
LECTURE 9

Filtering and Trend Extraction

Trends and Unit Root Processes

Following the persuasive advocacy by Box and Jenkins in the 1970’s, the
difference operator has assumed a central role in the econometric analysis of
trended data sequences. Box and Jenkins (1972) proposed to use the difference
operator in conjunction with ordinary autoregressive moving-average (ARMA)
models. When an appropriate power of the difference operator is embedded
in the autoregressive polynomial, the effect is to create an autoregressive inte-
grated moving-average (ARIMA) model, which can generate a wide variety of
sequences that resemble those that are encountered in econometric analyses.

An advantage of the ARIMA formulation is that it enables the methodol-
ogy that is appropriate for identifying and estimating stationary ARMA pro-
cesses to be extended, with no extra complication, to accommodate nonstation-
ary processes. The difference operator that is embedded in the autoregressive
polynomial can be applied to the trended data sequence in order to reduce it
to stationarity. Thereafter, the data can be modelled via an ordinary ARMA
process. When the ARMA process has been identified and estimated, it can
converted to an ARIMA process by applying the summation operator, which
is the reverse of the difference operator.

The difference operator has a powerful effect upon the data. It nullifies
the trend and it severely attenuates the elements of the data that are adjacent
in frequency to the zero frequency of the trend. It also amplifies the high-
frequency elements of the data. The effect is apparent in Figure 1, which
shows the squared gain of the difference operator. The figure also shows the
squared gain of the summation operator, which gives unbounded power to the
elements that have frequencies in the vicinity of zero.

The relevant information of an econometric sequence often lies in the low-
frequency region, and is it difficult to discern it clearly within a differenced
sequence. The effects of the difference operator can be mitigated within an
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Figure 1. The squared gain of the difference operator, which has a zero at zero

frequency, and the squared gain of the summation operator, which is unbounded at

zero frequency.

ARIMA model by the roots of the moving-average operator, which can coun-
teract the unit roots of the autoregressive difference operator. However, to use
the difference operator in isolation to reduce the data to stationarity is a drastic
recourse, which has been likened to throwing the baby out with the bath water.
Therefore, we must seek other methods of detrending the data.

The simplest of the so-called unit-root processes that incorporate an au-
toregressive difference operator is the ordinary random walk. This is often
represented in terms of the lag operator L by the equation

(1) (1 − L)y(t) = ε(t),

where ε(t) = {ε0,±ε1,±ε2, . . .} denotes a doubly-infinite mean-zero sequence
of independently and identically distributed random variables, described as a
white-noise sequence. The inverse of the difference operator is the summation
operator

(2) Σ = (1 − L)−1 = (1 + L + L2 + · · ·).

Multiplying equation (1) by Σ gives

(3)
y(t) = Σε(t) = (1 + L + L2 + · · ·)ε(t)

= {ε(t) + ε(t − 1) + ε(t − 2) + · · ·}

The generic element of y(t) is a sum of an infinite number of lagged vari-
ables. Since these are independently and identically distributed with a finite
variance, the elements of y(t) must have an infinite variance. Therefore, there
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is a zero probability that any element will fall within a finite distance of zero.
This is a cause for some embarrassment, for it implies that equations (1) and
(3) are inappropriate descriptions of any nonstationary data sequence that has
elements that are bounded in value.

The squared gain of the summation operator that is represented in Figure
1 can also be interpreted as the pseudo spectral density function of a random
walk driven by a white-noise process of variance 2π. This random walk, which
is defined over a doubly-infinite set of positive and negative integers, is a the-
oretical process of doubtful reality.

The appropriate representation of a random walk for present purposes is
one that defines a finite starting value at a definite date and which incorpo-
rates the corresponding initial conditions. We shall consider this matter in the
following section, which describes alternative representations of ARMA and
ARIMA processes.

Representations of ARMA and ARIMA Processes

An autoregressive moving-average (ARMA) model can be represented by the
equation

(4)
p∑

i=0

φiyt−i =
q∑

i=0

θiεt−i, with φ0 = θ0 = 1.

The normalisation of φ0 indicates that yt is the dependent variable of this
equation. By setting t = 0, 1, . . . , T − 1, a set of T equations is generated that
can be arrayed in a matrix format as follows:

(5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y−1 . . . y−p

y1 y0 . . . y1−p

...
...

. . .
...

yp yp−1 . . . y0

...
...

...
yT−1 yT−2 . . . yT−p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
φ1
...

φp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 ε−1 . . . ε−q

ε1 ε0 . . . ε1−q

...
...

. . .
...

εq εq−1 . . . ε0

...
...

...
εT−1 εT−2 . . . εT−q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
θ1
...
θq

⎤
⎥⎥⎦ .

Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1, which fall within
the indicated sample period, these equations comprise the values y−p, . . . , y−1

and ε−q, . . . , ε−1, which are to be found in the top-right corners of the matri-
ces, and which constitute the initial conditions at the start-up time of t = 0.
The presence of these initial conditions allows this format to be used both for
stationary ARMA processes and for nontstationary ARIMA processes.

Each of the elements within the display of (5) can be associated with the
power of z that is indicated by the value of its subscripted index. In that case,
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the equations of the system become

(6)
p∑

i=0

{φiz
i}{yt−iz

t−i} =
q∑

i=0

{θiz
i}{εt−iz

t−i}

or, equivalently,

zt

p∑
i=0

φiyt−i = zt

q∑
i=0

θiεt−i.

