
LECTURE 7

Models with Limited
Dependent Variables

In this lecture, we present two models with limited dependent variables. The
first is a logistic regression model in which the dependent variable has a lower
bound, which is commonly taken to be zero, and an upper bound, which is
approached asymptotically as the value of the independent variable, represent-
ing the systematic influences, increases. Realising such a model depends on
finding a function that will map from the range of the systematic variable onto
the restricted interval of the response. For this purpose, it is common to use a
logistic sigmoid function.

The second model to be considered in one in which there is a binary or
dichotomous response. Individuals may have to decide whether to act or not
to act. Their decisions will be, to some extent, random, but they will also
be affected by some measurable influences. The probability of a decision to
act increases with the strength of these influences. The probability is bounded
by zero and unity in a manner that is described by a cumulative probability
distribution function.

Often a logistic function is used to model the probability distribution, in
which case there is a so-called logit model. The attraction of this model is the
tractability of the logistic function, which has a simple explicit form. When
the distribution is normal, there is a probit model. The seeming disadvantage
of this model is that there is no explicit form for the cumulative normal distri-
bution function. However, the difficulty is hardly a significant one, given the
availability of fast and accurate means of obtaining approximate values for the
ordinates of the function. Therefore, we shall devote our attention mainly to
the probit model.

Logistic Trends

Whereas unhindered exponential growth might be possible for certain mon-
etary or financial quantities, it is implausible to suggest that such a process can
be sustained for long when real resources are involved. Since real resources are
finite, we expect there to be upper limits to the levels that can be attained by
real economic variables, as opposed to financial variables.
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Figure 1. The logistic function ex/(1 + ex) and its derivative. For large

negative values of x, the function and its derivative are close. In the case

of the exponential function ex, they coincide for all values of x.

For an example of a trend with an upper bound, we can imagine a pro-
cess whereby the ownership of a consumer durable grows until the majority of
households or individuals are in possession of it. Examples are provided by
the sales of domestic electrical appliances such are fridges and colour television
sets.

Typically, when the new durable good is introduced, the rate of sales is
slow. Then, as information about the durable, or experience of it, is spread
amongst consumers, the sales begin to accelerate. For a time, their cumulated
total might appear to follow an exponential growth path. Then come the first
signs that the market is becoming saturated; and there is a point of inflection in
the cumulative curve where its second derivative—which is the rate of increase
in sales per period—passes from positive to negative. Eventually, as the level
of ownership approaches the saturation point, the rate of sales will decline to
a constant level, which may be at zero, if the good is wholly durable, or at a
small positive replacement rate if it is not.

It is very difficult to specify the dynamics of a process such as the one we
have described whenever there are replacement sales to be taken into account.
The reason is that the replacement sales depend not only on the size of the
ownership of the durable goods but also upon the age of the stock of goods.
The latter is a function, at least in an early period, of the way in which sales
have grown at the outset. Often we have to be content with modelling only the
growth of ownership.
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One of the simplest ways of modelling the growth of ownership is to employ
the so-called logistic curve. See Figure 1. This classical device has its origins
in the mathematics of biology where it has been used to model the growth of
a population of animals in an environment with limited food resources. The
simplest version of the function is given by

(1) π(x) =
1

1 + e−x
=

ex

1 + ex
.

The second expression comes from multiplying top and bottom of the first
expression by ex. The logistic curve varies between a value of zero, which is
approached as x → −∞, and a value of unity, which is approached as x → +∞.
At the mid point, where x = 0, the value of the function is π(0) = 1

2 . These
characteristics can be understood easily in reference to the first expression.

The alternative expression for the logistic curve also lends itself to an
interpretation. We may begin by noting that, for large negative values of x,
the term 1+ex, which is found in the denominator, is not significantly different
from unity. Therefore, as x increases from such values towards zero, the logistic
function closely resembles an exponential function. By the time x reaches zero,
the denominator, with a value of 2, is already significantly affected by the term
ex. At that point, there is an inflection in the curve as the rate of increase in π
begins to decline. Thereafter, the rate of increase declines rapidly toward zero,
with the effect that the value of π never exceeds unity.

The inverse mapping x = x(π) is easily derived. Consider

(2)
1 − π =

1 + ex

1 + ex
− ex

1 + ex

=
1

1 + ex
=

π

ex
.

