
APPENDIX 7

Models with
of Multiple Responses

1. Introduction

This chapter reviews some of the methodology which is being used in
a statistical investigation of the assessment process associated with GNVQ
courses. So far, a limited quantity of data has been acquired; and this has been
subjected to a preliminary analysis. The analysis is serving both as a test of
the methodology and as a test of the adequacy of the data and the means of
collecting it.

2. The Process of Training and Assessment as a Transformation

In order to derive mathematical models which may be used in a statistical
investigation of the assessment process, several simplified concepts which are
amenable to mathematical representation must be established and adhered to.
It should not to be imagined that, in using of such concepts for the purpose of
model building, we are proposing an oversimplified view of a complex reality.

The typical GNVQ course may be envisaged as a processes of training
and assessment which is applied to individual students. At the beginning of
the course, each student is endowed with an educational potential. The course
transforms the potential of the student into an assessment rating which, con-
sists, ultimately, of a grade selected from a fourfold classification: Fail, Pass,
Merit and Distinction. It is this transformation of the student’s potential into
their assessment rating which is the subject of an exercise in mathematical
modelling. The transformation is of a random or stochastic nature.

The term random implies no disparagement of the training or of the as-
sessment. It corresponds to the fact that there are numerous determinants of
the assessment rating, active throughout the period of the training, which are
not under the direct control of the agents of the processes—the teachers and
the assessors; and it acknowledges the fact that, to some extent, the assess-
ments themselves are arbitrary and subjective. In the ideal circumstances, the
relevant statistical parameters of the transformation will be independent of the
location such that the quality of the training and the nature of the assessments
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can be described as uniform throughout the training establishments. The ob-
ject of the study is to determine the extent to which the reality of the GNVQ
processes departs from such ideal conditions.

In order to evaluate the GNVQ processes, we propose to construct a math-
ematical model of the statistical relationship linking the potentials of the stu-
dents to their assessment ratings which are respectively the subjects and the
products of the transformation. There is no unique way of describing the po-
tentials of the students; and one of the objects of the study is to identify ways
which are both mathematically tractable and statistically robust.

There is some leeway also in the matter of how one chooses to represent
the assessment ratings and examination results. The problem of representing
the assessments would be greatly simplified if a cardinal index of performance
on a scale of 0 to 100 were available for each candidate and if it could be
assumed that the index varies continuously and evenly within this range. It
may be possible to synthesise an index of this nature by carefully combining
the outcomes of the various elements of assessment which contribute to the
ultimate grading. However, it seems likely that, for the foreseeable future,
those who wish to investigate the GNVQ assessment process will have at their
disposal only the summary gradings of the GNVQ units. From the point of
view of statistical modelling, this represents the least tractable of the cases
which can be envisaged; and therefore it is encouraging to recognise that, given
sufficiently abundant data, it can be tackled directly without undue difficulty.

3. A Model with a Bounded Response

One of the mainstays of multivariate statistical modelling is the linear
regression model. The model comprises an equation of the form

(1)
y = α + x1β1 + x2β2 + · · · + xkβk + ε

= α + x′β + ε

which explains the value of a dependent variable y in terms of k observable
variables in x′ = [x1, x2, . . . , xk] and an unobservable random variable ε. The
latter has a zero expected value E(ε) = 0, and, under standard assumptions,
it has a variance or dispersion V (ε) = σ2 which is fixed for all instances of
the relationship. The elements of β = [β1, β2, . . . , βk]′ are described as the
regression parameters, and α is known as the intercept parameter.

The linear regression model has been used by Armitage [2], [3] in an ex-
ercise designed to monitor the student assessments of the Open University. In
that case, the variable y was an index of performance based on essay marks
and examination marks, whilst the explanatory variables x1, x2, . . . , xk com-
prised indices of the candidate’s past performance, the level of their previous
education etc. The linear combination ξ = x′β = x1β1 + x2β2 + · · · + xkβk
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Figure 1. The logistic function ex/(1 + ex) and its derivative. For large

negative values of x, the function and its derivative are close. In the case

of the exponential function ex, they coincide for all values of x.

of these variables represents what we are describing here as the student’s po-
tential. Under this construction, the random variable ε, which is liable to be
described as the disturbance term, represents the vagaries of the processes of
training and assessment. That is to say, it is the stochastic element in the
transformation which maps the potential of the individual students into their
assessment ratings.