A comparison can be made between the equations above and the matrix
equations that correspond to the z-transform polynomial equation

(7) φ(z)y(z) = θ(z)ε(z),

wherein

(8)
φ(z) = 1 + φ1z + · · · + φpz

p and

θ(z) = 1 + θ1z + · · · + θqz
q.

Often, the data sequences are taken to be doubly infinite, which gives rise to
y(z) = {y0 ± y1z ± y2z

2 ± . . .} and ε(z) = {ε0 ± ε1z ± ε2z
2 ± . . .}. Consider,

instead, the z-transforms of the finite sequences running from t = 0 to t = T−1:

(9)
y(z) = y0 + y1z + · · · + yT−1z

T−1,

ε(z) = ε0 + ε1z + · · · + εT−1z
T−1.

Then, the corresponding matrix expression is
(10)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 . . . 0
y1 y0 . . . 0
...

...
. . .

...
yp yp−1 . . . y0

...
...

...
yT−1 yT−2 . . . yT−p−1

0 yT−1 . . . yT−p

...
...

. . .
...

0 0 . . . yT−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
φ1
...

φp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 0 . . . 0
ε1 ε0 . . . 0
...

...
. . .

...
εq εq−1 . . . ε0

...
...

...
εT−1 εT−2 . . . εT−q−1

0 εT−1 . . . εT−q

...
...

. . .
...

0 0 . . . εT−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
θ1
...
θq

⎤
⎥⎥⎦ .

This system is afflicted both by the absence of the appropriate initial condi-
tions, indicated by the zeros in the upper right corners of the matrices, and
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by the presence of end effects, corresponding to the upper-triangular matrices
appended at the bottom of both arrays.

Notice, however, that, under any circumstances, the equations that are
associated with zr, . . . , zT−1, where r = max(p, q), will provide a valid descrip-
tion of the corresponding data segment {yr, . . . , yT−1}. The equations can be
denoted by φ(z)y(z) = θ(z)ε(z) − Q(z), where Q(z) is a polynomial in the
various powers of z that are associated with the unwanted end-effects.

With Q(z) included, it will be allowable freely to manipulate the polyno-
mial algebra associated with the finite realisation of the ARMA process, while
paying little or no attention to the end effects. In fact, we shall hereafter omit
to include this term within the algebra on the understanding that either it is
invisibly present or else that our attention is confined to the appropriate range
of the temporal index, which is t = r, . . . , T − 1

In certain circumstances, where the data are stationary and the processes
that generate them are reasonably constant, it is possible to overcome both
effects by treating the data as if they were generated by a circular process. By
drafting the triangular arrays at the bottom of the matrices into the spaces at
their tops that are occupied by zeros, the following system is created:

(11)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 yT−1 . . . yT−p

y1 y0 . . . yT+1−p

...
...

. . .
...

yp yp−1 . . . y0

...
...

...
yT−1 yT−2 . . . yT−p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
φ1
...

φp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 εT−1 . . . εT−q

ε1 ε0 . . . εT+1−q

...
...

. . .
...

εq εq−1 . . . ε0

...
...

...
εT−1 εT−2 . . . εT−q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1
θ1
...
θq

⎤
⎥⎥⎦ .

We might continue to associate powers of z with the elements of this system
in accordance with the values of their subscripts. However, the powers of some
of the arguments that can be put in place of z have a modulus T , which is to
say that zT−t = z−t. These are the so-called circular arguments. In such cases,
the system of (11) will correspond to the polynomial equation of (7) as well as
representing an instance of the system of (5).

A leading example of a circular argument is the complex exponential z =
exp{i2πj/T}, wherein j = 0, 1, . . . , T − 1. Use of this argument carries the
analysis into the frequency domain of time-series analysis. Another example of
a circular argument, which keeps the analysis within the time domain, is the
circulant matrix

(12) KT = [ e1 e2 . . . eT−2 e0 ] =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ .
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This is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by trans-
posing the leading vector e0 to the end of the array. The powers K0

T =
IT , KT , K2

T , . . . , KT−1 form a cycle and, moreover, KT+r = Kr. Set-
ting z = KT within the polynomial z-transform equation of (7) generates the
matrix expression of (11).

An alternative replacement for z within the (7) is the matrix lag operator
LT = [e1, e2, . . . , eT−2, 0] which differs from the circulant matrix KT by having
a column of zeros in place of the final column e0. It will be seen that, for
r ∈ {0, 1, . . . , T − 1}, the matrix Lr has units on the r-th sub diagonal band
and for zeros elsewhere, whereas, for r ≥ T , there is Lr = 0.

It follows that, by putting z = LT in equation (7), a matrix system is
generated that corresponds to the system obtained from (10) by removing the
triangular end-effects from the bottom of the matrices. This gives a version of
equation (5) in which the pre sample values are set to zeros.

The Integration of ARMA Process

The conversion of an ARMA process to an integrated ARIMA process is a
straightforward matter of summing its elements. A d-fold summation will turn
an ARMA(p, q) into an ARIMA(p, d, q) process.

The summation operator is the inverse of the difference operator. The
z-transform of the d-fold summation operator is as follows:

(13) Σd(z) =
1

(1 − z)d
= 1 + dz +

d(d + 1)
2!

+
d(d + 1)(d + 2)

3!
+ · · · .

The coefficients of the negative binomial expansion are readily calculated
via the repeated summation of a sequence of units. The following three matri-
ces, which illustrate the fact, are generated by replacing z within Σ(z), Σ2(z)
and Σ3(z), respectively, by the matrix lag operator L4:
(14)

Σ4 =

⎡
⎢⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤
⎥⎦ , Σ2

4 =

⎡
⎢⎣

1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

⎤
⎥⎦ , Σ3

4 =

⎡
⎢⎣

1 0 0 0
3 1 0 0
6 3 1 0
10 6 3 1

⎤
⎥⎦ .

