
APPENDIX 9

Matrices and Polynomials

The Multiplication of Polynomials

Let α(z) = α0+α1z+α2z
2+· · ·αpz

p and y(z) = y0+y1z+y2z
2+· · · ynzn be

two polynomials of degrees p and n respectively. Then, their product γ(z) =
α(z)y(z) is a polynomial of degree p + n of which the coefficients comprise
combinations of the coefficient of α(z) and y(z).

A simple way of performing the multiplication is via a table of which the
margins contain the elements of the two polynomials and in which the cells
contain their products. An example of such a table is given below:

(1)

α0 α1z α2

y0 α0y0 α1y0z α2y0z
2

y1z α0y1z α1y1z
2 α2y0z

3

y2z
2 α0y1z

2 α1y2z
3 α2y2z

4

The product is formed by adding all of the elements of the cells. However, if the
elements on the SW–NE diagonal are gathered together, then a power of the
argument z can be factored from their sum and then the associated coefficient
is a coefficient of the product polynomial.

The following is an example from the table above:

(3)

γ0

+ γ1z

+ γ2z
2

+ γ3z
3

+ γ4z
4

=

α0y0

+ (α0y1 + α1y0)z

+ (α0y2 + α1y1 + α2y0+)z2

+ (α1y2 + α2y1)z3

+ α2y4z
4.

The coefficients of the product polynomial can also be seen as the products of
the convolutions of the sequences {α0, α1, α2 . . . αp} and {y0, y1, y2 . . . yn}.
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The coefficients of the product polynomials can also be generated by a
simple multiplication of a matrix by a vector. Thus, from the example, we
should have

(3)


γ0

γ1

γ2

γ2

γv

 =


y0 0 0
y1 y0 0
y2 y1 y0

0 y2 y1

0 0 y2


α0

α1

α2

 =


α0 0 0
α1 α0 0
α2 α1 α0

0 α2 α1

0 0 α2


 y0

y1

y2

 .

To form the elements of the product polynomial γ(z), powers of z may be
associated with elements of the matrices and the vectors of values indicated by
the subscripts.

The argument z is usually described as an algebraic indeterminate. Its
place can be taken by any of a wide variety of operators. Examples are provided
by the difference operator and the lag operator that are defined in respect of
doubly-infinite sequences.

It is also possible to replace z by matrices. However, the fundamental
theorem of algebra indicates that all polynomial equations must have solutions
that lie in the complex plane. Therefore, it is customary, albeit unnecessary,
to regard z as a complex number.

Polynomials with Matrix Arguments

Toeplitz Matrices

There are two matrix arguments of polynomials that are of particular
interest in time series analysis. The first is the matrix lag operator. The
operator of order T denoted by

(4) LT = [e1, e2, . . . , eT−1, 0]

is formed from the identity matrix IT = [e0, e1, . . . , eT−1] by deleting the leading
vector e0 and by appending a column of zeros to the end of the array. In
effect, LT is the matrix with units on the first subdiagonal band and with zeros
elsewhere. Likewise, L2

T has units on the second subdiagonal band and with
zeros elsewhere, whereas LT−1

T has a single unit in the bottom left (i.e. S–W )
corner, and LT+r

T = 0 for all r ≥ 0. In addition, L0
T = IT is identified with the
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identity matrix of order T . The example of L4 is given below:

(5)

L0
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , L4 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ,

L2
4 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , L3
4 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 .

Putting LT in place of the argument z of a polynomial in non-negative powers
creates a so-called Toeplitz banded lower-triangular matrix of order T . An
example is provided by the quadratic polynomials α(z) = α0 + α1z + α2z

2 and
y(z) = y0 + y1z + y2z

2. Then, there is α(L3)y(L3) = y(L3)α(L3), which is
written explicitly as

(6)

α0 0 0
α1 α0 0
α2 α1 α0

 y0 0 0
y1 y0 0
y2 y1 y0

 =

 y0 0 0
y1 y0 0
y2 y1 y0

α0 0 0
α1 α0 0
α2 α1 α0

 .

