

following autocovariances:

(12)

γ0 = σ2
ε(1 + θ2),

γ1 = −σ2
εθ,

γτ = 0 if τ > 1.
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For a vector y = [y0, y2, . . . , yT−1]′ of T consecutive elements from a first-
order moving-average process, the dispersion matrix is

(13) D(y) = σ2
ε

⎡
⎢⎢⎢⎢⎣

1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 −θ . . . 0
0 −θ 1 + θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + θ2

⎤
⎥⎥⎥⎥⎦ .

In general, the dispersion matrix of a qth-order moving-average process
has q subdiagonal and q supradiagonal bands of nonzero elements and zero
elements elsewhere.

The empirical autocovariance of lag τ ≤ T − 1 is

cτ =
1
T

T−τ∑
t=0

(yt − ȳ)(yt+τ − ȳ) with ȳ =
1
T

T−1∑
t=0

yt.

Notice that cT−1 = T−1y0yT−1 comprises only the first and the last ele-
ment of the sample.
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Figure 1. The graph of 125 observations on a simulated series

generated by an MA(2) process y(t) = (1 + 1.25L + 0.80L2)ε(t).
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Figure 2. The theoretical autocorrelations of the MA(2) process

y(t) = (1 + 1.25L + 0.80L2)ε(t) (the solid bars) together with their

empirical counterparts, calculated from a simulated series of 125 val-

ues.
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Autoregressive Processes

The pth-order autoregressive AR(p) process, is defined by

(17) α0y(t) + α1y(t − 1) + · · · + αpy(t − p) = ε(t).

Setting α0 = 1 identifies y(t) as the output. This can be written as

α(L)y(t) = ε(t), where α(L) = α0 + α1L + · · · + αpL
p.

For the process to be stationary, the roots of the equation α(z) = α0 +
α1z + · · · + αpz

p = 0 must lie outside the unit circle.
This condition enables us to write the autoregressive process as an

infinite-order moving-average process in the form of

y(t) = α−1(L)ε(t).
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Example. Consider the AR(1) process defined by

(18)
ε(t) = y(t) − φy(t − 1)

= (1 − φL)y(t).

Provided that the process is stationary with |φ| < 1, it can be represented
in moving-average form as

(19) y(t) =
1

1 − φL
ε(t) =

{
ε(t) + φε(t − 1) + φ2ε(t − 2) + · · ·

}
.

The autocovariances of the AR(1) process can be found in the manner of
an MA process. Thus

(20)

γτ = E(ytyt−τ )

= E
{∑

i

φiεt−i

∑
j

φjεt−τ−j

}

=
∑

i

∑
j

φiφjE(εt−iεt−τ−j);
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Since

(9) E(εt−iεt−τ−j) =
{ 0, if i �= τ + j;

σ2
ε , if i = τ + j,

it follows that

(21) γτ = σ2
ε

∑
j

φjφj+τ =
σ2

εφτ

1 − φ2
.

For a vector y = [y0, y2, . . . , yT−1]′ of T consecutive elements from a first-
order autoregressive process, the dispersion matrix has the form

(22) D(y) =
σ2

ε

1 − φ2

⎡
⎢⎢⎢⎢⎣

1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

φ2 φ 1 . . . φT−3

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1

⎤
⎥⎥⎥⎥⎦ .
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The Autocovariances of an Autoregressive Process

Multiplying
∑

i αiyt−i = εt by yt−τ and taking expectations gives

(24)
∑

i

αiE(yt−iyt−τ ) = E(εtyt−τ ).

Taking account of the normalisation α0 = 1, we find that

(25) E(εtyt−τ ) =

{
σ2

ε , if τ = 0;

0, if τ > 0.

Therefore, on setting E(yt−iyt−τ ) = γτ−i, equation (24) gives

(26)
∑

i

αiγτ−i =

{
σ2

ε , if τ = 0;

0, if τ > 0.

The second equation enables us to generate the sequence {γp, γp+1, . . .}
given p starting values γ0, γ1, . . . , γp−1.
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According to (26), there is

α0γτ + α1γτ−1 + · · · + α2γτ−p = 0 for τ > 0

Thus, given γτ−1, γτ−2, . . . , γτ−p for τ ≥ p, we can find

γτ = −α1γτ−1 − α2γτ−2 − · · · − αpγτ−p.