Consider the ARIMA(p, d, q) process described by the equation

(15) ∇d(z)α(z)y(z) = α(z)g(z) = θ(z)ε(z),

where g(t) = ∇d(z)y(t) denotes the ARMA process that is obtained by d-fold
differencing. Then, the manner in which the integrated process is obtained
from the stationary process is described by the equation y(t) = ∇−d(z)g(z) =
Σd(z)g(z).
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In the case where d = 1 and where g(z) comprises T observations, there is
a single integration, which is effected by the matrix ΣT . Then, each element
of the ARMA process gives rise of a constant function, which is to say that its
effect will persist throughout the sample. In the case of d = 2, each element
will give rise to a linear trend and, in the case of d = 3, each will give rise of a
quadratic trend.

In the so-called Beveridge–Nelson decomposition, the unit roots of the au-
toregressive operator are separated from the stable roots of by a partial-fraction
decomposition. Assuming that the degree of the numerator polynomial θ(z) is
less than that of the denominator polynomial ∇d(z)α(z), the decomposition of
y(z) takes the form of

(16) y(t) =
θ(z)

∇d(z)α(z)
ε(z) =

κ(z)
∇d(z)

ε(z) +
λ(z)
α(z)

ε(z).

Thus, y(t) is expressed as the sum of an integrated process and a stationary
process. Both processes are driven by the same stationary white-noise process,
which is represented by ε(z).

On the assumption that the parameters of the ARMA process are known,
the polynomial ε(z) would be fully recoverable from y(z); and then the non
stationary component of the decomposition would be given by

(17) x(z) =
{

κ(z)
∇d(z)

× ∇d(z)α(z)
θ(z)

}
y(z) =

κ(z)α(z)
θ(z)

y(z).

In practice, the estimates of the two components will be derived from the
residual sequence obtained in estimating the parameters of the ARMA process
described by the equation α(z)g(z) = θ(z)ε(z).

Polynomial Interpolation

The first p columns of the matrix Σp
T provide a basis of the set of polyno-

mials of degree p − 1 defined on the set of integers t = 0, 1, 2, . . . , T − 1. An
example is provided by the first three columns of the matrix Σ3

4, which may be
transformed as follows:

(18)

⎡
⎢⎣

1 0 0
3 1 0
6 3 1
10 6 3

⎤
⎥⎦

⎡
⎣ 1 1 1
−2 −1 1
1 0 0

⎤
⎦ =

⎡
⎢⎣

1 1 1
1 2 4
1 3 9
1 4 16

⎤
⎥⎦ .

The first column of the matrix on the LHS contains the ordinates of the
quadratic function (t2 + t)/2. The columns of the transformed matrix are
recognisably the ordinates of the powers t0, t1 and t2 corresponding to the in-
tegers t = 1, 2, 3, 4. The natural extension of the matrix to T rows provides a
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basis for the quadratic functions q(t) = at2 + bt + c defined on T consecutive
integers.

The matrix of the powers of the integers is notoriously ill-conditioned.
In calculating polynomial regressions of any degree in excess of the cubic, it
is advisable to employ a basis of orthogonal polynomials, for which purpose
some specialised numerical procedures are available. However, in the present
context, which concerns the differencing and the summation of econometric
data sequences, the degree in question rarely exceeds two. Nevertheless, it is
appropriate to consider the algebra of the general case.

Consider, therefore, the matrix that takes the p-th difference of a vector
of order T , which is

(19) ∇p
T = (I − LT )p.

This matrix can be partitioned so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. If
y is a vector of T elements, then

(20) ∇p
T y =

[
Q′

∗
Q′

]
y =

[
g∗
g

]
;

and g∗ is liable to be discarded, whereas g will be regarded as the vector of the
p-th differences of the data.

The inverse matrix may be partitioned conformably to give ∇−p
T = [S∗, S].

It follows that

(21) [S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT ,

and that

(22)
[

Q′
∗

Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0
0 IT−p

]
.

If g∗ is available, then y can be recovered from g via

(23) y = S∗g∗ + Sg.

Since the submatrix S∗, provides a basis for all polynomials of degree
p − 1 that are defined on the integer points t = 0, 1, . . . , T − 1, it follows that
S∗g∗ = S∗Q′

∗y contains the ordinates of a polynomial of degree p − 1, which is
interpolated through the first p elements of y, indexed by t = 0, 1, . . . , p − 1,
and which is extrapolated over the remaining integers t = p, p + 1, . . . , T − 1.

A polynomial that is designed to fit the data should take account of all
of the observations in y. Imagine, therefore, that y = φ + η, where φ contains
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the ordinates of a polynomial of degree p − 1 and η is a disturbance term
with E(η) = 0 and D(η) = σ2

ηIT . Then, in forming an estimate x = S∗r∗ of
φ, we should minimise the sum of squares η′η. Since the polynomial is fully
determined by the elements of a starting-value vector r∗, this is a matter of
minimising

(24) (y − x)′(y − x) = (y − S∗r∗)′(y − S∗r∗)

with respect to r∗. The resulting values are

(25) r∗ = (S′
∗S∗)−1S′

∗y and x = S∗(S′
∗S∗)−1S′

∗y.

An alternative representation of the estimated polynomial is available.
This is provided by the identity

(26) S∗(S′
∗S∗)−1S′

∗ = I − Q(Q′Q)−1Q′.

