
LECTURE 6

Panel Data and the
Analysis of Covariance

The Models

In the previous chapter, we have considered a model in the form of

(1) ytj = µ + γt + δj + εtj ,

wherein t = 1, . . . , T and j = 1, . . . , M are, respectively, indices of temporal and
spatial location. The index j is related to individual persons or to individual
units of production such as farms or factories, and the index t corresponds to
the time of observation.

There are various ways in which the information of the MT sample points
can be formatted. First, there is the matrix format. In terms of the index
notation, the TM equations are represented by

(2) (ytje
j
t ) = µ(ej

t ) + (γte
j
t ) + (δje

j
t ) + (εtje

j
t ).

Here, ej
t denotes a basis matrix of order T × M that has a single unit in the

tth row and the jth column and zeros elsewhere. The parentheses denote
summations in respect of the indices of the basis. Thus, for example, (ej

t )
denotes a matrix of order T × M that has a unit in every position, whereas
(γte

j
t ) denotes a matrix in which the tth row contains M repetitions of the

element γt.
In ordinary matrix notation, the set of TM equations becomes

(3) Y = µιT ι′M + γι′M + ιT δ′ + E ,

where Y = [ytj ] and E = [εtj ] are matrices of order T × M , γ = [γ1, . . . , γT ]′

and δ = [δ1, . . . , δM ]′ are vectors of orders T and M respectively, and ιT and
ιM are vectors of units whose orders are indicated by their subscripts.

The second format that it is appropriate to consider represents a vectorised
version of the matrix equation. In the index notation, this is denoted by

(4) (ytjejt) = µ(ejt) + (e t
jt)(γtet) + (ej

jt)(δjej) + (εtjejt).
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Using the notation of the Kronecker product, this can be rendered as

(5) Y c = µ(ιM ⊗ ιT ) + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec.

The latter can also be obtained by applying the rule

(6) Y c = (AXB′)c = (B ⊗ A)Xc

to the matrix equation (3).
The model can now be elaborated by introducing a function xt.β.tj =∑

k xtkβktj comprising K explanatory variables or regressors. Of course, if
the elements βktj were to vary across all of the indices, then there would be
no chance of making any reasonable inference about their values, unless some
further assumptions could be made regarding the nature of this variation.

The Unrestricted Model

Without further ado, we shall make the assumption that βktj = βkj for all
t, which is to say that there is no temporal variation in these coefficients. If, in
addition, it can be assumed that γt = 0 for all t, then the model can be written
as

(7)
(ytjejt) = µ(ejt) + (δjejt) + ({xtkβkj}ejt) + (εtjejt)

= µ(ejt) + (δjejt) + (xtkejk
jt )(βkjejk) + (εtjejt).

Here, the braces which surround the expression {xtkβkj} are to indicate that a
sum has been taken over the repeated index k.

The set of T realisations of the jth equation can be written as

(8)
y.j = µιT + δjιT + Xβ.j + ε.j

= αjιT + Xβ.j + ε.j ,

where αj = µ + δj . This is a classical regression equation of the sort that
can be estimated by ordinary least-squares regression. The full set of M such
equations can be compiled to give the following system:
(9)

y.1

y.2
...

y.M

 =


ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT




α1

α2
...

αM

+


X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X




β.1

β.2
...

β.M

+


ε.1

ε.2
...

ε.M

 .

Using the Kronecker product, this can be rendered as

(10) Y c = (IM ⊗ ιT )α + (IM ⊗ X)Bc + Ec.
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A useful elaboration of this model, which costs little in terms of added difficulty,
is to allow the matrix X to vary between the M equations. Then, in place of
the variables xtk, there are elements xtkj bearing the spatial subscript j. In
that case, equation (9) is replaced by

(11)


y.1

y.2
...

y.M

 =


ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT




α1

α2
...

αM



+


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XM




β.1

β.2
...

β.M

 +


ε.1

ε.2
...

ε.M

 .

It may be, for example, that the equations, which explain farm production in
M regions, comprise explanatory variables whose measured values vary from
region to region.

There is no obvious notation that will allow the structure of the matrix
of explanatory variables to be expressed in a concise manner. However, the
individual equations of (11) that are indexed by j and which pertain to a
specific regions are separable. Thus, the generic the equation can be written as

(12) y.j = ιT αj + Xjβ.j + ε.j .

