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ELEMENTARY REGRESSION ANALYSIS

We shall consider three methods for estimating statistical parameters.
These are the method of moments, the method of least squares and the
principle of maximum likelihood.

In the case of the regression model, the three methods generate esti-
mating equations that are identical; but the assumptions differ.

Conditional Expectations
If y ∼ f(y), then, in the absence of further information, the minimum-

mean-square-error predictor is its expected value

E(y) =
∫

yf(y)dy.

Proof. If π is the value of a prediction, then the mean-square error is

(1) M =
∫

(y − π)2f(y)dy = E
{
(y − π)2

}
= E(y2) − 2πE(y) + π2;

and, by calculus, it can be shown that M is minimised by taking π = E(y).
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If x is related to y, then the m.m.s.e prediction of y is the conditional
expectation

(2) E(y|x) =
∫

y
f(x, y)
f(x)

dy.

Proof. Let ŷ = E(y|x) and let π = π(x) be any other estimator. Then,

(5)
E

{
(y − π)2

}
= E

[{
(y − ŷ) + (ŷ − π)

}2
]

= E
{
(y − ŷ)2

}
+ 2E

{
(y − ŷ)(ŷ − π)

}
+ E

{
(ŷ − π)2

}
.

In the second term, there is

(6)

E
{
(y − ŷ)(ŷ − π)

}
=

∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫

x

{ ∫
y

(y − ŷ)f(y|x)∂y

}
(ŷ − π)f(x)∂x = 0.

Therefore, E{(y − π)2} = E{(y − ŷ)2}+ E{(ŷ − π)2} ≥ E{(y − ŷ)2}, and
the assertion is proved.
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The definition of the conditional expectation implies that

E(xy) =
∫

x

∫
y

xyf(x, y)∂y∂x =
∫

x

x

{ ∫
y

yf(y|x)∂y

}
f(x)∂x = E(xŷ).

When E(xy) = E(xŷ) is rewritten as E
{
x(y−ŷ)

}
= 0, it may be described

as an orthogonality condition. This indicates that the prediction error y−ŷ
is uncorrelated with x. If it were correlated with x, then we should not
be using the information of x efficiently in forming ŷ.

Linear Regression

Assume that x and y have a joint normal distribution, which implies
that there is a linear regression relationship:

(9) E(y|x) = α + βx,

The object is to express α and β in terms of the expectations E(x), E(y),
the variances V (x), V (y) and the covariance C(x, y).
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First, multiply (9) by f(x), and integrate with respect to x to give

(10) E(y) = α + βE(x),

whence the equation for the intercept is

(11) α = E(y) − βE(x).

Equation (10) shows that the regression line passes through the expected
value of the joint distribution E(x, y) = {E(x), E(y)}.

By putting (11) into E(y|x) = α + βx from (9), we find that

(12) E(y|x) = E(y) + β
{
x − E(x)

}
.

Now multiply (9) by x and f(x) and integrate with respect to x to give

(13) E(xy) = αE(x) + βE(x2).

Multiplying (10) by E(x) gives

(14) E(x)E(y) = αE(x) + β
{
E(x)

}2
,
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(13) E(xy) = αE(x) + βE(x2).

Multiplying (10) by E(x) gives

(14) E(x)E(y) = αE(x) + β
{
E(x)

}2
,

whence, on taking (14) from (13), we get

(15) E(xy) − E(x)E(y) = β
[
E(x2) −

{
E(x)

}2
]
,

which implies that

(16) β =
E(xy) − E(x)E(y)

E(x2) −
{
E(x)

}2 =
E

[{
x − E(x)

}{
y − E(y)

}]
E

[{
x − E(x)

}2
] =

C(x, y)
V (x)

.

Thus, we have expressed α and β in terms of the moments E(x), E(y),
V (x) and C(x, y) of the joint distribution of x and y.
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Estimation by the Method of Moments

Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a sample of T observations.
Then, we can calculate the following empirical or sample moments:

(21)

x̄ =
1
T

T∑
t=1

xt, ȳ =
1
T

T∑
t=1

yt,

s2
x =

1
T

T∑
t=1

(xt − x̄)2 =
1
T

T∑
t=1

x2
t − x̄2,

sxy =
1
T

T∑
t=1

(xt − x̄)(yt − ȳ) =
1
T

T∑
t=1

xtyt − x̄ȳ.

To estimate α and β, we replace the population moments in the formulae
of (11) and (16) by the sample moments. Then, the estimates are

(22) α̂ = ȳ − β̂x̄, β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.
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Convergence

We can expect the sample moments to converge to the true moments
of the bivariate distribution, thereby causing the estimates of the param-
eters to converge likewise to the true values.

(23) A sequence of numbers {an} is said to converge to a limit a if, for
any arbitrarily small real number ε, there exists a corresponding
integer N such that |an − a| < ε for all n ≥ N .