To prove this identity, consider the fact Z = [Q, S∗] is square matrix of full
rank and that Q and S∗ are mutually orthogonal such that Q′S∗ = 0. Then

(27)
Z(Z ′Z)−1Z ′ = [Q S∗ ]

[
(Q′Q)−1 0

0 (S′
∗S)−1

] [
Q′

S′
∗

]

= Q(Q′Q)−1Q′ + S∗(S′
∗S∗)−1S′

∗.

The result follows from the fact that Z(Z ′Z)−1Z ′ = Z(Z−1Z ′−1)Z ′ = I. It
follows from (26) that the vector the ordinates of the polynomial regression is
also given by

(28) x = y − Q(Q′Q)−1Q′y.

The use of polynomial regression in a preliminary detrending of the data
is an essential part of a strategy for determining an appropriate representation
of the underlying trajectory of an econometric data sequence. Once the trend
has been eliminated from the data, one can proceed to assess their spectral
structure by examining the periodogram of the residual sequence. Often the
periodogram will reveal the existence of a cut-off frequency that bounds a low
frequency trend/cycle component and separates it from the remaining elements
of the spectrum.

An example is given in Figures 2 and 3. Figure 2 represents the loga-
rithms of the quarterly data on aggregate consumption in the United Kingdom
for the years 1955 to 1994. Through these data, a linear trend has been interpo-
lated by least-squares regression. This line establishes a benchmark of constant
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Figure 2. The quarterly series of the logarithms of consumption in the U.K., for

the years 1955 to 1994, together with a linear trend interpolated by least-squares

regression.
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Figure 3 . The periodogram of the residual sequence obtained from the linear

detrending of the logarithmic consumption data.

exponential growth, against which the fluctuations of consumption can be mea-
sured. The periodogram of the residual sequence in plotted in Figure 3. This
shows that the low-frequency structure is bounded by a frequency value of
π/8. This value can used in specifying the appropriate filter for extracting the
low-frequency trajectory of the data.

For different data, a more flexible trend function might be appropriate.
This could be provided by a polynomial of a higher degree. However, when
a distinct cut-off frequency is revealed by the periodogram, it will be evident
regardless of the degree of the polynomial.

The effect of increasing the degree of the trend polynomial will be to cre-
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ate a more flexible function. This will enable the trend to absorb some of the
low-frequency fluctuations of the data, thereby diminishing their power within
the residual sequence. The effect is to reduce the prominence, within the peri-
odogram, of the low-frequency spectral structure.

The means of reducing data to stationarity that has been adopted tradi-
tionally by econometricians has been to take differences of the data. If the
twofold difference operator for finite samples is represented by the matrix Q′

and if y is the vector of the data, then the differenced data will be represented
by g = Q′y. Reference to equation (28) will show that this contains the same
information as does the vector e = Q(Q′Q)−1Q′y of the residuals from a linear
detrending.

However, as Figure 1 implies, the effect of the difference operator is to
attenuate the low-frequency fluctuations so severely as to render their spectral
structure all but invisible. This problem does not affect the corresponding
sequence of regression residuals.

Wiener–Kolmogorov filtering

The modern theory of statistical signal extraction was formulated inde-
pendently by Wiener (1941) and Kolmogorov (1941), who arrived at the same
results in different ways. Whereas Kolmogorov took a time-domain approach
to the problem, Wiener worked primarily in the frequency domain. However,
the unification of the two approaches was soon achieved.

The purpose of a Wiener–Kolmogorov (W–K) filter is to extract an esti-
mate of a signal sequence ξ(t) from an observable data sequence

(29) y(t) = ξ(t) + η(t),

which is afflicted by the noise η(t). According to the classical assumptions,
which we shall later amend in order to accommodate short non-stationary se-
quences, the signal and the noise are generated by zero-mean stationary stochas-
tic processes that are mutually independent. Also, the assumption is made that
the data constitute a doubly-infinite sequence. It follows that the autocovari-
ance generating function of the data is the sum of the autocovariance generating
functions of its two components. Thus

(30) γyy(z) = γξξ(z) + γηη(z) and γξξ(z) = γyξ(z).

These functions are amenable to the so-called Cramér–Wold factorisation, and
they may be written as

(31) γyy(z) = φ(z−1)φ(z), γξξ(z) = θ(z−1)θ(z), γηη(z) = θη(z−1)θη(z).

11
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The estimate xt of the signal element ξt is a linear combination of the
elements of the data sequence:

(32) xt =
∑

j

βjyt−j .

The principle of minimum-mean-square-error estimation indicates that the es-
timation errors must be statistically uncorrelated with the elements of the in-
formation set. Thus, the following condition applies for all k:

(33)

0 = E
{

yt−k(ξt − xt)
}

= E(yt−kξt) −
∑

j

βjE(yt−kyt−j)

= γyξ
k −

∑
j

βjγ
yy
k−j .

The equation may be expressed, in terms of the z-transforms, as

(34) γyξ(z) = β(z)γyy(z),

It follows that

(35)
β(z) =

γyξ(z)
γyy(z)

=
γξξ(z)

γξξ(z) + γηη(z)
=

θ(z−1)θ(z)
ρ(z−1)ρ(z)

.

Now, by setting z = exp{iω}, one can derive the frequency-response func-
tion of the filter that is used in estimating the signal ξ(t). The effect of the
filter is to multiply each of the frequency elements of y(t) by the fraction of its
variance that is attributable to the signal. The same principle applies to the es-
timation of the residual component. This is obtained using the complementary
filter

(36) βc(z) = 1 − β(z) =
γηη(z)

γξξ(z) + γηη(z)
.

