
APPENDIX 5

Multivariate
Statistical Distributions

Multivariate Density Functions

An n-dimensional random vector x ∈ R is an ordered set of real numbers
[x1, x2, . . . , xn]0 each of which represents some aspect of a statistical event. A
scalar-valued function F (x), whose value at φ = [φ1, φ2, . . . , φn]0 is the prob-
ability of the event (x1 ≤ φ1, x2 ≤ φ2, . . . , xn ≤ φn), is called a cumulative
distribution function.

(1) If F (x) has the representation

F (x) =
Z xn

−∞
· · ·

Z x1

−∞
f(x1, . . . , xn)dx1 · · · dxn,

which can also be written as

F (x) =
Z x

−∞
f(x)dx,

then it is said to be absolutely continuous; in which case f(x) =
f(x1, . . . , xn) is called a continuous probability density function.

When x has the probability density function f(x), it is said to be distributed
as f(x), and this is denoted by writing x ∼ f(x).

The function f(x) has the following properties:

(2) (i) f(x) ≥ 0 for all x ∈ Rn.

(ii) If A ⊂ Rn is a set of values for x, then the probability
that x is in A is

P (A) =
R
A f(x)dx.

(iii) P (x ∈ Rn) =
R

x f(x)dx = 1.
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One may wish to characterise the statistical event in terms only of a subset
of the elements in x. In that case, one is interested in the marginal distribution
of the subset.

(3) Let the n × 1 random vector x ∼ f(x) be partitioned such that
x0 = [x1, x2]0 where x01 = [x1, . . . , xm] and x02 = [xm+1, . . . , xn]
Then, with f(x) = f(x1, x2), the marginal probability density
function of x1 can be defined as

f(x1) =
Z

x2

f(x1, x2)dx2,

which can also be written as

f(x1, . . . , xm)

=
Z

xn

· · ·
Z

xm+1
f(x1, . . . , xm, xm+1, . . . , xn)dxm+1 · · · dxn.

Using the marginal probability density function, the probability that x1

will assume a value in the set B can be expressed, without reference to the
value of the vector x2, as

P (B) =
Z

B
f(x1)dx1.

Next, we consider conditional probabilities.

(4) The probability of the event x1 ∈ A given the event x2 ∈ B is

P (A|B) =
P (A∩ B)

P (B)
=

R
B

R
A f(x1, x2)dx1dx2R
B f(x2)dx2

.

It is also necessary to define the probability P (A|x2 = φ) of the event
x1 ∈ A given that x2 has the specific value φ. This problem can be approached
by finding the limiting value of P (A|φ < x2 ≤ φ + ∆x2) as ∆x2 tends to zero.
Defining the event B = {x2;φ < x2 ≤ φ+∆x2}, it follows from the mean value
theorem that

P (B) =
Z φ+∆x2

φ
f(x2)dx2 = f(φ0)∆x2,

where φ ≤ φ0 ≤ φ + ∆x2. Likewise, there is

P (A∩ B) =
Z

A
f(x1, φ

∗)∆x2dx1,
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where φ ≤ φ∗ ≤ φ + ∆x2. Thus, provided that f(φ0) > 0, it follows that

P (A|B) =
R
A f(x1, φ∗)dx

f(φ0)
;

and the probability P (A|x2 = φ) can be defined as the limit this integral as
∆x2 tends to zero and both φ0 and φ∗ tend to φ. Thus, in general,

(5) If x0 = [x01, x02], then the conditional probability density function
of x1 given x2 is defined as

f(x1|x2) =
f(x)
f(x2)

=
f(x1, x2)

f(x2)
.

Notice that the probability density function of x can now be writ-
ten as f(x) = f(x1|x2)f(x2) = f(x2|x1)f(x1).

A definition of statistical independence follows immediately:

(6) The vectors x1, x2 are statistically independent if their joint dis-
tribution is f(x1, x2) = f(x1)f(x2) or, equivalently, if f(x1|x2) =
f(x1) and f(x2|x1) = f(x2).

Functions of Random Vectors

Consider a random vector y ∼ g(y), which is a continuous function y =
y(x) of another random vector x ∼ f(x), and imagine that the inverse function
x = x(y) is uniquely defined. If A is a statistical event defined as a set of values
of x, and if B = {y = y(x), x ∈ A} is the same event defined in terms of y, then
it follows that

(7)

Z

A
f(x)dx = P (A)

= P (B) =
Z

B
g(y)dy.

When the probability density function f(x) is know, it should be straightfor-
ward to find g(y).