The linear regression model is inappropriate even in the ideal circumstances
where a cardinal index of performance is available on a scale of 0 to 100. The
reason is that it imposes no explicit bound on the range of the dependent vari-
able y which represents a student’s assessment rating. This difficultly is easily
overcome by applying the appropriate transformation to the cardinal index so
as to convert its range to that of the entire real line. One such transformation
is provided by the inverse of the so-called logistic function.

In its simplest form, the logistic function, which represents a mapping from
the real line into the interval [0, 1], is given by

(2) π(x) =
1

1 + e−x
=

ex

1 + ex
.

The second expression comes from multiplying top and bottom of the first
expression by ex. The logistic curve varies between a value of zero, which is
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approached as x → −∞, and a value of unity, which is approached as x → +∞.
At the mid point, where x = 0, the value of the function is π(0) = 1

2 .
The inverse mapping x = x(π) is easily derived. Consider

(3)
1 − π =

1 + ex

1 + ex
− ex

1 + ex

=
1

1 + ex
=

π

ex
.

This is rearranged to give

(4) ex =
π

1 − π
,

whence the inverse function is found by taking natural logarithms:

(5) x(π) = ln
{

π

1 − π

}
.

The logistic curve needs to be elaborated before it can be fitted flexibly to
a set of observations y1, . . . , yn tending to an upper asymptote. A more general
form of the function, to replace that of (2), is

(6) π(x) =
γ

1 + e−ξ(x)
=

γeξ(x)

1 + eξ(x)
; ξ(x) = α + βx.

Here γ is the upper asymptote of the function which, in the case of the car-
dinal measure of student performance, may be the mark of 100—or it may
be something less if it is accepted that the upper limit of 100 is never at-
tained in practice. The single explanatory variable x might stand for the past
performance of a student, which also indicates the student’s potential. The
parameters β and α determine respectively the rate of ascent of the logistic
function and the mid-point of its ascent, measured on the x-axis.

When the disturbance term is added to ξ, equation (6) becomes

(7) y =
γ

1 + e−λ
=

γeλ

1 + eλ
; λ = α + βx + ε.

Then it can be seen that

(8) ln
{

y

γ − y

}
= λ.

Therefore, with the inclusion of a disturbance term, the equation for the generic
element of the sample becomes

(9) ln
{

y

γ − y

}
= α + βx + ε.
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For a given value of γ, one can easily calculate the value of the dependent
variable on the LHS. Then the values of α and β may be found by linear least-
squares regression.

4. A Model with a Binary Response

In some examinations, the only published outcome is either a Pass or a
Failure. Such outcomes may be the result of imposing a threshold level or
pass-mark upon a marking scheme wherein the original scores vary between
the bounds of 0 and 100. The summary results of Pass or Failure would
seem to provide little information upon which to base a statistical analysis.
Nevertheless, if there are enough observations—which is to say that numerous
examination results have been recorded in conjunction with the attributes of
the candidates—then the parameters of the previous model will continue to be
estimable.

To understand these matters, let us recapitulate upon elements of the
model. In the first place, we have defined the inherent ability of the examina-
tion candidate to be a systematic linear function ξ = α + x1β1 + · · · + xkβk of
a set of measurable attributes x1, . . . , xk. Numerous unmeasurable influences
will also affect a candidate’s examination performance; and, to some extent,
the assessment of this performance will be subjective. Therefore a stochastic
element will accompany the mapping of the inherent ability into an examina-
tion score. This element may be represented by a random variable ε with an
expected value of zero and a variance which is the same for all candidates.

The systematic and stochastic effects are combined in a latent variable
λ = ξ + ε which is transformed via the logistic function of Figure 1 into an
examination score of π = π(λ). In the previous analysis, it has been assumed
that the actual examination score is reported on a scale of 0 to 100. Now it will
be assumed that the result is reported only as Pass or Failure. These outcomes
may be denoted by a variable y ∈ {0, 1}. Let ρ ∈ (0, 100) denote the pass mark.
Then the situation can be represented by the following scheme:

(10)
y = 0 if π(λ) < ρ,

y = 1 if ρ ≤ π(λ).