The estimated signal component may be obtained by filtering the data in
two passes according to the following equations:

(37) φ(z)q(z) = θ(z)y(z), φ(z−1)x(z−1) = θ(z−1)q(z−1).

The first equation relates to a process that runs forwards in time to generate
the elements of an intermediate sequence, represented by the coefficients of

12
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q(z). The second equation represents a process that runs backwards to deliver
the estimates of the signal, represented by the coefficients of x(z).

The Wiener–Kolmogorov methodology can be applied to non stationary
data with minor adaptations. A model of the processes underlying the data
can be adopted that has the form of

(38)
∇d(z)y(z) = ∇d(z){ξ(z) + η(z)} = δ(z) + κ(z)

= (1 + z)nζ(z) + (1 − z)mε(z),

where ζ(z) and ε(z) are the z-transforms of two independent white-noise se-
quences ζ(t) and ε(t). The condition m ≥ d is necessary to ensure the station-
arity of η(t), which is obtained from ε(t) by differencing m − d times. Then,
the filter that is applied to y(t) to estimate ξ(t), which is the d-fold integral of
δ(t), takes the form of

(39) β(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)m(1 − z)m
,

regardless of the degree d of differencing that would be necessary to reduce y(t)
to stationarity.

Two special cases are of interest. By setting d = m = 2 and n = 0 in (39),
a model is obtained of a second-order random walk ξ(t) affected by white-noise
errors of observation η(t) = ε(t). The resulting lowpass W–K filter, in the form
of

(40) β(z) =
1

1 + λ(1 − z−1)2(1 − z)2
with λ =

σ2
η

σ2
δ

,

is the Hodrick–Prescott (H–P) filter. The complementary highpass filter, which
generates the residue, is

(41) βc(z) =
(1 − z−1)2(1 − z)2

λ−1 + (1 − z−1)2(1 − z)2
.

Here, λ, which is described as the smoothing parameter, is the single adjustable
parameter of the filter.

By setting m = n, a filter for estimating ξ(t) is obtained that takes the
form of

(42)

β(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)n(1 − z)n

=
1

1 + λ

(
i
1 − z

1 + z

)2n with λ =
σ2

ε

σ2
ζ

.

13
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Figure 4. The gain of the Hodrick–Prescott lowpass filter with a smoothing
parameter set to 100, 1600 and 14400.

This is the formula for the Butterworth lowpass digital filter. The filter has
two adjustable parameters, and, therefore, it is a more flexible device than the
H–P filter. First, there is the parameter λ. This can be expressed as

(43) λ = {1/ tan(ωd)}2n,

where ωd is the nominal cut-off point of the filter, which is the mid point in
the transition of the filter’s frequency response from its pass band to its stop
band. The second of the adjustable parameters is n, which denotes the order
of the filter. As n increases, the transition between the pass band and the stop
band becomes more abrupt.

These filters can be applied to the nonstationary data sequence y(t) in
the manner indicated by equation (37), provided that the appropriate initial
conditions are supplied with which to start the recursions. However, by con-
centrating on the estimation of the residual sequence η(t), which corresponds
to a stationary process, it is possible to avoid the need for nonzero initial con-
ditions. Then, the estimate of η(t) can be subtracted from y(t) to obtain the
estimate of ξ(t).

The H–P filter has been used as a lowpass smoothing filter in numerous
macroeconomic investigations, where it has been customary to set the smooth-
ing parameter to certain conventional values. Thus, for example, the economet-
ric computer package Eviews 4.0 (2000) imposes the following default values:

λ =

⎧⎪⎨
⎪⎩

100 for annual data,

1, 600 for quarterly data,

14, 400 for monthly data.

Figure 4 shows the square gain of the filter corresponding to these values. The
innermost curve corresponds to λ = 14, 400 and the outermost curve to λ = 100.

14
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Figure 6. The squared gain of the lowpass Butterworth filters of orders

n = 6 and n = 12 with a nominal cut-off point of 2π/3 radians.

Whereas they have become conventional, these values are arbitrary. The
filter should be adapted to the purpose of isolating the component of interest;
and the appropriate filter parameters need to be determined in the light of the
spectral structure of the component, such as has been revealed in Figure 3, in
the case of the U.K. consumption data.

It will be observed that an H–P filter with λ = 16, 000, which defines the
middle curve in Figure 4, will not be effective in isolating the low-frequency
component of the quarterly consumption data, which lies in the interval [0, π].
The curve will cut through the spectral structure; and the effect will be greatly
to attenuate some of the elements of the component that should be preserved
intact.

Lowering the value of λ in order to admit a wider range of frequencies
will have the effect of creating a frequency response with a gradual transition
from the pass band to the stop band. This will be equally inappropriate to the
purpose of isolating a component within a well- defined frequency band. For
that purpose, a different filter is required.

A filter that may be appropriate to the purpose of isolating the low-
frequency fluctuations in consumption is the Butterworth filter. The squared
gain of the latter is illustrated in Figure 5. In this case, there is a well-defined
nominal cut-off frequency, which is a the mid point of the transition from the
pass band to the stop band. The transition becomes more rapid as the filter
order n increases. If a perfectly sharp transition is required, then the frequency-
domain filter that will be presented later should be employed.

The Hodrick–Prescott filter has many antecedents. Its invention cannot
reasonably be attributed to Hodrick and Prescott (1980, 1997), who cited Whit-
taker (1923) as one of their sources. Leser (1961) also provided a complete
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derivation of the filter at an earlier date. The Butterworth filter is a common-
place of electrical engineering.

