
APPENDIX 6

An Index Notation
for Tensor Products

1. Bases for Vector Spaces

Consider an identity matrix of order N , which can be written as follows:

(1) [ e1 e2 · · · eN ] =





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



 =





e1

e2

...
eN



 .

On the LHS, the matrix is expressed as a collection of column vectors, denoted
by ei; i = 1, 2, . . . , N , which form the basis of an ordinary N -dimensional Eu-
clidean space, which is the primal space. On the RHS, the matrix is expressed
as a collection of row vectors ej ; j = 1, 2, . . . , N , which form the basis of the
conjugate dual space.

The basis vectors can be used in specifying arbitrary vectors in both spaces.
In the primal space, there is the column vector

(2) a =
X

i

aiei = (aiei),

and in the dual space, there is the row vector

(3) b0 =
X

j

bje
j = (bje

j).

Here, on the RHS, there is a notation that replaces the summation signs by
parentheses. When a basis vector is enclosed by pathentheses, summations are
to be taken in respect of the index or indices that it carries. Usually, such an
index will be associated with a scalar element that will also be found within the
parentheses. The advantage of this notation will become apparent at a later
stage, when the summations are over several indices.

A vector in the primary space can be converted to a vector in the conjugate
dual space and vice versa by the operation of transposition. Thus a0 = (aiei)
is formed via the conversion ei → ei whereas b = (bjej) is formed via the
conversion ej → ej .
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2. Elementary Tensor Products

A tensor product of two vectors is an outer product that entails the pairwise
products of the elements of both vector. Consider two primal vectors

(4)
a = [at; t = 1, . . . T ] = [a1, a2, . . . , bT ]0 and
b = [bj ; j = 1, . . . ,M ] = [b1, b2, . . . , bM ]0,

which need not be of the same order. Then, two kinds of tensor products can
be defined. First, there are covariant tensor products. The covariant product
of a and b is a column vector in a primal space:

(5) a⊗ b =
X

t

X

j

atbj(et ⊗ ej) = (atbjetj).

Here, the elements are arrayed in a long column in an order that is determined
by the lexicographic variation of the indices t and j. Thus, the index j under-
goes a complete cycles from j = 1 to j = M with each increment of the index
t in the manner that is familiar from dictionary classifications. Thus

(6) a⊗ b =





a1b
a2b
...

aT b



 = [a1b1, . . . , a1bM , a2b1, . . . , a2bM , · · · , aT b1, . . . , aT bM ]0.

A covariant tensor product can also be formed from the row vectors a0 and
b0 of the dual space. Thus, there is

(7) a0 ⊗ b0 =
X

t

X

j

atbj(et ⊗ ej) = (atbje
tj).

It will be observed that this is just the transpose of a⊗ b. That is to say

(8) (a⊗ b)0 = a0 ⊗ b0 or, equivalently (atbjetj)0 = (atbje
tj).

The order of the vectors in a covariant tensor product is crucial, since, as
once can easily verify, it is the case that

(9) a⊗ b 6= b⊗ a and a0 ⊗ b0 6= b0 ⊗ a0.

The second kind of tensor product of the two vectors is a so-called con-
travariant tensor product:

(10) a⊗ b0 = b0 ⊗ a =
X

t

X

j

atbj(et ⊗ ej) = (atbje
j
t ).

This is just the familiar matrix product ab0, which can be written variously as

(11)





a1b
a2b
...

aT b



 = [ b1a b2a · · · bMa ] =





a1b1 a1b2 . . . a1bM

a2b1 a2b2 . . . a2bM
...

...
...

aT b1 aT b2 . . . aT bM



 .
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Observe that

(12) (a⊗ b0)0 = a0 ⊗ b or, equivalently, (atbje
j
t )
0 = (atbje

t
j).

We now propose to dispense with the summation signs and to write the
various vectors as follows:

(13) a = (atet), a0 = (ate
t) and b = (ajej), b0 = (bje

j).

As before, the convention here, is that, when the products are surrounded
by parentheses, summations are to be take in respect of the indices that are
associated with the basis vectors.

The convention can be applied to provide summary representations of the
products under (5), (7) and (10):

a⊗ b0 = (atet)⊗ (bje
j) = (atbje

j
t ), (14)

a0 ⊗ b0 = (ate
t)⊗ (bje

j) = (atbje
tj), (15)

a⊗ b = (atet)⊗ (bjej) = (atbjetj). (16)

Such products are described as decomposable tensors.