For the existence of a uniquely defined inverse transformation x = x(y), it
is necessary and sufficient that the determinant |∂x/∂y|, known as the Jacobian,
should be nonzero for all values of y; which means that it must be either strictly
positive or strictly negative. The Jacobian can be used in changing the variable
under the integral in (7) from x to y to give the identity

Z

B
f
©
x(y)

™ ØØØØ
dx

dy

ØØØØ dy =
Z

B
g(y)dy.
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Within this expression, there are f{x(y)} ≥ 0 and g(y) ≥ 0. Thus, if
|∂x/∂y| > 0, the probability density function of y can be identified as g(y) =
f{x(y)}|∂x/∂y|. However, if |∂x/∂y| < 0, then g(y), defined in this way,
is no longer positive. The recourse is to change the signs of the axes of y.
Thus, in general, the probability density function of y is defined as g(y) =
f{x(y)}k∂x/∂yk, where k∂x/∂yk is the absolute value of the determinant. The
result may be summarised as follows:

(8) If x ∼ f(x) and y = y(x) is a monotonic transformation
with a uniquely defined inverse x = x(y), then y ∼ g(y) =
f{x(y)}k∂x/∂yk, where k∂x/∂yk is the absolute value of the
determinant of the matrix ∂x/∂y of the partial derivatives of
the inverse transformation.

Even when y = y(x) has no uniquely defined inverse, it is still possible to
find a probability density function g(y) by the above method provided that the
transformation is surjective, which is to say that the range of the transformation
is coextensive with the vector space within which the random vector y resides.

Imagine that x is a vector in Rn and that y is a vector in Rm where
m < n. Then the technique is to devise an invertible transformation q = q(x)
where q0 = [y0, z0] comprises, in addition to the vector y, a vector z of n −m
dummy variables. Once the probability density function of q has been found,
the marginal probability density function g(y) can be obtained by a process of
integration.

Expectations

(9) If x ∼ f(x) is a random variable, its expected value is defined by

E(x) =
Z

x
f(x)dx.

In determining the expected value of a variable which is a function of x, one
can rely upon the probability density function of x. Thus

(10) If y = y(x) is a function of x ∼ f(x), and if y ∼ g(y), then

E(y) =
Z

y
g(y)dy =

Z

x
y(x)f(x)dx.

It is helpful to define an expectations operator E, which has the following
properties, amongst others:
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(11) (i) If x ≥ 0, then E(x) ≥ 0.

(ii) If c is a constant, then E(c) = c.

(iii) If c is a constant and x is a random variable,
then E(cx) = cE(x).

(iv) E(x1 + x2) = E(x1) + E(x2)

(v) If x1, x2 are independent random variables, then
E(x1x2) = E(x1)E(x2).

These are readily established from the definitions (9) and (10). Taken together,
the properties (iii) and (iv) imply that

E(c1x1 + c2x2) = c1E(x1) + c2Ex2)

when c1, c2 are constants. Thus, the expectations operator is seen to be a linear
operator.

Moments of a Multivariate Distribution

Some of the more important moments of a multivariate distribution can
now be defined and some of their properties can be recorded.

(12) The expected value of the element xi of the random vector x ∼
f(x) is defined by

E(xi) =
Z

x
xif(x)dx =

Z

xi

xif(xi)dxi,

where f(xi) is the marginal distribution of xi.

The variance of xi is defined by

V (xi) = E
n
[xi −E(xi)]

2
o

=
Z

x
[xi −E(xi)]2f(x)dx =

Z

xi

[xi −E(xi)]2f(xi)dxi.

The covariance of xi and xj is defined as

C(xi, xj) = E[xi −E(xi)][xj −E(xj)]

=
Z

x
[xi −E(xi)][xj −E(xj)]f(x)dx

=
Z

xj

Z

xi

[xi −E(xi)][xj −E(xj)]f(xi, xj)dxidxj ,
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where f(xi, xj) is the marginal distribution of xi and xj .

The expression for the covariance can be expanded to give C(xi, xj) = E[xixj−
E(xi)xj−E(xj)xi +E(xi)E(xj)] = E(xixj)−E(xi)E(xj). By setting xj = xi,
a similar expression is obtained for the variance V (xi) = C(xi, xi). Thus

(13) C(xi, xj) = E(xixj)−E(xi)E(xj),

V (xi) = E(x2
i )− [E(xi)]2.

The property of the expectations operator given under (11)(i) implies that
V (xi) ≥ 0. Also, by applying the property under (11)(v) to the expression for
C(xi, xj), it can be deduced that

(14) If xi, xj are independently distributed, then C(xi, xj) = 0.

Another important result is that

(15) V (xi + xj) = V (xi) + V (xj) + 2C(xi, xj).

This comes from expanding the final expression in

V (xi + xj) = E
©
[(xi + xj)−E(xi + xj)]2

™

= E
≥
[xi −E(xi)] + [xj −E(xj)]

2
¥

.

It is convenient to assemble the expectations, variances and covariances of
a multivariate distribution into matrices.

(16) If x ∼ f(x) is an n× 1 random vector, then its expected value

E(x) = [E(x1), . . . , E(xn)]0

is a vector comprising the expected values of the n elements. Its
dispersion matrix

D(x) = E{[x−E(x)][x−E(x)]0}
= E(xx0)−E(x)E(x0)

is a symmetric n× n matrix comprising the variances and covari-
ances of its elements. If x is partitioned such that x0 = [x01, x02],
then the covariance matrix

C(x1, x2) = E{[x1 −E(x1)][x2 −E(x2)]0}
= E(x1x

0
2)−E(x1)E(x02)
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is a matrix comprising the covariances of the two sets of elements.

