
EC3062 ECONOMETRICS

THE MULTIPLE REGRESSION MODEL

Consider T realisations of the regression equation

(1) y = β0 + β1x1 + · · · + βkxk + ε,

which can be written in the following form:

(2)


y1

y2
...

yT

 =


1 x11 . . . x1k

1 x21 . . . x2k
...

...
...

1 xT1 . . . xTk




β0

β1
...

βk

 +


ε1

ε2
...

εT

 .

This can be represented in summary notation by

(3) y = Xβ + ε.

The object is to derive an expression for the ordinary least-squares
estimates of the elements of the parameter vector β = [β0, β1, . . . , βk]′.
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The ordinary least-squares (OLS) estimate of β is the value that minimises

(4)

S(β) = ε′ε

= (y − Xβ)′(y − Xβ)
= y′y − y′Xβ − β′X ′y + β′X ′Xβ

= y′y − 2y′Xβ + β′X ′Xβ.

According to the rules of matrix differentiation, the derivative is

(5)
∂S

∂β
= −2y′X + 2β′X ′X.

Setting this to zero gives 0 = β′X ′X−y′X, which is transposed to provide
the so-called normal equations:

(6) X ′Xβ = X ′y.

On the assumption that the inverse matrix exists, the equations have a
unique solution, which is the vector of ordinary least-squares estimates:

(7) β̂ = (X ′X)−1X ′y.
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The Decomposition of the Sum of Squares

The equation y = Xβ̂ + e, decomposes y into a regression component
Xβ̂ and a residual component e = y−X̂β. These are mutually orthogonal,
since (6) indicates that X ′(y − X̂β) = 0.

Define the projection matrix P = X(X ′X)−1X ′, which is symmetric
and idempotent such that

P = P ′ = P 2 or, equivalently, P ′(I − P ) = 0.

Then, Xβ̂ = Py and e = y−X̂β = (I−P )y, and, therefore, the regression
decomposition is

y = Py + (I − P )y.

The conditions on P imply that

(8)

y′y =
{
Py + (I − P )y

}′{
Py + (I − P )y

}
= y′Py + y′(I − P )y

= β̂′X ′Xβ̂ + e′e.
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This is an instance of Pythagorus theorem; and the equation indicates
that the total sum of squares y′y is equal to the regression sum of squares
β̂′X ′Xβ̂ plus the residual or error sum of squares e′e.

By projecting y perpendicularly onto the manifold of X, the distance
between y and Py = Xβ̂ is minimised.

Proof. Let γ = Pg be an arbitrary vector in the manifold of X. Then

(9)
(y − γ)′(y − γ) =

{
(y − Xβ̂) + (Xβ̂ − γ)

}′{(y − Xβ̂) + (Xβ̂ − γ)
}

=
{
(I − P )y + P (y − g)

}′{(I − P )y + P (y − g)
}
.

The properties of P indicate that

(10)
(y − γ)′(y − γ) = y′(I − P )y + (y − g)′P (y − g)

= e′e + (Xβ̂ − γ)′(Xβ̂ − γ).

Since the squared distance (Xβ̂ − γ)′(Xβ̂ − γ) is nonnegative, it follows
that (y − γ)′(y − γ) ≥ e′e, where e = y −Xβ̂; which proves the assertion.

4



EC3062 ECONOMETRICS

The Coefficient of Determination

A summary measure of the extent to which the ordinary least-squares
regression accounts for the observed vector y is provided by the coefficient
of determination. This is defined by

(11) R2 =
β̂′X ′Xβ̂

y′y
=

y′Py

y′y
.

The measure is just the square of the cosine of the angle between the
vectors y and Py = Xβ̂; and the inequality 0 ≤ R2 ≤ 1 follows from the
fact that the cosine of any angle must lie between −1 and +1.