This is rearranged to give

(3) ex =
π

1 − π
,

whence the inverse function is found by taking natural logarithms:

(4) x(π) = ln
{

π

1 − π

}
.

The logistic curve needs to be elaborated before it can be fitted flexibly
to a set of observations y1, . . . , yn tending to an upper asymptote. The general
from of the function is

(5) y(t) =
γ

1 + e−h(t)
=

γeh(t)

1 + eh(t)
; h(t) = α + βt.

3



D.S.G. POLLOCK: ECONOMETRICS

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 2. The function y(t) = γ/(1 + exp{α − β ln(t)}) with γ = 1,

α = 4 and β = 7. The positive values of t are the domain of the function.

Here γ is the upper asymptote of the function, which is the saturation level of
ownership in the example of the consumer durable. The parameters β and α
determine respectively the rate of ascent of the function and the mid point of
its ascent, measured on the time-axis.

It can be seen that

(6) ln
{

y(t)
γ − y(t)

}
= h(t).

Therefore, with the inclusion of a residual term, the equation for the generic
element of the sample is

(7) ln
{

yt

γ − yt

}
= α + βt + et.

For a given value of γ, one may calculate the value of the dependent variable on
the LHS. Then the values of α and β may be found by least-squares regression.

The value of γ may also be determined according to the criterion of min-
imising the sum of squares of the residuals. A crude procedure would entail
running numerous regressions, each with a different value for γ. The defini-
tive value would be the one from the regression with the least residual sum of
squares. There are other procedures for finding the minimising value of γ of
a more systematic and efficient nature which might be used instead. Amongst
these are the methods of Golden Section Search and Fibonnaci Search which
are presented in many texts of numerical analysis.

The objection may be raised that the domain of the logistic function is
the entire real line—which spans all of time from creation to eternity—whereas
the sales history of a consumer durable dates only from the time when it is
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Figure 3. The cumulative log-normal distribution. The logarithm

of the log-normal variate is a standard normal variate.

introduced to the market. The problem might be overcome by replacing the
time variable t in equation (15) by its logarithm and by allowing t to take
only nonnegative values. See Figure 2. Then, whilst t ∈ [0,∞), we still have
ln(t) ∈ (−∞,∞), which is the entire domain of the logistic function.

There are many curves which will serve the purpose of modelling a sig-
moidal growth process. Their number is equal, at least, to the number of
theoretical probability density functions—for the corresponding (cumulative)
distribution functions rise monotonically from zero to unity in ways with are
suggestive of processes of bounded growth.

A Classical Probit Model in Biology

The classical example of a probit model concerns the effects of a pesticide
upon a sample of insects. For the ith insect, the lethal dosage is the quantity
δi which is the realised value of a random variable; and it is assumed that, in
the population of these insects, the values λi = log(δi) are distributed normally
with a mean of λ and a variance of σ2. If an insect is selected at random and is
subjected to the dosage di, then the probability that it will die is P (λi ≤ xi),
where xi = log(di). This is given by

(8) π(xi) =
∫ xi

−∞
N(ζ; λ, σ2)dζ

The function π(xi) with xi = log(di) also indicates the fraction of a sample of
insects which could be expected to die if all the individuals were subjected to
the same global dosage d = di.
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Let yi = 1 if the ith insect dies and yi = 0 if it survives. Then the situation
of the insect is summarised by writing

(9) yi =
{ 0, if λi > xi or, equivalently, δi > di;

1, if λi ≤ xi or, equivalently, δi ≤ di.

These circumstances are illustrated in Figure 4, albeit that, in the diagrams,
the variable xi has been replaced by ξi = ξ(x1i, . . . , xki), which represents the
ordinate of an unspecified function of k measurable influences effecting the ith
individual.

By making the assumption that it is the log of the lethal dosage which
follows a normal distribution, rather than the lethal dosage itself, we avoid the
unwitting implication that insects can die from negative dosages. The lethal
dosages are said to have a log-normal distribution.

The log-normal distribution has an upper tail which converges rather
slowly to zero, which is seen in Figure 3. Therefore, the corresponding tail of
the cumulative distribution converges slowly to the upper asymptote of unity,
which implies that some individuals are virtually immune to the effects of the
pesticide. In a laboratory experiment, one would expect to find, to the con-
trary, that there is a moderate dosage that is certain to kill all the insects. In
the field, however, there is always the chance that some insects will be sheltered
from the pesticide.