By letting τ = 0, 1, . . . , p in (26), we generate a set of p+1 equations,
which can be arrayed in matrix form as follows:

(27)

⎡
⎢⎢⎢⎢⎣

γ0 γ1 γ2 . . . γp

γ1 γ0 γ1 . . . γp−1

γ2 γ1 γ0 . . . γp−2

...
...

...
. . .

...
γp γp−1 γp−2 . . . γ0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
α1

α2
...

αp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

σ2
ε

0
0
...
0

⎤
⎥⎥⎥⎥⎦ .

These the Yule–Walker equations, which can be used for generating the
values γ0, γ1, . . . , γp from the values α1, . . . , αp, σ

2
ε or vice versa.

13



EC3062 ECONOMETRICS

Example. For an example of the two uses of the Yule–Walker equations,
consider the AR(2) process. In this case,

(28)

⎡
⎣ γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

⎤
⎦

⎡
⎣α0

α1

α2

⎤
⎦ =

⎡
⎣α2 α1 α0 0 0

0 α2 α1 α0 0
0 0 α2 α1 α0

⎤
⎦

⎡
⎢⎢⎢⎣

γ2

γ1

γ0

γ1

γ2

⎤
⎥⎥⎥⎦

=

⎡
⎣α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

⎤
⎦

⎡
⎣ γ0

γ1

γ2

⎤
⎦ =

⎡
⎣σ2

ε

0
0

⎤
⎦ .

Given α0 = 1 and the values for γ0, γ1, γ2, we can find σ2
ε and α1, α2.

Conversely, given α0, α1, α2 and σ2
ε , we can find γ0, γ1, γ2.

Notice how the matrix following the first equality is folded across the
axis which divides it vertically to give the matrix which follows the second
equality.
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Figure 3. The graph of 125 observations on a simulated series

generated by an AR(2) process (1 − 0.273L + 0.81L2)y(t) = ε(t).
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Figure 4. The theoretical autocorrelations and of the AR(2) process

(1 − 0.273L + 0.81L2)y(t) = ε(t) (the solid bars) together with

their empirical counterparts, calculated from a simulated series of 125

values.
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The Partial Autocorrelation Function

Let αr(r) be the coefficient associated with y(t− r) in an autoregres-
sive process of order r whose parameters correspond to the autocovari-
ances γ0, γ1, . . . , γr. Then the sequence {αr(r); r = 1, 2, . . .}, of which the
index corresponds to models of increasing orders, constitutes the partial
autocorrelation function.

In effect, αr(r) indicates the role in explaining the variance of y(t)
which is due to y(t− r) when y(t− 1), . . . , y(t− r + 1) are also taken into
account.

The sample partial autocorrelation pτ at lag τ is the correlation be-
tween the two sets of residuals obtained from regressing the elements yt

and yt−τ on the set of intervening values yt−1, yt−2, . . . , yt−τ+1. The par-
tial autocorrelation measures the dependence between yt and yt−τ after
the effect of the intervening values has been removed.

The theoretical partial autocorrelations function of a AR(p) process
is zero-valued for all τ > p. Likewise, all elements of the sample partial
autocorrelation function are expected to be close to zero for lags greater
than p
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Figure 5. The theoretical partial autocorrelations of the AR(2) process

(1 − 0.273L + 0.81L2)y(t) = ε(t) together with their empirical counterparts,

calculated from a simulated series of 125 values.
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Figure 6. The theoretical partial autocorrelations of the MA(2) process

y(t) = (1 + 1.25L + 0.80L2)ε(t) together with their empirical counterparts,

calculated from a simulated series of 125 values.

19



EC3062 ECONOMETRICS

Autoregressive Moving-Average Processes

The autoregressive moving-average ARMA(p, q) process of orders p
and q is defined by

(36)
α0y(t) + α1y(t − 1) + · · · + αpy(t − p)

= μ0ε(t) + μ1ε(t − 1) + · · · + μqε(t − q).

The equation is normalised by setting α0 = 1 and μ0 = 1. The
equation can be denoted by

α(L)y(t) = μ(L)ε(t).

Provided that the roots of the equation α(z) = 0 lie outside the unit circle,
the process can be described as an infinite-order MA process:

y(t) = α−1(L)μ(L)ε(t).