If X is a square matrix of full rank, with as many regressors as
observations, then X−1 exists and

P = X(X ′X)−1X = X{X−1X ′−1}X ′ = I,

and so R2 = 1. If X ′y = 0, then, Py = 0 and R2 = 0. But, if y is
distibuted continuously, then this event has a zero probability.
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y

e

γ

Xβ
^

Figure 1. The vector Py = Xβ̂ is formed by the orthogonal projec-

tion of the vector y onto the subspace spanned by the columns of the

matrix X .
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The Partitioned Regression Model

Consider partitioning the regression equation of (3) to give

(12) y = [X1 X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε,

where [X1, X2] = X and [β′
1, β

′
2]

′ = β. The normal equations of (6) can
be partitioned likewise:

X ′
1X1β1 + X ′

1X2β2 = X ′
1y,(13)

X ′
2X1β1 + X ′

2X2β2 = X ′
2y.(14)

From (13), we get the X ′
1X1β1 = X ′

1(y − X2β2), which gives

(15) β̂1 = (X ′
1X1)−1X ′

1(y − X2β̂2).

To obtain an expression for β̂2, we must eliminate β1 from equation (14).
For this, we multiply equation (13) by X ′

2X1(X ′
1X1)−1 to give

(16) X ′
2X1β1 + X ′

2X1(X ′
1X1)−1X ′

1X2β2 = X ′
2X1(X ′

1X1)−1X ′
1y.
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From

(14) X ′
2X1β1 + X ′

2X2β2 = X ′
2y,

we take the resulting equation

(16) X ′
2X1β1 + X ′

2X1(X ′
1X1)−1X ′

1X2β2 = X ′
2X1(X ′

1X1)−1X ′
1y

to give

(17)
{

X ′
2X2 − X ′

2X1(X ′
1X1)−1X ′

1X2

}
β2 = X ′

2y − X ′
2X1(X ′

1X1)−1X ′
1y.

On defining P1 = X1(X ′
1X1)−1X ′

1, equation (17) can be written as

(19)
{

X ′
2(I − P1)X2

}
β2 = X ′

2(I − P1)y,

whence

(20) β̂2 =
{

X ′
2(I − P1)X2

}−1

X ′
2(I − P1)y.
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The Regression Model with an Intercept

Consider again the equations

(22) y = ια + Zβz + ε.

where ι = [1, 1, . . . , 1]′ is the summation vector and Z = [xtj ], with
t = 1, . . . T and j = 1, . . . , k, is the matrix of the explanatory variables.

This is a case of the partitioned regression equation of (12). By setting
X1 = ι and X2 = Z and by taking β1 = α, β2 = βz, the equations (15)
and (20), give the following estimates of the α and βz:

(23) α̂ = (ι′ι)−1ι′(y − Zβ̂z),

and

(24)
β̂z =

{
Z ′(I − Pι)Z

}−1
Z ′(I − Pι)y, with

Pι = ι(ι′ι)−1ι′ =
1
T

ιι′.
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To understand the effect of the operator Pι, consider

(25)
ι′y =

T∑
t=1

yt, (ι′ι)−1ι′y =
1
T

T∑
t=1

yt = ȳ,

and Pιy = ιȳ = ι(ι′ι)−1ι′y = [ȳ, ȳ, . . . , ȳ]′.

Here, Pιy = [ȳ, ȳ, . . . , ȳ]′ is a column vector containing T repetitions of
the sample mean.

From the above, it can be understood that, if x = [x1, x2, . . . xT ]′ is
vector of T elements, then

(26) x′(I − Pι)x =
T∑

t=1

xt(xt − x̄) =
T∑

t=1

(xt − x̄)xt =
T∑

t=1

(xt − x̄)2.

The final equality depends on the fact that
∑

(xt− x̄)x̄ = x̄
∑

(xt− x̄) = 0.
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The Regression Model in Deviation Form

Consider the matrix of cross-products in equation (24). This is

(27) Z ′(I − Pι)Z = {(I − Pι)Z}′{Z(I − Pι)} = (Z − Z̄)′(Z − Z̄).

Here, Z̄ contains the sample means of the k explanatory variables repeated
T times. The matrix (I − Pι)Z = (Z − Z̄) contains the deviations of the
data points about the sample means. The vector (I −Pι)y = (y− ιȳ) may
be described likewise.

It follows that the estimate β̂z =
{
Z ′(I − Pι)Z

}−1
Z ′(I − Pι)y is

obtained by applying the least-squares regression to the equation

(28)


y1 − ȳ
y2 − ȳ

...
yT − ȳ

 =


x11 − x̄1 . . . x1k − x̄k

x21 − x̄1 . . . x2k − x̄k
...