The Model with Individual Fixed Effects

Within the context of this model, there are some more restrictive hypothe-
ses to be considered. The first of these, which is denoted by

(13) Hβ : β.1 = β.2 = · · · = β.M ,

asserts that the slope parameters of all M of the regression equations are equal.
This condition gives rise to a model in the form of

(14)


y.1

y.2
...

y.M

 =


ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT




α1

α2
...

αM

 +


X1

X2
...

XM

β +


ε.1

ε.2
...

ε.M

 ,

wherein each of the M equations is distinguished by having a particular value
for the intercept. This equation can be rendered as

(15) Y c = (IM ⊗ ιT )α + Xβ + Ec,
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where X ′ = [X ′
1, X

′
2, . . . , X

′
M ]. Equation (14) represents the starting point of

many textbook accounts of panel data models, where it is common to write
(IM ⊗ ιT ) = D for the so-called matrix of dummy variables associated with the
intercept terms.

The Pooled Model

The second hypothesis, which is denoted by

(16) Hα : α1 = α2 = · · · = αM ,

asserts that all of the intercepts have the same value. It is unlikely that one
would ever wish to maintain this hypothesis without asserting Hβ at the same
time. The combined hypothesis Hγ = Hα ∩Hβ gives rise to a pooled model in
the form of

(17)


y.1

y.2
...

y.M

 =


ιT
ιT
...

ιT

α +


X1

X2
...

XM

β +


ε.1

ε.2
...

ε.M

 .

This equation can be rendered as

(18) Y c = ιMT α + Xβ + Ec,

where, as before, X ′ = [X ′
1, X

′
2, . . . , X

′
M ] and where ιMT is a long vector con-

sisting of MT units. This has the structure of the equation of an classical
regression model, for which ordinary least-squares estimation is efficient.

The Least-Squares Estimates of the Models

Estimation of the Unrestricted Model

It will be assumed that the disturbances εtj are distributed independently
and identically with E(εtj) = 0 and V (εtj) = σ2 for all t, j. Under these
assumptions, the equations of the unrestricted model represented by (11) are
wholly separable, and the parameters of the jth equation may be estimated
efficiently by ordinary least-squares regression.

The regression procedure can be applied directly to the generic equation
of (11). Alternatively, the intercept term can be eliminated from the equation
by taking the deviations of the data about their respective sample means. Tra-
ditionally, this approach has been preferred on the grounds that it results in
more accurate computations.

In that case, the estimates of the parameters of the jth equation are

(19)
β̂.j =

{
X ′

j(I − PT )Xj

}−1
X ′

j(I − PT )y.j and

α̂j = ȳj − x̄j.β̂.j ,
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where

(20) I − PT = I − ιT (ι′T ιT )−1ι′T

is the operator that transforms a vector of T observations into the vector of
their deviations about the mean.

The residual sum of squares from the jth regression is given by

(21) Sj = y′
.j(I − PT )y.j − y′

.j(I − PT )Xj{X ′
j(I − PT )Xj}−1X ′

j(I − PT )y.j ;

and, therefore, from the separability of the M regressions, it follows that the
residual sum of squares, obtained from fitting the multi-equation model of (11)
to the data, is just

(22) S =
∑

j

Sj .

The formulae of (19) are familiar from the treatment of the linear regression
model (y; iα + Xβ, σ2I), which can be regarded as a particular instance of the
partitioned model (y;X1β1 + X2β2, σ

2I).
It may be recalled that one way of developing the ordinary least-squares

estimator of β2 in the partitioned model depends on transforming the equation
y = X1β1 + X2β2 + ε by the matrix I −P1, where P1 = X1(X ′

1X1)−1X ′
1 is the

orthogonal projector on the manifold of X1. The effect of this transformation
is to annihilate the term X1β1, which leads to the equation (I − P1)y = (I −
P1)X2β2 + (I − P1)ε. When ordinary least-squares regression is applied to the
transformed equation, there is

(23) β̂2 =
{
X ′

2(I − P1)X2

}−1
X ′

2(I − P1)y.

The same estimator may be derived by applying ordinary least-squares
regression to the equation Q′y = Q′X2β2 + Q′ε, where Q is a matrix of or-
thonormal vectors such that QQ′ = (I − PT ). Since D(Q′ε) = σ2IT−k1 , it
follows that the equation fulfils the assumptions of the classical linear model;
and a standard form of the Gauss–Markov theorem will serve to demonstrate
the efficiency of the estimator β̂2.