The commutativity of the two matrices in multiplication reflects their polyno-
mial nature. Such commutativity is available both for lower-triangular Toeplitz
and for upper-triangular Toeplitz matrices, which correspond to polynomials
in negative powers of z.

The commutativity is not available for mixtures of upper and lower trian-
gular matrices; and, in this respect, the matrix algebra differs from the corre-
sponding polynomial algebra. An example is provided by the matrix version of
the following polynomial identity:

(7) (1 − z)(1 − z−1) = 2z0 − (z + z−1) = (1 − z−1)(1 − z)

Putting LT in place of z in each of these expressions creates three different
matrices. This can be illustrated with the case of L3. Then, (1 − z)(1 − z−1)
gives rise to

(8)

 1 0 0
−1 1 0
0 −1 1

 1 −1 0
0 1 −1
0 0 1

 =

 1 −1 0
−1 2 −1
0 −1 2

 ,

whereas (1 − z−1)(1 − z) gives rise to

(9)

 1 −1 0
0 1 −1
0 0 1

 1 0 0
−1 1 0
0 −1 1

 =

 2 −1 0
−1 2 −1
0 −1 1

 .
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A Toeplitz matrix, in which each band contains only repetitions of the same
element, is obtained from the remaining expression by replacing z by L3 in
2z0 − (z + z−1), wherein z0 is replaced by the identity matrix:

(10)

 2 −1 0
−1 2 −1
0 −1 2

 =

−1 1 0 0
0 −1 1 0
0 0 −1 1



−1 0 0
1 −1 0
0 1 −1
0 0 1

 .

Example. It is straightforward to derive the dispersion matrices that are found
within the formulae for the finite-sample estimators from the corresponding au-
tocovariance generating functions. Let γ(z) = {γ0+γ1(z+z−1)+γ2(z2+z−2)+
· · ·} denote the autocovariance generating function of a stationary stochastic
process. Then, the corresponding dispersion matrix for a sample of T consec-
utive elements drawn from the process is

(11) Γ = γ0IT +
T−1∑
τ=1

γτ (Lτ
T + F τ

T ),

where FT = L′
T is in place of z−1. Since LT and FT are nilpotent of degree T ,

such that Lq
T , F q

T = 0 when q ≥ T , the index of summation has an upper limit
of T − 1.

Circulant Matrices

In the second of the matrix representations, which is appropriate to a
frequency-domain interpretation of filtering, the argument z is replaced by the
full-rank circulant matrix

(12) KT = [e1, e2, . . . , eT−1, e0],

which is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by displacing
the leading column to the end of the array. This is an orthonormal matrix
of which the transpose is the inverse, such that K ′

T KT = KT K ′
T = IT . The

powers of the matrix form a T -periodic sequence such that KT+q
T = Kq

T for
all q. The periodicity of these powers is analogous to the periodicity of the
powers of the argument z = exp{−i2π/T}, which is to be found in the Fourier
transform of a sequence of order T .
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The example of K4 is given below

(13)

K0
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , K4 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

K2
4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , K3
4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

The matrices K0
T = IT , KT , . . . , KT−1

T form a basis for the set of all circu-
lant matrices of order T—a circulant matrix X = [xij ] of order T being defined
as a matrix in which the value of the generic element xij is determined by the
index {(i − j) mod T}. This implies that each column of X is equal to the
previous column rotated downwards by one element.

It follows that there exists a one-to-one correspondence between the set of
all polynomials of degree less than T and the set of all circulant matrices of
order T . Therefore, if α(z) is a polynomial of degree less that T , then there
exits a corresponding circulant matrix

(14) A = α(KT ) = α0IT + α1KT + · · · + αT−1K
T−1
T .