...
xT1 − x̄1 . . . xTk − x̄k




β1

...

βk

 +


ε1 − ε̄
ε2 − ε̄

...
εT − ε̄

 ,

which lacks an intercept term.
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In summary notation, the equation may be denoted by

(29) y − ιȳ = [Z − Z̄]βz + (ε − ε̄).

Observe that it is unnecessary to take the deviations of y. The result
is the same whether we regress y or y − ιȳ on [Z − Z̄]. The result is
due to the symmetry and idempotency of the operator (I − Pι), whereby
Z ′(I − Pι)y = {(I − Pι)Z}′{(I − Pι)y}.

Once the value for β̂z is available, the estimate for the intercept term
can be recovered from the equation (23), which can be written as

(30) α̂ = ȳ − Z̄β̂z = ȳ −
k∑

j=1

x̄j β̂j .
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The Assumptions of the Classical Linear Model

Consider the regression equation

(32) y = Xβ + ε,

where y = [y1, y2, . . . , yT ]′, ε = [ε1, ε2, . . . , εT ]′, β = [β0, β1, . . . , βk]′ and
X = [xtj ], with xt0 = 1 for all t.

It is assumed that the disturbances have expected values of zero. Thus

(33) E(ε) = 0 or, equivalently, E(εt) = 0, t = 1, . . . , T.

Next, it is assumed that they are mutually uncorrelated and that they
have a common variance. Thus

(34) D(ε) = E(εε′) = σ2I, or E(εtεs) =

{
σ2, if t = s;

0, if t �= s.

If t is a temporal index, then these assumptions imply that there is
no inter-temporal correlation in the sequence of disturbances.

13



EC3062 ECONOMETRICS

A conventional assumption, borrowed from the experimental sciences, is
that X is a nonstochastic matrix with linearly independent columns.

Linear independence is necessary in order to distinguish the separate
effects of the k explanatory variables.

In econometrics, it is more appropriate to regard the elements of X
as random variables distributed independently of the disturbances:

(37) E(X ′ε|X) = X ′E(ε) = 0.

Then,

(38) β̂ = (X ′X)−1X ′y is unbiased such that E(β̂) = β.

To demonstrate this, we may write

(39)
β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

Taking expectations gives

(40)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.
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Notice that, in the light of this result, equation (39) now indicates that

(41) β̂ − E(β̂) = (X ′X)−1X ′ε.

The variance–covariance matrix of the ordinary least-squares regression
estimator is

D(β̂) = σ2(X ′X)−1.

This is demonstrated via the following sequence of identities:

(43)

E
{[

β̂ − E(β̂)
][

β̂ − E(β̂)
]′} = E

{
(X ′X)−1X ′εε′X(X ′X)−1

}
= (X ′X)−1X ′E(εε′)X(X ′X)−1

= (X ′X)−1X ′{σ2I}X(X ′X)−1

= σ2(X ′X)−1.

The second of these equalities follows directly from equation (41).

15



EC3062 ECONOMETRICS

Matrix Traces

If A = [aij ] is a square matrix, then Trace(A) =
∑n

i=1 aii. If A = [aij ]
is of order n × m and B = [bk�] is of order m × n, then

(45)

AB = C = [ci�] with ci� =
m∑

j=1

aijbj� and

BA = D = [dkj ] with dkj =
n∑

�=1

bk�a�j .

Now,

(46)

Trace(AB) =
n∑

i=1

m∑
j=1

aijbji and

Trace(BA) =
m∑

j=1

n∑
�=1

bj�a�j =
n∑

�=1

m∑
j=1

a�jbj�.

Apart from a change of notation, where � replaces i, the expressions on
the RHS are the same. It follows that Trace(AB) = Trace(BA). For three
factors A, B, C, we have Trace(ABC) = Trace(CAB) = Trace(BCA).
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Estimating the Variance of the Disturbance

It is natural to estimate σ2 = V (εt) via its empirical counterpart.
With et = yt − xt.β̂ in place of εt, it follows that T−1

∑
t e2

t may be used
to estimate σ2. However, it transpires that this is biased. An unbiased
estimate is provided by

(48) σ̂2 =
1

T − k

T∑
t=1

e2
t =

1
T − k

(y − Xβ̂)′(y − Xβ̂).