The integral of (8) may be expressed in terms of a standard normal density
function N(ε; 0, 1). Thus

(10)

P (λi < xi) with λi ∼ N(λ, σ2)

is equal to

P

(
λi − λ

σ
= εi < hi =

xi − λ

σ

)
with εi ∼ N(0, 1).

Moreover, the standardised variable hi, which corresponds to the dose received
by the ith insect, can be written as

(11)
hi =

xi − λ

σ
= β0 + β1xi,

where β0 = −λ

σ
and β1 =

1
σ

.

To fit the model to the data, it is necessary only to estimate the parameters λ
and σ2 of the normal probability density function or, equivalently, to estimate
the parameters β0 and β1.

The Probit Model in Econometrics

In econometrics, the Probit model is commonly used in describing binary
choices. The circumstances of these choices are not the life-threatening ones
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Figure 4. The probability of the threshold λi ∼ N(λ, σ2) falling short of

the realised value λ∗
i is the area of the shaded region in the lower diagram.

If the stimulus ξi exceeds the realised threshold λ∗
i , then the step function,

indicated by the arrows in the upper diagram, delivers y = 1. The upper

diagram also shows the cumulative probability distribution function, which

indicates a probability value of P (λi < λ∗
i ) = 1 − πi = 0.3.

that affect the insects; and the issue is typically a matter of whether or not a
consumer will purchase an item of a particular good or whether or not they
will decide to pursue a particular activity. There may be numerous influences
affecting the outcome; and these will include the consumer’s own idiosyncratic
departure from the mean level of susceptibility, denoted by λ.

The systematic influences affecting the outcome for the ith consumer may
be represented by a function ξi = ξ(x1i, . . . , xni), which may be a linear com-
bination of the variables. The idiosyncratic effects can be represented by a
normal random variable of zero mean.

The ith individual will have a positive response yi = 1 only if the stimulus
ξi exceeds their own threshold value λi ∼ N(λ, σ2), which is assumed to deviate
at random from the level of a global threshold λ. Otherwise, there will be no
response, indicated by yi = 0. Thus

(12) yi =
{

0, if λi > ξi;

1, if λi ≤ ξi.

These circumstances are illustrated in Figure 4.
The accompanying probability statements, expressed in term of a standard
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normal variate, are that

(13)

P (yi = 0|ξi) = P

(
λi − λ

σ
= −εi >

ξi − λ

σ

)
and

P (yi = 1|ξi) = P

(
λi − λ

σ
= −εi ≤

ξi − λ

σ

)
, where εi ∼ N(0, 1).

On the assumption that ξ = ξ(x1, . . . , xn) is a linear function, these can be
written as

(14)
P (yi = 0) = P (0 > y∗

i = β0 + xi1β1 + · · · + xikβk + εi) and

P (yi = 1) = P (0 ≤ y∗
i = β0 + xi1β1 + · · · + xikβk + εi) ,

where

β0 + xi1β1 + · · · + xikβk =
ξ(x1i, . . . , xki) − λ

σ
.

This is a common formulation. Thus, by employing the appropriate normalising
transformations, it is possible to convert the original statements relating to the
normal distribution N(λi; λ, σ2) to equivalent statements expressed in terms of
the standard normal distribution N(εi; 0, 1).

The essential quantities that require to be computed in the process of
fitting the model to the data of the individual respondents, who are indexed
by i = 1, . . . , N , are the probability values

(15) P (yi = 0) = 1 − πi = Φ(β0 + xi1β1 + · · · + xikβk),

where Φ denotes the cumulative standard normal distribution function. These
probability values depend on the coefficients β0, β1, . . . , βk of the linear combi-
nation of the variables influencing the response.

Estimation with Individual Data

Imagine that we have a sample of observations (yi, xi.); i = 1, . . . , N , where
yi ∈ {0, 1} for all i. Then, assuming that the events affecting the individuals are
statistically independent and taking πi = π(xi., β) to represent the probability
that the event will affect the ith individual, we can write represent the likelihood
function for the sample as

(16) L(β) =
N∏

i=1

πyi

i (1 − πi)1−yi =
N∏

i=1

(
πi

1 − πi

)yi

(1 − πi).