4. The Finite-Sample Realisations of the W–K Filters

To derive the finite-sample version of a Wiener–Kolmogorov filter, we may
consider a data vector y = [y0, y1, . . . , yt−1, ]′ that has a signal component ξ
and a noise component η:

(44) y = ξ + η.

The two components are assumed to be independently normally distributed
with zero means and with positive-definite dispersion matrices. Then,

(45)

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

The dispersion matrices Ωξ and Ωη may be obtained, from the autoco-
variance generating functions γξ(z) and γη(z), respectively, by replacing z by
the matrix argument LT , which is the finite sample version of the lag op-
erator. Negative powers of z are replaced by powers of the forwards shift
operator FT = L−1

T . A consequence of the independence of ξ and η is that
D(y) = Ωξ + Ωη.

The optimal predictors of the signal and the noise components are the
following conditional expectations:

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)}(46)
= Ωξ(Ωξ + Ωη)−1y = Zξy = x,

E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)}(47)
= Ωη(Ωξ + Ωη)−1y = Zηy = h,

which are their minimum-mean-square-error estimates.
The corresponding error dispersion matrices, from which confidence inter-

vals for the estimated components may be derived, are

D(ξ|y) = D(ξ) − C(ξ, y)D−1(y)C(y, ξ)(48)
= Ωξ − Ωξ(Ωξ + Ωη)−1Ωξ,

D(η|y) = D(η) − C(η, y)D−1(y)C(y, η),(49)
= Ωη − Ωη(Ωξ + Ωη)−1Ωη.
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The estimates of ξ and η, which have been denoted by x and h respectively,
can also be derived according to the following criterion:

(50) Minimise S(ξ, η) = ξ′Ω−1
ξ ξ + η′Ω−1

η η subject to ξ + η = y.

Since S(ξ, η) is the exponent of the normal joint density function N(ξ, η), the
resulting estimates may be described, alternatively, as the minimum chi-square
estimates or as the maximum-likelihood estimates.

Substituting for η = y− ξ gives the concentrated criterion function S(ξ) =
ξ′Ω−1

ξ ξ + (y − ξ)′Ω−1(y − ξ). Differentiating this function in respect of ξ and
setting the result to zero gives a condition for a minimum, which specifies the
estimate x. This is Ω−1

η (y − x) = Ω−1
ξ x, which, on pre multiplication by Ωη,

can be written as y = x − ΩηΩ−1
ξ x = (Ωξ + Ωη)Ω−1

ξ x. Therefore, the solution
for x is

(51) x = Ωξ(Ωξ + Ωη)−1y.

Moreover, since the roles of ξ and η are interchangeable in this exercise, and,
since h + x = y, there are also

(52) h = Ωη(Ωξ + Ωη)−1y and x = y − Ωη(Ωξ + Ωη)−1y.

The filter matrices Bξ = Ωξ(Ωξ + Ωη)−1 and Bη = Ωη(Ωξ + Ωη)−1 of (51) and
(52) are the matrix analogues of the z-transforms displayed in equations (35)
and (36).

A simple procedure for calculating the estimates x and h begins by solving
the equation

(53) (Ωξ + Ωη)b = y

for the value of b. Thereafter, one can generate

(54) x = Ωξb and h = Ωηb.

If Ωξ and Ωη correspond to the narrow-band dispersion matrices of moving-
average processes, then the solution to equation (53) may be found via a
Cholesky factorisation that sets Ωξ + Ωη = GG′, where G is a lower-triangular
matrix with a limited number of nonzero bands. The system GG′b = y may be
cast in the form of Gp = y and solved for p. Then, G′b = p can be solved for b.
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Filters for Short Trended Sequences

One way of eliminating the trend is to take differences of the data. Usually,
twofold differencing is appropriate. The matrix analogue of the second-order
backwards difference operator in the case of T = 5 is given by

(55) ∇2
5 =

[
Q′

∗
Q′

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤
⎥⎥⎥⎥⎦ .

The first two rows, which do not produce true differences, are liable to be
discarded. In general, the p-fold differences of a data vector of T elements will
be obtained by pre multiplying it by a matrix Q′ of order (T −p)×T . Applying
Q′ to the equation y = ξ + η, representing the trended data, gives

(56)
Q′y = Q′ξ + Q′η

= δ + κ = g.

The vectors of expectations and the dispersion matrices of the differenced vec-
tors are

(57)
E(δ) = 0, D(δ) = Ωδ = Q′D(ξ)Q,

E(κ) = 0, D(κ) = Ωκ = Q′D(η)Q.

The difficulty of estimating the trended vector ξ = y − η directly is that
some starting values or initial conditions are required in order to define the
value at time t = 0. However, since η is from a stationary mean-zero process,
it requires only zero-valued initial conditions. Therefore, the starting-value
problem can be circumvented by concentrating on the estimation of η. The
conditional expectation of η given the differenced data g = Q′y is provided by
the formula

(58)
h = E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}

= C(η, g)D−1(g)g,

where the second equality follows in view of the zero-valued expectations.
Within this expression, there are

(59) D(g) = Ωδ + Q′ΩηQ and C(η, g) = ΩηQ.

Putting these details into (57) gives the following estimate of η:

(60) h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.

18
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Putting this into the equation

(61) x = E(ξ|g) = y − E(η|g) = y − h

gives

(62) x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.