The unbiasedness of this estimate may be demonstrated by finding the
expected value of (y − Xβ̂)′(y − Xβ̂) = y′(I − P )y.

Given that (I −P )y = (I −P )(Xβ + ε) = (I −P )ε in consequence of
the condition (I − P )X = 0, it follows that

(49) E
{
(y − Xβ̂)′(y − Xβ̂)

}
= E(ε′ε) − E(ε′Pε).
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The value of the first term on the RHS is given by

(50) E(ε′ε) =
T∑

t=1

E(e2
t ) = Tσ2.

The value of the second term on the RHS is given by

E(ε′Pε) = Trace
{
E(ε′Pε)

}
= E

{
Trace(ε′Pε)

}
= E

{
Trace(εε′P )

}
= Trace

{
E(εε′)P

}
= Trace

{
σ2P

}
= σ2Trace(P )(51)

= σ2k.

The final equality follows from the fact that Trace(P ) = Trace(Ik) = k.
Putting the results of (50) and (51) into (49), gives

(52) E
{
(y − Xβ̂)′(y − Xβ̂)

}
= σ2(T − k);

and, from this, the unbiasedness of the estimator in (48) follows directly.
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Statistical Properties of the OLS Estimator

The expectation or mean vector of β̂, and its dispersion matrix as
well, may be found from the expression

(53)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

The expectation is

(54)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus, β̂ is an unbiased estimator. The deviation of β̂ from its expected
value is β̂−E(β̂) = (X ′X)−1X ′ε. Therefore, the dispersion matrix, which
contains the variances and covariances of the elements of β̂, is

(55)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.
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The Gauss–Markov theorem asserts that β̂ is the unbiased linear es-
timator of least dispersion. Thus,

(56) If β̂ is the OLS estimator of β, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂), where q is a constant vector.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β, which implies that AX = I. Now write A =
(X ′X)−1X ′ + G. Then, AX = I implies that GX = 0. It follows that

(57)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′}

= σ2(X ′X)−1 + σ2GG′ = D(β̂) + σ2GG′.

Therefore, for any constant vector q of order k, there is

(58)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.
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Orthogonality and Omitted-Variables Bias

Consider the partitioned regression model of equation (12), which was
written as

(59) y = [X1, X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

Imagine that the columns of X1 are orthogonal to the columns of X2 such
that X ′

1X2 = 0.
In the partitioned form of the formula β̂ = (X ′X)−1X ′y, there would

be

(60) X ′X =
[

X ′
1

X ′
2

]
[X1 X2 ] =

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]
=

[
X ′

1X1 0
0 X ′

2X2

]
,

where the final equality follows from the condition of orthogonality. The
inverse of the partitioned form of X ′X in the case of X ′

1X2 = 0 is

(61) (X ′X)−1 =
[

X ′
1X1 0
0 X ′

2X2

]−1

=
[

(X ′
1X1)−1 0

0 (X ′
2X2)−1

]
.
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There is also

(62) X ′y =
[

X ′
1

X ′
2

]
y =

[
X ′

1y

X ′
2y

]
.

On combining these elements, we find that

(63)

[
β̂1

β̂2

]
=

[
(X ′

1X1)−1 0

0 (X ′
2X2)−1

] [
X ′

1y

X ′
2y

]
=

[
(X ′

1X1)−1X ′
1y

(X ′
2X2)−1X ′

2y

]
.

In this case, the coefficients of the regression of y on X = [X1, X2] can be
obtained from the separate regressions of y on X1 and y on X2.

It should be recognised that this result does not hold true in general.
The general formulae for β̂1 and β̂2 are those that have been given already
under (15) and (20):

(64)
β̂1 = (X ′

1X1)−1X ′
1(y − X2β̂2),

β̂2 =
{
X ′

2(I − P1)X2

}−1
X ′

2(I − P1)y, P1 = X1(X ′
1X1)−1X ′

1.
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The purpose of including X2 in the regression equation, when our interest
is confined to the parameters of β1, is to avoid falsely attributing the
explanatory power of the variables of X2 to those of X1.

If X2 is erroneously excluded, then the estimate of β1 will be

(65)

β̃1 = (X ′
1X1)−1X ′

1y

= (X ′
1X1)−1X ′

1(X1β1 + X2β2 + ε)

= β1 + (X ′
1X1)−1X ′

1X2β2 + (X ′
1X1)−1X ′

1ε.