A convergent sequence of an indefinite length can also be mapped into a
circulant matrix. Thus, if {γi} is an absolutely summable sequence obeying
the condition that

∑
|γi| < ∞, then the z-transform of the sequence, which

is defined by γ(z) =
∑

γjz
j , is an analytic function on the unit circle. In

that case, replacing z by KT gives rise to a circulant matrix Γ = γ(KT ) with
finite-valued elements. In consequence of the periodicity of the powers of KT ,
it follows that

(15)
Γ =

{ ∞∑
j=0

γjT

}
IT +

{ ∞∑
j=0

γ(jT+1)

}
KT + · · · +

{ ∞∑
j=0

γ(jT+T−1)

}
KT−1

= ϕ0IT + ϕ1KT + · · · + ϕT−1K
T−1
T .

Given that {γi} is a convergent sequence, it follows that the sequence of the
matrix coefficients {ϕ0, ϕ1, . . . , ϕT−1} converges to {γ0, γ1, . . . , γT−1} as T in-
creases. Notice that the matrix ϕ(K) = ϕ0IT + ϕ1KT + · · · + ϕT−1K

T−1
T ,

which is derived from a polynomial ϕ(z) of degree T − 1, is a synonym for the
matrix γ(KT ), which is derived from the z-transform of an infinite convergent
sequence.
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The polynomial representation is enough to establish that circulant matri-
ces commute in multiplication and that their product is also a polynomial in
KT . That is to say

(16)
If X = x(KT ) and Y = y(KT ) are circulant matrices,
then XY = Y X is also a circulant matrix.

The matrix operator KT has a spectral factorisation that is particularly
useful in analysing the properties of the discrete Fourier transform. To demon-
strate this factorisation, we must first define the so-called Fourier matrix. This
is a symmetric matrix

(17) UT = T−1/2[W jt
T ; t, j = 0, . . . , T − 1],

of which the generic element in the jth row and tth column is

(18)
W jt

T = exp(−i2πtj/T ) = cos(ωjt) − i sin(ωjt),

where ωj = 2πj/T.

The matrix UT is a unitary, which is to say that it fulfils the condition

(19) ŪT UT = UT ŪT = IT ,

where ŪT = T−1/2[W−jt
T ; t, j = 0, . . . , T − 1] denotes the conjugate matrix.

The operator can be factorised as

(20) KT = ŪT DT UT = UT D̄T ŪT ,

where

(21) DT = diag{1, W, W 2, . . . , WT−1}

is a diagonal matrix whose elements are the T roots of unity, which are found
on the circumference of the unit circle in the complex plane. Observe also that
DT is T -periodic, such that Dq+T

T = Dq
T , and that Kq

T = ŪT Dq
T UT = UT D̄q

T ŪT

for any integer q. Since the powers of KT form the basis for the set of circulant
matrices, it follows that such matrices are amenable to a spectral factorisation
based on (13).

Example. Consider, in particular, the circulant autocovariances matrix that is
obtained by replacing the argument z in the autocovariance generating function
γ(z) by the matrix KT . Imagine that the autocovariances form a doubly infinite
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sequence, as is the case for an autoregressive or an autoregressive moving-
average process:

(22)

Ω◦ = γ(KT ) = γ0IT +
∞∑

τ=1

γτ (Kτ
T + K−τ

T )

= ϕ0IT +
T−1∑
τ=1

ϕτ (Kτ
T + K−τ

T ).

Here, ϕτ ; τ = 0, . . . , T − 1 are the “wrapped” coefficients that are obtained
from the original coefficients of the autocovariance generating function in the
manner indicated by (15). The spectral factorisation gives

(23) Ω◦ = γ(KT ) = Ūγ(D)U.

The jth element of the diagonal matrix γ(D) is

(24) γ(exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ).

This represents the cosine Fourier transform of the sequence of the ordinary
autocovariances; and it corresponds to an ordinate (scaled by 2π) sampled at
the point ωj from the spectral density function of the linear (i.e. non-circular)
stationary stochastic process.
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