In the case of system under (11), the intercept terms αj are eliminated from
the individual equations by premultiplying them by (I − PT ). The intercept
terms may be eliminated from the full system of equations by premultiplying
it by

(24)
W = IM ⊗ (IT − PT ) = IMT − (IM ⊗ PT )

= IMT − D(D′D)−1D′.

5



D.S.G. POLLOCK : ECONOMETRICS

Estimation of the Model with Individual Fixed Effects

Now, consider fitting the model under (14), which may be regarded as a
variant of the model under (11) that has been subjected to the restrictions of
Hβ of (13), which asserts that the slope parameters of the regressions are the
same in every region.

In this case, the efficient estimates are obtained by treating the system of
equations as a whole; and it continues to be appropriate to take the data in
deviation form. To eliminate the intercept terms, the individual equations of
(14), which are of the form y.j = αjιT +Xjβ+εj are multiplied by the operator
I − PT , which creates deviations about sample means. The result is

(25) (I − PT )y.j = (I − PT )Xjβ + (I − PT )εj ,

within which the tth equation is

(26) ytj − ȳj = (x.tj − x̄.j)β + (εtj − ε̄j).

To obtain an efficient estimate of β, the full set of TM mean-adjusted
equations must be taken together. Once the estimate of β available, the in-
dividual intercept terms can be obtained. Thus, the efficient estimates of the
parameters are given by the

(27)

β̂W =
[∑

j

X ′
j(I − PT )Xj

]−1[∑
j

X ′
j(I − PT )yj

]
=

[
X ′{IM ⊗ (IT − PT )

}
X

]−1

X ′{IM ⊗ (IT − PT )
}
y and

α̂j = ȳj. − x̄j β̂W , j = 1, . . . , M,

where X ′ = [X ′
1, X

′
2, . . . , X

′
M ] and y′ = [y′

.1y
′
.2, . . . , y

′
.M ]. The estimator β̂W is

the result of applying ordinary least-squares regression to an equation derived
by premultiplying (14) by the projection matrix W of (24), which serves to
annihilate the intercept terms.

The residual sum of squares from fitting the model of (14) is given by

(28)
Sβ = y′Wy − y′WX(X ′WX)−1X ′Wy, where

W = IM ⊗ (IT − PT ).

The estimator β̂W of (27) makes use only of the information conveyed by
the deviations of the data points from their means within the M groups. For
this reason, it is often called the within-groups estimator.
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There exists another estimator, complementary to the within-groups esti-
mator, that collapses the information within the groups by replacing it by the
group means. The operator that averages over the sample of T observations is
PT = ιT (ι′T ιT )−1ι′T . Applying it to the generic equation of (14) gives

(29)
PT y.j = PT ιT α.j + PT Xjβ + PT εj or

ιT ȳ = ιT αj + ιT x̄.jβ + ῑT εj .

This equation comprises T redundant repetitions of the equation

(30) ȳj = α + x̄.jβ + (αj − α + ε̄j),

where α =
∑

j αj/M is a global or averaged intercept term, and where the
deviation of the jth intercept αj from global value has been joined with the
averaged disturbance term. It may be observed that, by adding together equa-
tions (26) and (30), we recover the generic equation of the jth group.

Having gathering together the M equations of this form, an ordinary least-
squares estimate of β, denoted β̂B can be obtained which is described as the
between-groups estimator. This estimator uses only the information conveyed
by the variation amongst the M group means.

This would not constitute an efficient estimator of the slope parameters.
However, the estimator has a purpose within context of the random effects
model, to be described later.

The Pooled Estimator

Finally, consider fitting the model of (17) which, on the basis of the hy-
pothesis Hγ , makes no distinction between the structures of the M equations.
Let PMT denote the projector PMT = ιMT (ι′MT ιMT )−1ι′MT , where ιMT is the
summation vector of order MT . Then, the estimators of the parameters of the
model can be written as

(31)
β̂G = {X ′(I − PMT )X}−1X ′(I − PMT )y

α̂ = ȳ − x̄β̂.