Failure

Pass

Here the pass-mark ρ represents a threshold level relative to the examination
score π = π(λ). We may also define a corresponding threshold value κ relative
to the latent variable λ with the effect that

(11) λ > κ if and only if π > ρ.

From the point of view of statistical modelling, it is redundant to specify
the transformation from λ to π, and the analysis may be conducted more
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Figure 2. If λ = ξ + ε exceeds the threshold value κ, then the step

function, indicated by the arrows in the upper diagram, will deliver y = 1.

When ε ∼ N(0, 1) and ξ − κ = 0.5, the probability that λ will fall short

of the threshold is 0.3, which is the area of the shaded region in the lower

figure.

simply in terms of λ and κ. Indeed, unless one can attribute a value to the
pass-mark ρ, it is impossible to construct a definitive transformation. In effect,
it is impossible to determine whether a given set of summary results have been
generated by applying a stringent pass-mark to an easy exam or by applying a
generous pass-mark to a difficult exam.

The problem of the unknown pass-mark is reflected in the unidentifiability
of the intercept parameter α within the linear function ξ = α+x1β1+· · ·+xkβk

which represents the candidate’s inherent ability. If the pass-mark is unknown,
then an arbitrary value may be attributed to α; and it is reasonable to set
α = 0. An alternative procedure is to allow the statistical data to determine a
value for α and to set κ = 0, which puts the threshold value for λ = ξ + ε at
zero. The effect of either procedure is to subtract one degree of freedom from
the parametrisation of the model.

The basis of our model is now a simple probability distribution which
determines the probabilities P0 and P1 of the outcomes y = 0 and y = 1 which
correspond, respectively, to a Failure and a Pass:

(12)
P0 = P (λ < κ)

= P (ε < κ − ξ),
P1 = P (λ ≥ κ)

= P (ε ≥ κ − ξ).
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Here the function x′β = ξ represents the mean of the probability distribu-
tion which determines the values of P0 and P1. Its exact location relative
to the threshold level κ is a characteristic of the individual student which is
determined by their particular attributes. Notice that, if ε has a probability
distributon which is symmetric about the expected value of zero, then, when
ξ = κ, there are equal chances of Pass and Failure. Figure 2 illustrates the
case of a candidate for whom ξ > κ, and for whom the probability of failure is
P0 = 0.3.

There is a variety of choices for the distribution function of ε. The most
obvious choice is the cumulative normal distribution, which has been used in
constructing Figure 2. A more tractable choice is the logistic function of the
sort which we have used in describing the mapping from λ to π and which is
depicted in Figure 1, where it already has the requisite upper bound of 1.

It remains to illustrate how the form of a cumulative probability density
function can be inferred from a set of observations on y ∈ {0, 1} coupled with
the corresponding ability ratings ξ. When plotted on a graph, the observations
(y, ξ) constitute a set of points scattered along the axes y = 0 and y = 1
which are represented in Figure 2. Imagine that intervals of equal length are
demarcated along these axes over a range bounded by the minimum and the
maximum of the observed values of ξ. In each interval, the number of points
falling on the axes y = 0 and y = 1 are counted and the proportion p of those
lying on the upper axis is calculated. The value of p coupled with the value of
ξ which corresponds to the mid-point of the interval are the coordinates of a
point which can be marked on the graph. When all such points are joined, a
curve is described which should have roughly the appearance of a cumulative
probability density function.

The procedure described above has only a tenuous connection with the
mathematical procedures which are used in practice in fitting a cumulative
probability distribution function to the data and in estimating the parameters
of the model. Nevertheless, it does indicate how a model of examination per-
formance can be constructed on the basis of data which might appear, at first
sight, to be inadequate for the purpose.