This is the product of n point binomials. The log of the likelihood function is
given by

(17) log L =
N∑

i=1

yi log
(

πi

1 − πi

)
+

N∑
i=1

log(1 − πi).
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Differentiating log L with respect to βj , which is the jth element of the param-
eter vector β, yields

(18)

∂ log L

∂βj
=

N∑
i=1

yi

πi(1 − πi)
∂πi

∂βj
−

N∑
i=1

1
1 − πi

∂πi

∂βj

=
N∑

i=1

yi − πi

πi(1 − πi)
∂πi

∂βj
.

To obtain the second-order derivatives which are also needed, it is helpful
to write the final expression of (20) as

(19)
∂ log L

∂βj
=

∑
i

{
yi

πi
− 1 − yi

1 − πi

}
∂πi

∂βj
.

Then it can be seen more easily that

(20)
∂2 log L

∂βjβk
=

∑
i

{
yi

πi
− 1 − yi

1 − πi

}
∂2πi

∂βjβk
−

∑
i

{
yi

π2
i

+
1 − yi

(1 − πi)2

}
∂πi

∂βj

∂πi

∂βk
.

The negative of the expected value of the matrix of second derivatives is the
information matrix whose inverse provides the asymptotic dispersion matrix of
the maximum-likelihood estimates. The expected value of the expression above
is found by taking E(yi) = πi. On taking expectations, the first term of the
RHS of (20) vanishes and the second term is simplified, with the result that

(21) E

(
∂2 log L

∂βjβk

)
=

∑
i

1
πi(1 − πi)

∂πi

∂βj

∂πi

∂βk
.

The maximum-likelihood estimates are the values which satisfy the condi-
tions

(22)
∂ log L(β)

∂β
= 0.

To solve this equation requires an iterative procedure. The Newton–Raphson
procedure serves the purpose.

The Newton–Raphson Procedure

A common procedure for finding the solution or root of a nonlinear equa-
tion α(x) = 0 is the Newton–Raphson procedure which depends upon approx-
imating the curve y = α(x) by its tangent at a point near the root. Let this
point be [x0, α(x0)]. Then the equation of the tangent is

(23) y = α(x0) +
∂α(x0)

∂x
(x − x0)
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Figure 5. If x0 is close to the root of the equation

α(x) = 0, then we can expect x1 to be closer still.

and, on setting y = 0, we find that this line intersects the x-axis at

(24) x1 = x0 −
[
∂α(x0)

∂x

]−1

α(x0).

If x0 is close to the root λ of the equation α(x) = 0, then we can expect x1 to
be closer still. To find an accurate approximation to λ, we generate a sequence
of approximations {x0, x1, . . . , xr, xr+1, . . .} according to the algorithm

(25) xr+1 = xr −
[
∂α(xr)

∂x

]−1

α(xr).

The Newton–Raphson procedure is readily adapted to the problem of find-
ing the value of the vector β which satisfies the equation ∂ log L(β)/∂β = 0
which is the first-order condition for the maximisation of the log-likelihood
function. Let β consist of two elements β0 and β1. Then the algorithm by
which the (r + 1)th approximation to the solution is obtained from the rth
approximation is specified by

(26)


β0

β1


(r+1)

=


β0

β1


(r)

−


∂2 log L

∂β2
0

∂2 log L

∂β0β1

∂2 log L

∂β1β0

∂2 log L

∂β2
1


−1

(r)


∂ log L

∂β0

∂ log L

∂β1

 .

It is common to replace the matrix of second-order partial derivatives in
this algorithm by its expected value which is the negative of information matrix.
The modified procedure is known as Fisher’s method of scoring. The algebra
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is often simplified by replacing the derivatives by their expectations, whereas
the properties of the algorithm are hardly affected.

In the case of the simple probit model, where there is no closed-form ex-
pression for the likelihood function, the probability values, together with the
various derivatives and expected derivatives to be found under (18) to (21),
which are needed in order to implement one or other of these estimation pro-
cedures, may be evaluated with the help of tables which can be read into the
computer.

Recall that the probability values π are specified by the cumulative normal
distribution

(27) π(h) =
∫ h

−∞

1√
2π

e−ζ2/2dζ.