The residual sum of squares from fitting the restricted model of (17) is given
by

(32) Sγ = (y − αιMT − Xβ̂)′(y − αιMT − Xβ̂).
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The Tests of the Restrictions

In order to test the various hypotheses, the following results are needed,
which concern the distribution of the residual sum of squares from each of the
regressions that have been considered:

(33)

1.
1
σ2

S ∼ χ2{MT − M(K + 1)},

2.
1
σ2

Sβ ∼ χ2{MT − (K + M)},

3.
1
σ2

Sγ ∼ χ2{MT − (K + 1)}.

The number of degrees of freedom in each of these cases is easily explained. It is
simply the number of observations available in the vector y′ = [y′

.1, y
′
.2, . . . , y

′
.M ]

less the number of parameters that are estimated in the particular model.
The hypothesis Hβ can be tested by assessing the loss of fit that results

from imposing the restrictions β1 = β2 = · · · = βM . The loss is given by
Sβ − S. The residual sum of squares S from the unrestricted model is the
standard against which this loss is measured. The appropriate test statistic is
therefore

(34) F =

{
Sβ − S

(M − 1)K

/
S

MT − M(K + 1)

}
,

which has a F distribution of (M−1)K and MT−M(K+1) degrees of freedom.
If the hypothesis Hβ is accepted, then one might proceed to test the more

stringent hypothesis Hγ = Hβ ∩Hα which entails the additional restrictions of
Hα : α1 = α2 = · · · = αM . The relevant test statistic in this case is given by

(35) F =

{
Sγ − Sβ

M − 1

/
Sβ

MT − (K + M)

}
,

which has a F distribution of M − 1 and MT − (K + M) degrees of freedom.
The numerator of this statistic embodies a measure of the loss of fit that comes
from imposing the additional restrictions of Hα.

The statistic of (35) tests the hypothesis Hγ within the context of an
assumption that Hβ is true. One might decide to test additionally, or even
alternatively, the joint hypothesis Hγ = Hα ∩ Hβ within the context of the
unrestricted model. The relevant statistic in that case would be given by

(36) F =

{
Sγ − S

(M − 1)(K + 1)

/
S

MT − M(K + 1)

}
.
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The possibility has to be considered that, having accepted the hypotheses
Hβ and Hα on the strength of the values the F statistics under (34) and (35),
we shall then discover that value of the statistic of (36) casts doubt on the joint
hypothesis Hγ = Hβ ∩ Hα. The possibility arises from the fact that critical
region of the test of Hγ can never coincide with the critical region of the joint
test implicit in the sequential procedure. However, if the critical value of the
test Hγ has been appropriately chosen, then such a conflict in the results of
the tests is an unlikely eventuality.

Models with Two-way Fixed Effects

The model of Hβ can be elaborated by including the parameters γt which
represent the temporal variation that is experienced by all J individuals. The
equation of the model now assumes the form of

(37) (ytjejt) = µ(ejt) + (xtjke k
jt )(βkek) + (e t

jt)(etγt) + (ej
jt)(ejδj) + (εtjejt).

Comparison with equation (7) reveals the present assumption that βkj = βk

for all k, which is to say that all j individuals share the same slope coefficients.
Therefore, the system of equations as a whole can be represented by

(38) Y c = µιMT + Xβ + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec.

The matrix [ιMT , X, ιM ⊗ IT , IM ⊗ ιT ], which contains the regressors of the
model is, in fact, singular, by virtue of the linear dependence that exists between
the columns of its submatrix [ιMT , ιM ⊗IT , IM ⊗ ιT ]. This dependence is made
clear by writing the equation

(39) (ιM ⊗ IT )(1 ⊗ ιT ) = (IM ⊗ ιT )(ιM ⊗ 1) = ιMT .

Therefore, the parameters µ, β, γ, δ will not be estimable as a whole unless
some restrictions are introduced. It is natural to impose the conditions that
ι′T γ =

∑
t γt = 0 and that ι′MT δ =

∑
j δj = 0.

To derive the ordinary least-squares estimate of β, we can begin by trans-
forming equation (38) in such a way as to eliminate the parameters γ, δ, µ.
This can be accomplished by premultiplying the equation by the matrix

(40)
W = [IMT − (IM ⊗ PT )][IMT − (PM ⊗ IM )]

= IMT − (IM ⊗ PT ) − (PM ⊗ IM ) + (IM ⊗ PT )(PM ⊗ IM ).