5. A Model of Ordered Qualitative Responses

Often the percentage marks which generate a student’s assessment rating
are unavailable, and we have to make do with an ordinal scale of ratings which
can be made to correspond to a sequence of consecutive integers. An example
is provided by the Honours classification according to which universities award
their degrees. This comprises 6 categories altogether, including a Pass degree
and a Failure. The GNVQ assessment regime depends upon four categories;
but, for expository purposes, it will simplify matters if these are reduced to
three. This can be done by assuming that there are no failures. In fact, in

7



D.S.G. POLLOCK: ECONOMETRICS

the preliminary stage of the GNVQ assessment, there are no failures; and,
therefore, the analysis which follows is wholly appropriate to that situation.

The transformation from the student’s potential to their assessment rating
now comprises two threshold values κ1, κ2 which are applied to the latent
variable λ = ξ + ε wherein ξ = x1β1 + · · · + xkβk. The mechanism, which
represents an elaboration of the one displayed previously under (12), is a follows:

(13)
y = 0 if λ < κ1,

y = 1 if κ1 ≤ λ < κ2,

y = 2 if κ2 ≤ λ.

Pass
Merit
Distinction

The three events are mutually exclusive; and their respective probabilities are
determined by the location of the threshold values and by the probability dis-
tribution of ε. The probability that y = 0, ie. of a Pass, is

(14)
P0 = P (λ < κ1)

= P (ε < κ1 − ξ).

The probability that y = 1, ie. of a Merit, is

(15)
P1 = P (κ1 ≤ λ < κ2)

= P (λ < κ2) − P (λ < κ1)
= P (ε < κ2 − ξ) − P (ε < κ1 − ξ).

The probability that y = 2, ie. of a Distinction, is

(16) P2 = P (κ2 − ξ ≤ ε).

There is a variety of choices for the distribution function of ε. The most
obvious choice is the cumulative normal distribution, but the most tractable
is the logistic function. In applying either of these functions, one can exploit
their property of symmetry which implies, for example, that P (κ2 − ξ ≤ ε) =
P (ε ≤ κ2 − ξ) since E(ε) = 0.

If the assumption is made that the assessment ratings of the individual
students are independently distributed random variables, then the probability
of obtaining a particular sample of ratings is just the product of the individual
probabilities. The likelihood function is the probability density function of
the sample seen as a function of the parameters of the transformation which
maps from the measured indices of student potential—which are the variables
x1, . . . , xk—to the individual assessment ratings. The parameters which are to
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be estimated consist, therefore, of the threshold values κ1, κ2, and the regression
coefficients β1, . . . , βk comprised by ξ = x1β1 + · · · + xkβk.

Estimates of these parameters may be obtained by finding the values which
maximise the likelihood function. This is a matter of nonlinear optimisation
which, in this case, is relatively straightforward. There are several commercially
available computer programs which are capable of calculating the parameters
of an ordered-response model; and, for this project, the Stata. [10] was chosen.

6. Monitoring the GNVQ Assessment Process at the Local Level

Once the parameters of the ordered-response model have been estimated
on the basis a wide sample of data, a simple system for monitoring the GNVQ
assessment process in individual locations could be established. It is a straight-
forward matter to compare the proportions of assessments falling into the vari-
ous categories in a given location with the proportions which prevail nationally.
However, the intention is to compare the actual local proportions with those
which are predicted on the basis of a statistical model which takes account of
the potentials of the students.

Such predictions depend upon the availability of the indices x1, x2, . . . , xk

for each student. Using the estimated regression coefficients, the academic
potential ξ = x1β1 + x2β2 + · · · + xkβk can be calculated for each student.
From the graph of Figure 4, the probabilities P0, P1 and P2 that they will
obtain respectively, a Pass, a Merit or a Distinction can be derived. The
average over all the students of these probabilities provides the local predicted
proportions for the assessment categories. A simple graphical presentation can
be provided which uses histograms (bar charts) to compare the local proportions
in the assessment categories to the national proportions and to the proportions
predicted for the location.

Summary indices may be devised which show the extent of the diver-
gences of the predicted and the actual assessment proportions as well as the
national and the local assessment proportions. The indices would be based
upon weighted sums of squares of the differences of the proportions in each
category. The weighting functions would be developed in the light of experi-
ence so as to be sensitive to those anomalies which cause the greatest concern
to the national administrators of the GNVQ.