3. Non-decomposable Tensor Products

Non-decomposable tensors are the result of taking weighted sums of decompos-
able tensors. Consider an arbitrary matrix X = [xtj ] of order T ×M . This can
be expressed as the following weighted sum of the contravariant tensor products
formed from the basis vectors:

(17) X = (xtje
j
t ) =

X

t

X

j

xtj(et ⊗ ej).

The indecomposability lies in the fact that the elements xtj cannot be written
as the products of an element indexed by t and an element indexed by j.

From X = (xtje
j
t ), the following associated tensors products may be de-

rived:

X 0 = (xtje
t
j), (18)

Xr = (xtje
tj), (19)

Xc = (xtjejt). (20)

Here, X 0 is the transposed matrix, whereas Xc is a long column vector and Xr

is a long row vector. Notice that, in forming Xc and Xr from X, the index
that moves assumes a position at the head of the string of indices to which it
is joined.

It is evident that

(21) Xr = X 0c0 and Xc = X 0r0.

3



D.S.G. POLLOCK : ECONOMETRICS

Thus, it can be seen that Xc and Xr are not related to each other by simple
transpositions. A consequence of this is that the indices of the elements in Xc

follow the reverse of a lexicographic ordering.

Example. Consider the equation

(22) ytj = µ + γt + δj + εtj

wherein t = 1, . . . , T and j = 1, . . . ,M . This relates to a two-way analysis of
variance. For a concrete interpretation, we may imagine that ytj is an obser-
vation taken at time t in the jth region. Then, the parameter γt represents an
effect that is common to all observations taken at time t, whereas the parameter
δj represents a characteristic of the jth region that prevails through time.

In ordinary matrix notation, the set of TM equations becomes

(23) Y = µιT ι0M + γι0M + ιT δ0 + E ,

where Y = [ytj ] and E = [εtj ] are matrices of order T ×M , γ = [γ1, . . . , γT ]0
and δ = [δ1, . . . , δM ]0 are vectors of orders T and M respectively, and ιT and
ιM are vectors of units whose orders are indicated by their subscripts. In terms
of the index notation, the TM equations are represented by

(24) (ytje
j
t ) = µ(ej

t ) + (γte
j
t ) + (δje

j
t ) + (εtje

j
t ).

An illustration is provided by the case where T = M = 3. Then equations
(23) and (24) represent the following structure:

(25)




y11 y12 y13

y21 y22 y23

y31 y32 y33



 = µ




1 1 1
1 1 1
1 1 1



 +




γ1 γ1 γ1

γ2 γ2 γ2

γ3 γ3 γ3





+




δ1 δ2 δ3

δ1 δ2 δ3

δ1 δ2 δ3



 +




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



 .

4. Multiple Tensor Products

The tensor product entails an associative operation that combines matrices or
vectors of any order. Let B = [blj ] and A = [aki] be arbitrary matrices of
orders t× n and s×m respectively. Then, their tensor product B ⊗A, which
is also know as a Kronecker product, is defined in terms of the index notation
by writing

(26) (blje
j
l )⊗ (akie

i
k) = (bljakie

ji
lk).

Here, eji
lk stands for a matrix of order st×mn with a unit in the row indexed

by lk—the {(l − 1)s + k}th row—and in the column indexed by ji—the {(j −
1)m + i}th column—and with zeros elsewhere.
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In the matrix array, the row indices lk follow a lexicocographic order, as
do the column indices ji. Also, the indices lk are not ordered relative to the
indices ji. That is to say,

(27)

eji
lk = el ⊗ ek ⊗ ej ⊗ ei

= ej ⊗ ei ⊗ el ⊗ ek

= ej ⊗ el ⊗ ek ⊗ ei

= el ⊗ ej ⊗ ei ⊗ ek

= el ⊗ ej ⊗ ek ⊗ ei

= ej ⊗ el ⊗ ei ⊗ ek.

The virtue of the index notation is that it makes no distinction amongst these
various products on the RHS—unless a distinction can be found between such
expressions as ej i

l k and e j i
l k .

For an example, consider the Kronecker of two matrices as follows:

(28)

∑
b11 b12

b21 b22

∏
⊗

∑
a11 a12

a21 a22

∏
=





b11

∑
a11 a12

a21 a22

∏
b12

∑
a11 a12

a21 a22

∏

b21

∑
a11 a12

a21 a22

∏
b22

∑
a11 a12

a21 a22

∏





=





b11a11 b11a12

b11a21 b11a22

b12a11 b12a12

b12a21 b12a22

b21a11 b21a12

b21a21 b21a22

b22a11 b22a12

b22a21 b22a22



 .