We may assume, for the sake of a simple illustration, that the function h(x) is
linear:

(28) h(x) = β0 + β1x.

Then the derivatives ∂πi/∂βj become

(29)
∂πi

∂β0
=

∂πi

∂h
.
∂h

∂β0
= N{h(xi)} and

∂πi

∂β1
=

∂πi

∂h
.
∂h

∂β1
= N{h(xi)}xi,

where N denotes the normal density function which is the derivative of π.

Estimation with Grouped Data

In the classical applications of probit analysis, the data was usually in the
form of grouped observations. Thus, to assess the effectiveness of an insecticide,
various levels of dosage dj ; j = 1, . . . , J would be administered to batches of nj

insects. The numbers mj =
∑

i yij killed in each batch would be recorded and
their proportions pj = mj/nj would be calculated.

If a sufficiently wide range of dosages are investigated, and if the numbers
nj in the groups are large enough to allow the sample proportions pj accurately
to reflect the underlying probabilities πj , then the plot of pj against xj =
log dj should give a clear impression of the underlying distribution function
π = π{h(x)}.

In the case of a single experimental variable x, it would be a simple matter
to infer the parameters of the function h = β0 + β1x from the plot. According
to the model, we have

(30) π(h) = π(β0 + β1x).

From the inverse h = π−1(π) of the function π = π(h), one may obtain the
values hj = π−1(pj). In the case of the probit model, this is a matter of

11
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referring to the table of the standard normal distribution. The values of π or p
are found in the body of the table whilst the corresponding values of h are the
entries in the margin. Given the points (hj , xj) for j = 1, . . . J , it is a simple
matter to fit a regression equation in the form of

(31) hj = b0 + b1xj + ej .

In the early days of probit analysis, before the advent of the electronic com-
puter, such fitting was often performed by eye with the help of a ruler.

To derive a more sophisticated and efficient method of estimating the pa-
rameters of the model, we may pursue a method of maximum-likelihood. This
method is a straightforward generalisation of the one which we have applied to
individual data.

Consider a group of n individuals which are subject to the same probability
P (y = 1) = π for the event in question. The probability that the event will
occur in m out of n cases is given by the binomial formula:

(32) B(m, n, π) =
(

n

m

)
πm(1 − π)n−m =

n!
m!(n − m)!

πm(1 − π)n−m.

If there are J independent groups, then the joint probability of their outcomes
m1, . . . , mj is the product

(33) L =
J∏

j=1

(
nj

mj

)
π

mj

j (1 − πj)nj−mj =
J∏

j=1

(
nj

mj

) (
πj

1 − πj

)mj

(1 − πj)nj .

Therefore the log of the likelihood function is

(34) log L =
J∑

j=1

{
mj log

(
πj

1 − πj

)
+ nj log(1 − πj) + log

(
nj

mj

)}
.

Given that πj = π(xj., β), the problem is to estimate β by finding the value
which satisfies the first-order condition for maximising the likelihood function
which is

(35)
∂ log L(β)

∂β
= 0.

To provide a simple example, let us take the linear logistic model

(36) π =
eβ0+β1x

1 + eβ0+β1x
.

The so-called log-odds ratio is

(37) log
(

π

1 − π

)
= β0 + β1x.
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Therefore the log-likelihood function of (34) becomes

(38) log L =
J∑

j=1

{
mj(β0 + β1xj) − nj log(1 − eβ0+β1xj ) + log

(
nj

mj

)}
,

and its derivatives in respect of β0 and β1 are

(39)

∂ log L

∂β0
=

∑
j

{
mj − nj

(
eβ0+β1xj

1 + eβ0+β1xj

)}
=

∑
j

(mj − njπj),

∂ log L

∂β1
=

∑
j

{
mjxj − njxj

(
eβ0+β1xj

1 + eβ0+β1xj

)}
=

∑
j

xj(mj − njπj).

The information matrix, which, together with the above derivatives, is used in
estimating the parameters by Fisher’s method of scoring, is provided by

(40)

[ ∑
j mjπj(1 − πj)

∑
j mjxjπj(1 − πj)∑

j mjxjπj(1 − πj)
∑

j mjx
2
jπj(1 − πj)

]
.
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