The two factors commute. The first factor IMT − (IM ⊗ PT ) has the effect of
annihilating the term (IM ⊗ ιT )δ whilst the second factor IMT −(PM ⊗IM ) has
the effect of annihilating (ιM ⊗ IT )γ. However, since W is a symmetric idem-
potent matrix, it can be written in the form of W = QQ′, where Q is a matrix
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of order MT × (MT − M − T ) consisting or orthonormal vectors. Therefore,
the equation may, be transformed, with equal effect, by premultiplying it by
Q′ to obtain the system

(41) Q′Y c = Q′Xβ + Ec.

The latter fulfils the assumptions of the classical linear model. It follows that
the efficient estimator of β is given by

(42)
β̂ = (X ′QQ′X)−1X ′QQ′y

= (X ′WX)−1X ′Wy.

Models with Random Effects

An alternative way of accommodating temporal and individual effects is
to regard them as random variables rather than as fixed constants. To signify
the difference in approach, the relevant equation will be denoted by

(43) (ytjejt) = µejt + (xjtkek
jt)(βkek) + (e t

jt)(etζt) + (ej
jt)(ejηj) + (εjtejt).

Here, ζ, which replaces γ, is a vector of random effects that vary through time
and η, which replaces δ, is vector of effects that vary between individuals.

These effects are now part of the disturbance structure of the model and,
as such, they must be uncorrelated with the systematic part of its structure if
the ordinary methods of regression analysis are to be valid.

The advantage of the random-effects formulation is that it leads to a par-
simonious parametrisation in which the effects are summarised by a pair of
variance parameters in place of the TM coefficients of γ and δ. This economy,
if it can be justified, should lead to more efficient estimates of the parameters
of β.

A set of T realisations of all M equations is now written as

(44) y = µιMT + Xβ + (ιM ⊗ IT )ζ + (IM ⊗ ιT )η + ε.

It is assumed that the random variables ζt, ηj and εtj are independently
distributed with expectations of zero and with V (ζt) = σ2

ζ , V (ηj) = σ2
η and

V (εtj) = σ2
ε . It follows that the dispersion matrix of the vector of disturbances

in this model is given by

(45) Ω = σ2
ζ (ιM ι′M ⊗ IT ) + σ2

η(IM ⊗ ιT ι′T ) + σ2
εIMT .
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A special case that is often considered arises when σ2
ζ = 0, which is to

say that there is no intertemporal variation in the structure of the stochastic
disturbances. In that case, the dispersion matrix is of the form

(46)
Ω = σ2

η(IM ⊗ ιT ι′T ) + σ2
εIMT

= IM ⊗ (σ2
εIT + σ2

ηιT ιT ) = IM ⊗ V.

It can be confirmed by direct multiplication that the inverse of the matrix
V = σ2εIT + σ2

ηιT ιT is

(47) V −1 =
1
σ2

ε

(
IT −

σ2
η

σ2
ε + Tσ2

η

ιT ι′T

)
.

The inverse of the matrix Ω of (35) has a somewhat complicated structure.
It takes the form of the form of
(48)

Ω−1 =
1
σ2

ε

{IMT−λ1(ιM ι′MT ⊗ IT ) + λ2(IM ⊗ ιT ι′T ) + λ3(ιM ι′MT ⊗ ιT ιT )}

where λ1 = σ2
ζ (σ2

ε − Mσ2
ζ )−1,

λ2 = σ2
η(σ2

ε − Tσ2
η)−1,

λ3 = λ1λ2(2σ2
ε + Mσ2

ζ + Tσ2
η)(σ2

ε + Mσ2
ζ + Tσ2

η)−1.

Feasible Least-Squares Estimator of the Random Effects Model

In order to realise the generalised least squares estimators of the random
effect models, it is necessary to derive estimators of the variances σ2

ζ , σ2
η and

σ2
ε of the error components. For simplicity, we shall continue to assume that

σ2
ζ = 0. Then, the appropriate estimator can be derived from the the within-

groups and between groups estimators associated with the fixed effects model
of equation (9). The estimators are

(49)

σ̂2
ε =

(y − Xβ̂W )′(y − Xβ̂W )
MT − (K + M)

,

σ̂2
B =

(y − Xβ̂B)′(y − Xβ̂B)
M − K

and

σ̂2
η = σ̂2

B − σ̂2
ε

T
.
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