Here, it can be see that the composite row indices lk, associated with the
elements bljaki, follow the lexicographic sequence {11, 12, 21, 22}. The column
indices follow the same sequence.

5. Compositions

In order to demonstrate the rules of matrix composition, let us consider the
matrix equation

(29) Y = AXB0,

which can be construed as a mapping from X to Y . In the index notation, this
is written as

(30)
(ykle

l
k) = (akie

i
k)(xije

j
i )(blje

l
j)

= ({akixijblj}el
k).

Here, there is

(31) {akixijblj} =
X

i

X

j

akixijblj ;
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which is to say that the braces surrounding the expression on the LHS are to
indicate that summations are taken with respect to the repeated indices i and
j, which are associated with the basis vectors. The operation of composing
two factors depends upon the cancellation of a superscript (column) index, or
string of indices, in the leading factor with an equivalent subscript (row) index,
or string of indices, in the following factor.

The matrix equation of (29) can be vectorised in a variety of ways. In
order to represent the mapping from Xc = (xijeji) to Y c = (yklelk), we may
write

(32)
(yklelk) = ({akixijblj}elk)

= (akiblje
ji
lk)(xijeji).

Notice that the product akiblj within (akiblje
ji
lk) does not need to be surrounded

by braces since it contains no repeated indices. Nevertheless, there would be
no harm in writing {akiblj}.

The matrix (akiblje
ji
lk) is decomposable. That is to say

(33)
(akiblje

ji
lk) = (blje

j
l )⊗ (akie

i
k)

= B ⊗A;

and, therefore, the vectorised form of equation (29) is

(34)
Y c = (AXB0)c

= (B ⊗A)Xc.

Example. The equation under (22), which relates to a two-way analysis of
variance, can be vectorised to give

(35) (ytjejt) = µ(ejt) + (e t
jt)(γtet) + (ej

jt)(δjej) + (εtjejt).

Using the notation of the Kronecker product, this can also be rendered as

(36)
Y c = µ(ιM ⊗ ιT ) + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec

= Xβ + Ec.

The latter can also be obtained by applying the rule of (34) to equation (23).
The various elements of (23) have been vectorised as follows:

(37)

(µιT ι0M )c = (ιT µι0M )c = (ιM ⊗ ιT )µ,

(γι0M )c = (Itγι0M )c = (ιM ⊗ IT )γ,

(ιT δ0)c = (ιT δ0IM )c = (IM ⊗ ιT )δ0c, δ0c = δ.

Also, there is (ιM ⊗ ιT )µ = µ(ιM ⊗ ιT ), since µ is a scalar element that can be
transposed or freely associated with any factor of the expression.
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In comparing (35) and (36), we see, for example, that (e t
jt) = (ej)⊗ (et

t) =
ιM ⊗ IT . We recognise that (et

t) is the sum over the index t of the matrices
of order T which have a unit in the tth diagonal position and zeros elsewhere;
and this sum amounts, of course, to the identity matrix of order T .

The vectorised form of equation (25) is

(38)





y11

y21

y31

y12

y22

y32

y13

y23

y33





=





1 1 0 0 1 0 0
1 0 1 0 1 0 0
1 0 0 1 1 0 0

1 1 0 0 0 1 0
1 0 1 0 0 1 0
1 0 0 1 0 1 0

1 1 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 1 0 0 1









µ

γ1

γ2

γ3

δ1

δ2

δ3





+





ε11

ε21

ε31

ε12

ε22

ε32

ε13

ε23

ε33





.

6. Rules for Decomposable Tensor Products

The following rules govern the decomposable tensors product of matrices, which
are commonly described as Kronecker products:

(39)

(i) (A⊗B)(C ⊗D) = AC ⊗BD,

(ii) (A⊗B)0 = A0 ⊗B0,

(iii) A⊗ (B + C) = (A⊗B) + (A⊗ C),

(iv) λ(A⊗B) = λA⊗B = A⊗ λB,

(v) (A⊗B)−1 = (A−1 ⊗B−1).

The Kronecker product is non-commutative, which is to say that A⊗B 6= B⊗A.
However, observe that

(40) A⊗B = (A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I).
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