Conversely, provided the roots of the equation μ(z) = 0 lie outside the
unit circle, the process can be described as an infinite-order AR process:

μ−1(L)α(L)y(t) = ε(t).
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The Autocovariances of an ARMA Process

Multiplying
∑

i αiyt−i =
∑

i μiεt−i by yt−τ and taking expectations gives

(38)
∑

i

αiγτ−i =
∑

i

μiδi−τ ,

where γτ−i = E(yt−τyt−i) and δi−τ = E(yt−τεt−i). Since εt−i is uncor-
related with yt−τ whenever it is subsequent to the latter, it follows that
δi−τ = 0 if τ > i.

Since the index i in the RHS of the equation (38) runs from 0 to q, it
follows that

(39)
∑

i

αiγi−τ = 0 if τ > q.

Given the q+1 values δ0, δ1, . . . , δq, and p initial values γ0, γ1, . . . , γp−1 for
the autocovariances, the equation (38) can be solved recursively to obtain
the subsequent values {γp, γp+1, . . .}.
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To find the requisite values δ0, δ1, . . . , δq, consider multiplying the
equation

∑
i αiyt−i =

∑
i μiεt−i by εt−τ and taking expectations. This

gives

(40)
∑

i

αiδτ−i = μτσ2
ε ,

where δτ−i = E(yt−iεt−τ ). The equation may be rewritten as

(41) δτ =
1
α0

(
μτσ2

ε −
∑
i=1

δτ−i

)
,

and, by setting τ = 0, 1, . . . , q, we can generate recursively the required
values δ0, δ1, . . . , δq.
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Example. Consider the ARMA(2, 2) model, which gives the equation

(42) α0yt + α1yt−1 + α2yt−2 = μ0εt + μ1εt−1 + μ2εt−2.

Multiplying by yt, yt−1 and yt−2 and taking expectations gives

(43)

⎡
⎣ γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

⎤
⎦

⎡
⎣α0

α1

α2

⎤
⎦ =

⎡
⎣ δ0 δ1 δ2

0 δ0 δ1

0 0 δ0

⎤
⎦

⎡
⎣μ0

μ1

μ2

⎤
⎦ .

Multiplying by εt, εt−1 and εt−2 and taking expectations gives

(44)

⎡
⎣ δ0 0 0

δ1 δ0 0
δ2 δ1 δ0

⎤
⎦

⎡
⎣α0

α1

α2

⎤
⎦ =

⎡
⎣σ2

ε 0 0
0 σ2

ε 0
0 0 σ2

ε

⎤
⎦

⎡
⎣μ0

μ1

μ2

⎤
⎦ .

When the latter equations are written as

(45)

⎡
⎣α0 0 0

α1 α0 0
α2 α1 α0

⎤
⎦

⎡
⎣ δ0

δ1

δ2

⎤
⎦ = σ2

ε

⎡
⎣μ0

μ1

μ2

⎤
⎦ ,
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they can be solved recursively for δ0, δ1 and δ2 on the assumption that
that the values of α0, α1, α2 and σ2

ε are known. Notice that, when we
adopt the normalisation α0 = μ0 = 1, we get δ0 = σ2

ε . When the equations
(43) are rewritten as

(46)

⎡
⎣α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

⎤
⎦

⎡
⎣ γ0

γ1

γ2

⎤
⎦ =

⎡
⎣μ0 μ1 μ2

μ1 μ2 0
μ2 0 0

⎤
⎦

⎡
⎣ δ0

δ1

δ2

⎤
⎦ ,

they can be solved for γ0, γ1 and γ2. Thus the starting values are obtained,
which enable the equation

(47) α0γτ + α1γτ−1 + α2γτ−2 = 0; τ > 2

to be solved recursively to generate the succeeding values {γ3, γ4, . . .} of
the autocovariances.
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Figure 7. The graph of 125 observations on a simulated series

generated by an ARMA(2, 1) process (1 − 0.273L + 0.81L2)y(t) =
(1 + 0.9L)ε(t).

25



EC3062 ECONOMETRICS

0.00
0.25
0.50
0.75
1.00

−0.25
−0.50
−0.75

0 5 10 15 20 25

Figure 8. The theoretical autocorrelations and of the ARMA(2, 1)

process (1 − 0.273L + 0.81L2)y(t) = (1 + 0.9L)ε(t) together with

their empirical counterparts, calculated from a simulated series of 125

values.
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Figure 9. The theoretical partial autocorrelations of the ARMA(2, 1) process

(1 − 0.273L + 0.81L2)y(t) = (1 + 0.9L)ε(t) together with their empirical

counterparts, calculated from a simulated series of 125 values.
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