This is not appropriate to a stochastic sequence, such as a sequence of
estimates. For, it is always possible for an to break the bounds of a ± ε
when n > N . The following is a more appropriate definition:

(24) A sequence of random variables {an} is said to converge weakly in
probability to a limit a if, for any ε, there is limP (|an −a| > ε) = 0
as n → ∞ or, equivalently, limP (|an − a| ≤ ε) = 1.

With the increasing size of the sample, it becomes virtually certain that
an will ‘fall within an epsilon of a.’ We describe a as the probability limit
of an and we write plim(an) = a.
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This definition does not presuppose that an has a finite variance or even
a finite mean. However, if an does have finite moments, then we may talk
of mean-square convergence:

(25) A sequence of random variables {an} is said to converge in mean
square to a limit a if lim(n → ∞)E{(an − a)2} = 0.

We should note that

(26)
E

{(
an − a

)2
}

= E

{([
an − E(an)

]
−

[
a − E(an)

])2
}

= V (an) + E
[{

a − E(an)
}2

]
.

Thus, the mean-square error of an estimator an is the sum of its variance
and the square of its bias. If an is to converge in mean square to a, then
both of these quantities must vanish.

Convergence in mean square implies convergence in probability.
When an estimator converges in probability to the parameter which it
purports to represent, then we say that it is a consistent estimator.
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Figure 1. Pearson’s data comprising 1078 measurements of the heights
of fathers (the abscissae) and of their sons (the ordinates), together with
the two regression lines. The correlation coefficient is 0.5013.
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The Bivariate Normal Distribution

Most of the results in the theory of regression can be obtained by
examining the functional form of the bivariate normal distribution. Let
x and y be the two variables. Let us denote their means by E(x) = µx,
E(y) = µy, their variances by V (x) = σ2

x, V (y) = σ2
y and their covariance

by C(x, y) = ρσxσy. Here, the correlation coefficient

(30) ρ =
C(x, y)√
V (x)V (y)

provides a measure of the relatedness of these variables.
The bivariate distribution is specified by

(31) f(x, y) =
1

2πσxσy

√
1 − ρ2

expQ(x, y),

where
(32)

Q =
−1

2(1 − ρ2)

{(
x − µx

σx

)2

− 2ρ

(
x − µx

σx

) (
y − µy

σy

)
+

(
y − µy

σy

)2
}

.
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The quadratic function can also be written as

(33) Q =
−1

2(1 − ρ2)

{(
y − µy

σy
− ρ

x − µx

σx

)2

− (1 − ρ2)
(

x − µx

σx

)2
}

.

Thus, we have

(34) f(x, y) = f(y|x)f(x),

where

(35) f(x) =
1

σx

√
2π

exp
{
− (x − µx)2

2σ2
x

}
,

and

(36) f(y|x) =
1

σy

√
2π(1 − ρ2)

exp
{
− (y − µy|x)2

2σ2
y(1 − ρ)2

}
,

with

(37) µy|x = µy +
ρσy

σx
(x − µx).
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Least-Squares Regression Analysis

The regression equation, E(y|x) = α + βx can be written as

(39) y = α + xβ + ε,

where ε = y−E(y|x) is a random variable, with E(ε) = 0 and V (ε) = σ2,
that is independent of x.

Given observations (x1, y1), . . . , (xT , yT ), the estimates are the values
that minimise the sum of squares of the distances—measured parallel to
the y-axis—of the data points from an interpolated regression line:

(40) S =
T∑

t=1

ε2
t =

T∑
t=1

(yt − α − xtβ)2.

Differentiating S with respect to α and setting to zero gives

(41) −2
∑

(yt − α − βxt) = 0, or ȳ − α − βx̄ = 0.

This generates the following estimating equation for α:

(42) α(β) = ȳ − βx̄.
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By differentiating with respect to β and setting the result to zero, we get

(43) −2
∑

xt(yt − α − βxt) = 0.

On substituting for α from (42) and eliminating the factor −2, this be-
comes

(44)
∑

xtyt −
∑

xt(ȳ − βx̄) − β
∑

x2
t = 0,

whence we get

(45) β̂ =
∑

xtyt − T x̄ȳ∑
x2

t − T x̄2
=

∑
(xt − x̄)(yt − ȳ)∑

(xt − x̄)2
.

This is identical to the estimate under (22) derived via the method of
moments. Putting β̂ into the equation α(β) = ȳ − βx̄ of (42), gives the
estimate of α̂ found under (22).
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The method of least squares does not automatically provide an
estimate of σ2 = E(ε2

t ). To obtain an estimate, we may apply the method
of moments to the regression residuals et = yt − α̂ − β̂xt to give

(46) σ̃2 =
1
T

∑
e2
t .

In fact, this is a biased estimator with

(47) E

(
σ̃2

T

)
=

(
T − 2

T

)
σ2;

so it is common to adopt the unbiased estimator

(48) σ̂2 =
∑

e2
t

T − 2
.

14



EC3062 ECONOMETRICS

Properties of the Least-Squares Estimator

The disturbance term ε is assumed to be a random variable with

(49) E(εt) = 0, and V (εt) = σ2 for all t.