7. The Index of GCSE Performance

The study by Armitage and Nutall [4] revealed that the most effective
variables for predicting BTEC grades were previous GCSE grades and age.
It was not revealed how the information on these grades was used, but it is
presumed that they were combined into a single index by use of a points system.
A points system has been used, for example, in a study conducted at the
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Figure 3. The probabilities P0, P1 and P2 can be determined by two

logistic functions of the argument ξ = x′β in such a way that they are

guaranteed to sum to unity.
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Figure 4. Figure 3 may be reconstructed so as to show more directly how

the probabilities P0 = P0(ξ), P1 = P1(ξ) and P2 = P2(ξ), which represent

respectively the chances of gaining a Pass a Merit and a Distinction, vary

as a function of ξ = x′β which represents the student’s academic potential.
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University of Newcastle into the value-added by BTEC courses. Here the grades
were recoded into numerical equivalents as follows:

Distinction 5
Merit 4
Pass 3
Refer 2
Fail 1

There is a straightforward way of constructing an index. Let vi be the
value attributed to a result in the ith class. For example, in the scheme above,
v5 = 5 is the value attributed to a Distinction. Then, if there are altogether k
classes, the index of examination performance might be calculated as

(17) I =
k∑

i=1

vini,

where ni is the number of the exam results of the candidate in question which
fall into the ith class.

The objection is that such an index is too simple. In the first place, it
entails an arbitrary judgment regarding the relative merits of the various grades.
Thus, for example, by adopting such a scheme one is asserting a priori that,
in terms of its favourable influence upon the outcome of a subsequent exam,
a Distinction is almost twice as effective as a Pass grade and exactly three
times as effective as a Refer grade. These relative values should be determined
empirically rather than chosen a priori.

Another problem with the simple index is that it is liable to confound
quantity with quality. Thus, for example, if the points system which is tabu-
lated above were adopted, then it would be implied that five fails are equivalent
to one distinction in the extent to which they promote a favourable outcome
in a subsequent exam. This problem can be overcome only by using separate
indices of quantity and quality.

The present study uses a quadratic weighting scheme in constructing an
index of GCSE performance. This should allow the index to be determined
flexibly by the data. To describe the scheme, let v1, v2, . . . , vk represent a set of
values attributed to k examination classes, including the failure. These values
are assumed to follow an arithmetic or linear progression. Let n1, n2, . . . , nk be
the numbers of results in each class which have been obtained by an individual
candidate, and let n = n1 + n2 + · · ·+ nk be the total number of examinations
sat by the candidate. Then a vector of three elements t, �, q is constructed as
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follows:

(18)

 t
�
q

 =
1
n

 1 1 · · · 1
v1 v2 · · · vk

v2
1 v2

2 · · · v2
k




n1

n2
...

nk

 .

It will be observed that the value of t is unity, identically; and this reflects the
fact that the proportions ni/n of the results in each grade must sum to one.
The proposed index takes the form of

I = αn + βt + γ� + δq,

where α, β, γ and δ are parameters which are determined by statistical esti-
mation.

These parameters can be given simple interpretations. The parameter α
measures the quantity effect; and it is expected to have a positive value if
having sat a greater number of examinations at the previous level is conducive
to better examination result at the present level.

The parameter β is a constant term which is absorbed by the threshold
levels of the binary model and the ordinal model. The parameters γ and δ are
both associated with quality effects. The former is the parameter of the linear
effect and the latter is the parameter of the quadratic effect. Together they
provide the necessary flexibility in the mapping from the point values vi to the
index I.

There is a natural presumption that the γ coefficient will be positive, since
one would expect good results in the previous examinations to presage good
results at the present level. However, if the quadratic parameter δ is positive,
then it is quite possible for γ to take a negative value. There is no presumption
about the sign of the δ coefficient. In the language of economists, a positive δ
would imply increasing marginal returns to excellence and a negative coefficient
would imply diminishing marginal returns.

If δ were to take a large negative value, then one might find, at some
stage in the progression, that previous excellence is unfavourable to present
achievement. In other words, the diminishing marginal returns could become
negative returns.
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