As in the case of the extraction of a signal from a stationary process, the
estimate of the trended vector ξ can also be derived according to a least-squares
criterion. The criterion is

(63) Minimise (y − ξ)′Ω−1
η (y − ξ) + ξ′QΩ−1

δ Q′ξ.

The first term in this expression penalises the departures of the resulting curve
from the data, whereas the second term imposes a penalty for a lack of smooth-
ness. Differentiating the function with respect to ξ and setting the result to
zero gives

(64) Ω−1
η (y − x) = −QΩ−1

δ Q′x = QΩ−1
δ d,

where x stands for the estimated value of ξ and d = Q′x. Premultiplying by
Q′Ωη gives

(66) Q′(y − x) = Q′y − d = Q′ΩηQΩ−1
δ d,

whence

(66)
Q′y = d + Q′ΩηQΩ−1

δ d

= (Ωδ + Q′ΩηQ)Ω−1
δ d,

which gives

(67) Ω−1
δ d = (Ωδ + Q′ΩηQ)−1Q′y.

Putting this into

(68) x = y − ΩηQΩ−1
δ d,

which comes from premultiplying (63) by Ωη, gives

(69) x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.
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One may observe that

(70) ΩηQ(Ωδ + Q′ΩηQ)−1Q′y = ΩηQ(Ωδ + Q′ΩηQ)−1Q′e,

where e = Q(Q′Q)−1Q′y is the vector of residuals obtained by interpolating a
straight line through the data by a least-squares regression. That is to say, it
makes no difference to the estimate of the component that is complementary
to the trend whether the filter is applied to the data vector y or the residual
vector e. If the trend-estimation filter is applied to e instead of to y, then the
resulting vector can be added to the ordinates of the interpolated line to create
the estimate of the trend.

The specific cases that have been considered in the context of the classical
form of the of Wiener–Kolmogorov filter can now be adapted to the circum-
stances of short trended sequences. The first there is the Leser filter. This is
derived by setting

(71) D(η) = Σ = σ2
ηI, D(δ) = σ2

δI and λ =
σ2

η

σ2
δ

within (68) to give

(72) x = y − Q(λ−1I + Q′Q)−1Q′y

Here, λ is the so-called smoothing parameter. It will be observed that, as
λ → ∞, the vector x tends to that of a linear function interpolated into the
data by least-squares regression, which is represented by equation (28). The
matrix expression B = I−Q(λ−1I+Q′Q)−1Q′ for the filter can be compared to
the polynomial expression βc(z) = 1 − β(z) of the classical formulation, which
entails the z-transform from (41).

The Butterworth filter that is appropriate to short trended sequences can
be represented by the equation

(73) x = y − λΣQ(M + λQ′ΣQ)−1Q′y.

Here, the matrices

(74) Σ = {2IT − (LT + L′
T )}n−2 and M = {2IT + (LT + L′

T )}n

are obtained from the RHS of the equations {(1− z)(1− z−1)}n−2 = {2− (z +
z−1)}n−2 and {(1+z)(1+z−1)}n = {2+(z+z−1)}n, respectively, by replacing
z by LT and z−1 by L′

T . Observe that the equalities no longer hold after the
replacements. However, it can be verified that

(75) Q′ΣQ = {2IT − (LT + L′
T )}n.
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Filtering in the Frequency Domain

The method of Wiener–Kolmogorov filtering can also be implemented using
the circulant dispersion matrices that are given by

(76)
Ω◦

ξ = Ūγξ(D)U, Ω◦
η = Ūγη(D)U and

Ω◦ = Ω◦
ξ + Ω◦

η = Ū{γξ(D) + γη(D)}U,

wherein the diagonal matrices γξ(D) and γη(D) contain the ordinates of the
spectral density functions of the component processes.

Here, U = T−1/2[W jt], wherein t, j = 0, . . . , T − 1, is the matrix of
the Fourier transform, of which the generic element in the jth row and tth
column is W jt = exp(−i2πtj/T ), and Ū is its conjugate transpose. Also,
D = diag{1, W, W 2, . . . , WT−1}, which replaces z within each of the autoco-
variance generating functions, is a diagonal matrix whose elements are the T
roots of unity, which are found on the circumference of the unit circle in the
complex plane.

By replacing the dispersion matrices within (46) and (47) by their circulant
counterparts, we derive the following formulae:

x = Ūγξ(D){γξ(D) + γη(D)}−1Uy = Pξy,(77)

h = Ūγη(D){γξ(D) + γη(D)}−1Uy = Pηy.(78)

Similar replacements within the formulae (48) and (49) provide the expressions
for the error dispersion matrices that are appropriate to the circular filters.

The filtering formulae may be implemented in the following way. First, a
Fourier transform is applied to the data vector y to give Uy, which resides in the
frequency domain. Then, the elements of the transformed vector are multiplied
by those of the diagonal weighting matrices Jξ = γξ(D){γξ(D)+γη(D)}−1 and
Jη = γη(D){γξ(D) + γη(D)}−1. Finally, the products are carried back into
the time domain by the inverse Fourier transform, which is represented by the
matrix Ū .

The filters described above are appropriate only to stationary processes.
However, they can be adapted in several alternative ways to cater to nonsta-
tionary processes. One way is to reduce the data may to stationarity by twofold
differencing before filtering it. After filtering, the data may be reinflated by a
process of summation.