On applying the expectations operator, we find that

(66) E(β̃1) = β1 + (X ′
1X1)−1X ′

1X2β2,

since E{(X ′
1X1)−1X ′

1ε} = (X ′
1X1)−1X ′

1E(ε) = 0. Thus, in general, we
have E(β̃1) �= β1, which is to say that β̃1 is a biased estimator.

The estimator will be unbiased only when either X ′
1X2 = 0 or β2 = 0.

In other circumstances, it will suffer from omitted-variables bias.
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Restricted Least-Squares Regression

A set of j linear restrictions on the vector β can be written as Rβ = r,
where r is a j×k matrix of linearly independent rows, such that Rank(R) =
j, and r is a vector of j elements.

To combine this a priori information with the sample information,
the sum of squares (y − Xβ)′(y − Xβ) is minimised subject to Rβ = r.
This leads to the Lagrangean function

(67)
L = (y − Xβ)′(y − Xβ) + 2λ′(Rβ − r)

= y′y − 2y′Xβ + β′X ′Xβ + 2λ′Rβ − 2λ′r.

Differentiating L with respect to β and setting the result to zero, gives
following first-order condition ∂L/∂β = 0:

(68) 2β′X ′X − 2y′X + 2λ′R = 0.

After transposing the expression, eliminating the factor 2 and rearranging,
we have

(69) X ′Xβ + R′λ = X ′y.
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Combining these equations with the restrictions gives

(70)
[

X ′X R′

R 0

] [
β
λ

]
=

[
X ′y
r

]
.

For the system to given a unique value of β, the matrix X ′X need not be
invertible—it is enough that the condition

(71) Rank
[

X
R

]
= k

should hold, which means that the matrix should have full column rank.
Consider applying OLS to the equation

(72)
[

y
r

]
=

[
X
R

]
β +

[
ε
0

]
,

which puts the equations of the observations and the equations of the
restrictions on an equal footing. An estimator exits on the condition that
(X ′X + R′R)−1 exists, for which the satisfaction of the rank condition is
necessary and sufficient. Then, β̂ = (X ′X + R′R)−1(X ′y + R′r).
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Let us assume that (X ′X)−1 does exist. Then equation (68) gives an
expression for β in the form of

(73)
β∗ = (X ′X)−1X ′y − (X ′X)−1R′λ

= β̂ − (X ′X)−1R′λ,

where β̂ is the unrestricted ordinary least-squares estimator. Since Rβ∗ =
r, premultiplying the equation by R gives

(74) r = Rβ̂ − R(X ′X)−1R′λ,

from which

(75) λ = {R(X ′X)−1R′}−1(Rβ̂ − r).

On substituting this expression back into equation (73), we get

(76) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

This formula is an instance of the prediction-error algorithm, whereby the
estimate of β is updated using information provided by the restrictions.
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Given that E(β̂ − β) = 0, which is to say that β̂ is an unbiased estimator,
then, on the supposition that the restrictions are valid, it follows that
E(β∗ − β) = 0, so that β∗ is also unbiased.

Next, consider the expression

(77)
β∗ − β = [I − (X ′X)−1R′{R(X ′X)−1R′}−1R](β̂ − β)

= (I − PR)(β̂ − β),
where

(78) PR = (X ′X)−1R′{R(X ′X)−1R′}−1R.

The expression comes from taking β from both sides of (76) and from
recognising that Rβ̂ − r = R(β̂ − β). It can be seen that PR is an idem-
potent matrix that is subject to the conditions that

(79) PR = P 2
R, PR(I − PR) = 0 and P ′

RX ′X(I − PR) = 0.

From equation (77), it can be deduced that

(80)

D(β∗) = (I − PR)E{(β̂ − β)(β̂ − β)′}(I − PR)

= σ2(I − PR)(X ′X)−1(I − PR)

= σ2[(X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1].
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Regressions on Trigonometrical Functions

An example of orthogonal regressors is a Fourier analysis, where the
explanatory variables are sampled from a set of trigonometric functions
with angular velocities, called Fourier frequencies, that are evenly dis-
tributed in an interval from zero to π radians per sample period.