We might assume that x is a random variable uncorrected with ε such
that that C(x, ε) = 0. However, if we are prepared to regard the xt as
predetermined values which have no effect on the εt, then we can say that

(50) E(xtεt) = xtE(εt) = 0, for all t.

In place of an assumption attributing a finite variance to x, we may
assert that

(51) lim(T → ∞)
1
T

T∑
t=1

x2
t = mxx < ∞.

For the random sequence {xtεt}, we assert that

(52) plim(T → ∞)
1
T

T∑
t=1

xtεt = 0.
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To see the effect of these assumptions, let us substitute the expression

(53) yt − ȳ = β(xt − x̄) + εt − ε̄

in the expression for β̂ found under (45). By rearranging the result, we
have

(54) β̂ = β +
∑

(xt − x̄)εt∑
(xt − x̄)2

.

The numerator of the second term on the RHS is obtained with the help
of the identity

(55)

∑
(xt − x̄)(εt − ε̄) =

∑
(xtεt − x̄εt − xtε̄ + x̄ε̄)

=
∑

(xt − x̄)εt.

From the assumption under (50), it follows that

(56) E
{
(xt − x̄)εt

}
= (xt − x̄)E(εt) = 0 for all t.
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Therefore,

(57)
E(β̂) = β +

∑
(xt − x̄)E(εt)∑

(xt − x̄)2

= β;

and β̂ is seen to be an unbiased estimator of β.
The consistency of the estimator follows, likewise, from the assump-

tions under (51) and (52). Thus

(58)
plim(β̂) = β +

plim
{

T−1
∑

(xt − x̄)εt

}
plim

{
T−1

∑
(xt − x̄)2

}
= β;

and β̂ is seen to be a consistent estimator of β.
The consistency of β̂ depends crucially upon the assumption that the

disturbance term is independent of, or uncorrelated with, the explanatory
variable or regressor x.
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Example. A simple model of the economy is postulated that comprises
two equations in income y, consumption c and investment i:

y = c + i,(59)

c = α + βy + ε.(60)

Also, s = y− c or s = i, where s is savings. The disturbance ε, is assumed
to be independent of investment i. Substituting (60) into (59) gives

(61) y =
1

1 − β

(
α + i + ε

)
,

from which

(62) yt − ȳ =
1

1 − β

(
it − ī + εt − ε̄

)
.

The estimator of the parameter β, marginal propensity to consume is

(63) β̂ = β +
∑

(yt − ȳ)εt∑
(yt − ȳ)2

.

Since y is dependent on ε, according to (61), β̂ cannot be a consistent
estimator of β.
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Figure 2. If the only source of variation in y is the variation in i, then

the observations on y and c will delineate the consumption function.
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Figure 3. If the only source of variation in y are the disturbances

to c, then the observations on y and c will line along a 45◦ line.
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To determine the probability limit of the estimator, we must assess the
separate probability limits of the numerator and the denominator of the
term on the RHS of (63). The following results are available:

(64)

lim
1
T

T∑
t=1

(it − ī)2 = mii = V (i),

plim
1
T

T∑
t=1

(yt − ȳ)2 =
mii + σ2

(1 − β)2
= V (y),

plim
1
T

T∑
t=1

(yt − ȳ)εt =
σ2

1 − β
= C(y, ε).

The results indicate that

(65) plim β̂ = β +
σ2(1 − β)
mii + σ2

=
βmii + σ2

mii + σ2
.
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The Method of Maximum Likelihood

The disturbance εt; t = 1, . . . , T in the regression model are assumed to
be independently and identically distributed with a normal density:

(66) N(εt; 0, σ2) =
1√

2πσ2
exp

(
− ε2

t

2σ2

)
.

Since they are assumed to be independently distributed, their joint prob-
ability density function (p.d.f.) is

(67)
T∏

t=1

N(εt; 0, σ2) = (2πσ2)−T/2 exp

(
−1
2σ2

T∑
t=1

ε2

)
.

If we regard the elements x1, . . . , xT as a given set of numbers, then it
follows that the conditional p.d.f. of the sample y1, . . . , yT is
(68)

f(y1, . . . , yT |x1, . . . , xT ) = (2πσ2)−T/2 exp

{
−1
2σ2

T∑
t=1

(yt − α − βxt)

}
.
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The maximum likelihood estimates α, β and σ2 are the values that max-
imise the probability measure that is attributed to the sample y1, . . . , yT .
The log likelihood function, which is maximised by these values, is

(69) log L = −T

2
log(2π) − T

2
log(σ2) − 1

2σ2

T∑
t=1

(yt − α − βxt)2.

Given the value of σ2, this is maximised by the values α̂ and β̂ under (42)
and (45) respectively, which minimise the error sum of squares.

The estimate of σ2 is from the following first-order condition:

(70)
∂ log L

∂σ2
= − T

2σ2
+

1
2σ4

T∑
t=1

(yt − α − βxt)2 = 0.

Multiplying throughout by 2σ4/T and rearranging the result, gives

(71) σ2(α, β) =
1
T

T∑
t=1

(yt − α − βxt)2 =
1
T

∑
e2
t .
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