As before, let the original data be denoted by y = ξ + η and let the
differenced data be g = Q′y = δ + κ. If the estimates of δ = Q′ξ and κ = Q′η
are denoted by d and k respectively, then the estimates of ξ and η will be

(79) x = S∗d∗ + Sd where d∗ = (S′
∗S∗)−1S′

∗(y − Sd)

21



D.S.G. POLLOCK: ECONOMETRICS

and

(80) h = S∗k∗ + Sk where k∗ = −(S′
∗S∗)−1S′

∗Sk.

Here, d∗ an k∗ are the initial conditions that are obtained via the minimisation
of the function

(81)
(y − x)′(y − x) = (y − S∗d∗ − Sd)′(y − S∗d∗ − Sd)

= (S∗k∗ + Sk)′(S∗k∗ + Sk) = h′h.

The minimisation ensures that the estimated trend x adheres as closely as
possible to the data y.

In the case where the data is differenced twice, there is

(82) S′
∗ =

[
1 2 . . . T − 1 T
0 1 . . . T − 2 T − 1

]

The elements of the matrix S′
∗S∗ can be found via the formulae

(83)

T∑
t=1

t2 =
1
6
T (T + 1)(2T + 1) and

T∑
t=1

t(t − 1) =
1
6
T (T + 1)(2T + 1) − 1

2
T (T + 1).

(A compendium of such results has been provided by Jolly 1961, and proofs of
the present results were given by Hall and Knight 1899.)

Example. Before applying a frequency-domain filter, it is necessary to ensure
that the data are free of trend. If a trend is detected, then it may be removed
from the data by subtracting an interpolated polynomial trend function. A test
for the presence of a trend is required that differs from the tests that are used
to detect the presence of unit roots in the processes generating the data. This
is provided by the significance test associated with the ordinary-least squares
estimate of a linear trend.

There is a simple means of calculating the adjusted sum of squares of the
temporal index t = 0, 1, . . . , T − 1, which is entailed in the calculation of the
slope coefficient

(84) b =
∑

y2
t − (

∑
yt)2/T∑

t2 − (
∑

t)2/T
.

The formulae

(85)
T−1∑
t=0

t2 =
1
6
(T − 1)T (2T − 1) and

T−1∑
t=0

t =
T (T − 1)

2
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are combined to provide a convenient means of calculating the denominator of
the formula of (82):

(86)
T−1∑
t=0

t2 − (
∑T−1

t=0 t)2

T
=

(T − 1)T (T + 1)
12

.

Another means of calculating the low-frequency trajectory of the data via
the frequency domain mimics the method of equation (69) by concentrating
of the estimation the high-frequency component. This can be subtracted from
the data to create an estimate of the complementary low-frequency trend com-
ponent. However, whereas, in the case of equation (69), the differencing of
the data and the re-inflation of the estimated high-frequency component are
deemed to take place in the time domain now the re-inflation occurs in the fre-
quency domain before the resulting vector of Fourier coefficients is transformed
to the time domain.

The reduction of trended data sequence to stationary continues to be ef-
fected by the matrix Q but, in this case, the matrix can be seen in the context
of a centralised difference operator This is

(87)
N(z) = z−1 − 2 + z = z−1(1 − z)2

= z−1∇2(z).

The matrix version of the operator is obtained by setting z = LT and z−1 = L′
T ,

which gives

(88) N(LT ) = NT = LT − 2IT + L′
T .

The first and the final rows of this matrix do not deliver true differences. There-
fore, they are liable to be deleted, with the effect that the two end points are
lost from the twice-differenced data. Deleting the rows e′0NT and e′T−1NT from
NT gives the matrix Q′, which can also be obtained by from ∇2

T = (IT −LT )2

by deleting the matrix Q′
∗, which comprises the first two rows e′0∇2

T and e′1∇2
T .

In the case of T = 5 there is

(89) N5 =

⎡
⎣Q′

−1

Q′

Q+1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎦

.

On deleting the first and last elements of the vector NT y, which are Q′
−1y =

e′1∇2
T y and Q+1y, respectively, we get Q′y = [q1, . . . , qT−2]′.
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The loss of the two elements from either end of the (centrally) twice-
differenced data can be overcome by supplementing the original data vector y
with two extrapolated end points y−1 and yT . Alternatively, the differenced
data may be supplemented by attributing appropriate values to q0 and qT−1.
These could be zeros or some combination of the adjacent values. In either
case, we will obtain a vector of order T denoted by q = [q0, q1, . . . qT−1]′.

In describing the method for implementing a highpass filter, let Λ be the
matrix which selects the appropriate ordinates of the Fourier transform γ = Uq
of the twice differenced data. These ordinates must be reinflated to compensate
for the differencing operation, which has the frequency response

(90) f(ω) = 2 − 2 cos(ω).

The response of the anti-differencing operation is 1/f(ω); and γ is reinflated
by pre-multiplying by the diagonal matrix

(91) V = diag{v0, v1, . . . , vT−1},

comprising the values vj = 1/f(ωj); j = 0, . . . , T − 1, where ωj = 2πj/T .
Let H = V Λ be the matrix that is is applied to γ = Uq to generate the

Fourier ordinates of the filtered vector. The resulting vector is transformed to
the time domain to give

(92) h = ŪHγ = ŪHUq.

It will be see that f(ω) is zero-valued when ω = 0 and that 1/f(ω) is
unbounded in the neighbourhood of ω = 0. Therefore, a frequency-domain
reinflation is available only when there are no nonzero Fourier ordinates in this
neighbourhood. That is to say, it can work only in conjunction with highpass or
bandpass filtering. However, it is straightforward to construct a lowpass filter
that complements the highpass filter. The low-frequency trend component that
is complementary to h is

(93) x = y − h = y − ŪHUq.
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