If the sample is indexed by t = 0, 1, . . . , T − 1, then the Fourier
frequencies are ωj = 2πj/T ; j = 0, 1, . . . , [T/2], where [T/2] denotes the
integer quotient of the division of T by 2.

The object of a Fourier analysis is to express the elements of the
sample as a weighted sum of sine and cosine functions as follows:

(81) yt = α0 +
[T/2]∑
j=1

{αj cos(ωjt) + βj sin(ωjt)} ; t = 0, 1, . . . , T − 1.

The vectors of the generic trigonometric regressors may be denoted by

(83) cj = [c0j , c1j , . . . cT−1,j ]′ and sj = [s0j , s1j , . . . sT−1,j ]′,

where ctj = cos(ωjt) and stj = sin(ωjt).

28



EC3062 ECONOMETRICS

The vectors of the ordinates of functions of different frequencies are mu-
tually orthogonal. Therefore, the following orthogonality conditions hold:

(84)
c′icj = s′isj = 0 if i �= j,

and c′isj = 0 for all i, j.

In addition, there are some sums of squares which can be taken into ac-
count in computing the coefficients of the Fourier decomposition:

(85)
c′0c0 = ι′ι = T, s′0s0 = 0,

c′jcj = s′jsj = T/2 for j = 1, . . . , [(T − 1)/2]

When T = 2n, there is ωn = π and there is also

(86) s′nsn = 0, and c′ncn = T.
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The “regression” formulae for the Fourier coefficients can now be
given. First, there is

(87) α0 = (ι′ι)−1ι′y =
1
T

∑
t

yt = ȳ.

Then, for j = 1, . . . , [(T − 1)/2], there are

(88) αj = (c′jcj)−1c′jy =
2
T

∑
t

yt cos ωjt,

and

(89) βj = (s′jsj)−1s′jy =
2
T

∑
t

yt sinωjt.

If T = 2n is even, then there is no coefficient βn and there is

(90) αn = (c′ncn)−1c′ny =
1
T

∑
t

(−1)tyt.

30



EC3062 ECONOMETRICS

By pursuing the analogy of multiple regression, it can be seen, in view
of the orthogonality relationships, that there is a complete decomposition
of the sum of squares of the elements of the vector y:

(91) y′y = α2
0ι

′ι +
[T/2]∑
j=1

{
α2

jc
′
jcj + β2

j s′jsj

}
.

Now consider writing α2
0ι

′ι = ȳ2ι′ι = ȳ′ȳ, where ȳ′ = [ȳ, ȳ, . . . , ȳ] is a
vector whose repeated element is the sample mean ȳ. It follows that
y′y − α2

0ι
′ι = y′y − ȳ′ȳ = (y − ȳ)′(y − ȳ). Then, in the case where T = 2n

is even, the equation can be written as

(92) (y − ȳ)′(y − ȳ) =
T

2

n−1∑
j=1

{
α2

j + β2
j

}
+ Tα2

n =
T

2

n∑
j=1

ρ2
j .

where ρj = α2
j +β2

j for j = 1, . . . , n−1 and ρn = 2αn. A similar expression
exists when T is odd, with the exceptions that αn is missing and that the
summation runs to (T − 1)/2.
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It follows that the variance of the sample can be expressed as

(93)
1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j ).

The proportion of the variance that is attributable to the component at
frequency ωj is (α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the
component.

The number of the Fourier frequencies increases at the same rate as
the sample size T , and, if there are no regular harmonic components in
the underling process, then we can expect the proportion of the variance
attributed to the individual frequencies to decline as the sample size in-
creases.

If there is a regular component, then we can expect the the variance
attributable to it to converge to a finite value as the sample size increases.

In order provide a graphical representation of the decomposition of
the sample variance, we must scale the elements of equation (36) by a
factor of T . The graph of the function I(ωj) = (T/2)(α2

j + β2
j ) is know as

the periodogram.

32



EC3062 ECONOMETRICS

4.8

5

5.2

5.4

0 25 50 75 100 125
Figure 2. The plot of 132 monthly observations on the U.S. money

supply, beginning in January 1960. A quadratic function has been

interpolated through the data.
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Figure 3. The periodogram of the residuals of the logarithmic money-

supply data.
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