The dispersion matrix is nonnegative definite. This is confirmed via the identity
a0D(x)a = a0{E[x − E(x)][x − E(x)]0}a = E{[a0x − E(a0x)]2} = V (a0x) ≥ 0,
which reflects the fact that variance of any scalar is nonnegative. The following
are some of the properties of the operators:

(17) If x, y, z are random vectors of appropriate orders, then

(i) E(x + y) = E(x) + E(y),

(ii) D(x + y) = D(x) + D(y) + C(x, y) + C(y, x),

(iii) C(x + y, z) = C(x, z) + C(y, z).
Also

(18) If x, y are random vectors and A,B are matrices of appropriate
orders, then

(i) E(Ax) = AE(x),

(ii) D(Ax) = AD(x)A0,

(iii) C(Ax,By) = AC(x, y)B0.

The Multivariate Normal Distribution

The n× 1 random vector x is normally distributed with a mean E(x) = µ
and a dispersion matrix D(x) = Σ if its probability density function is

(19) N(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp
©
−1

2 (x− µ)0Σ−1(x− µ)
™

.

It is understood that x is nondegenerate with rank(Σ) = n and |Σ| 6= 0. To
denote that x has this distribution, we can write x ∼ N(µ,Σ).

Two notable features of the normal distribution will be demostrated. The
first feature is that the conditional and marginal distributions associated with
a normally distributed vector are also normal. The second is that any linear
function of a normally distributed vector is itself normally distributed. The
arguments will be based on two fundamental facts. The first fact is that

(20) If x ∼ N(µ,Σ) and if y = A(x− b), where A is nonsingular, then
y ∼ N{A(µ− b), AΣA0}.

This may be illustrated by considering the case where b = 0. Then, according
to the result in (8), y has the distribution
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(21)

N(A−1y;µ,Σ)k∂x/∂yk

= (2π)−n/2|Σ|−1/2 exp
©
−1

2 (A−1y − µ)0Σ−1(A−1y − µ)
™
kA−1k

= (2π)−n/2|AΣA0|−1/2 exp
©
−1

2 (y −Aµ)0(AΣA0)−1(y −Aµ)
™

;

so, clearly, y ∼ N(Aµ,AΣA0).
The second of the fundamental facts is that

(22) If z ∼ N(µ,Σ) can be written in partitioned form as
∑

y
x

∏
∼ N

µ∑
µy

µx

∏
,

∑
Σyy 0
0 Σxx

∏∂
,

then y ∼ N(µy,Σyy) and x ∼ N(µx,Σxx) are independently dis-
tributed normal variates.

This can be seen by considering the quadratic form

(23) (z − µ)0Σ−1(z − µ) = (y − µy)0Σ−1
yy (y − µy) + (x− µx)0Σ−1

xx (x− µx)

which arises in this particular case. Substituting the RHS into the expression
for N(z;µ,Σ) in (19) and using |Σ| = |Σyy||Σxx|, gives

(24)

N(z;µ,Σ) = (2π)−m/2|Σyy|−1/2 exp
©
−1

2 (y − µy)0Σ−1
yy (y − µy)

™

× (2π)(m−n)/2|Σxx|−1/2 exp
©
−1

2 (x− µx)0Σ−1
xx (x− µx)

™

= N(y;µy,Σyy)×N(x;µx,Σxx).

The latter can only be the product of the marginal distributions of y and x,
which proves that these vectors are independently distributed.

The essential feature of the result is that

(25) If y and x are normally distributed with C(y, x) = 0, then they
are mutually independent.

A zero covariance does not generally imply statistical independence.
Even when y, x are not independently distributed, their marginal distribu-

tions are still formed in the same way from the appropriate components of µ
and Σ. This is entailed in the first of the two main results which is that

(26) If z ∼ N(µ,Σ) is partitioned as
∑

y
x

∏
∼ N

µ∑
µy

µx

∏
,

∑
Σyy Σyx

Σxy Σxx

∏∂
,
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then the marginal distribution of x is N(µxΣxx) and the condi-
tional distribution of y given x is

N(y|x;µy + ΣyxΣ−1
xx (x− µx),Σyy − ΣyxΣ−1

xx Σxy).

Proof. The joint distribution of x and y can be factored as the product of the
marginal distribution of x and the conditional distribution of y given x:

(27) N(y, x) = N(y|x)N(x).

The following notation may be adopted:

(28) z =
∑

y −E(y)
x−E(x)

∏
, w =

∑
y −E(y|x)
x−E(x)

∏
=

∑
ε

x−E(x)

∏
.

Then, the mapping from z to w = Qz may be represented by

(29)
∑

ε
x−E(x)

∏
=

∑
I −B0

0 I

∏ ∑
y −E(y)
x−E(x)

∏
,

wherein

(30) ε = y −E(y|x) = y −E(y)−B0{x−E(x)}.

The following dispersion matrices are defined:

(31) D(z) = Σzz =
∑

Σyy Σyx

Σxy Σxx

∏
, D(w) = Σzz =

∑
Σεε 0
0 Σxx

∏
.

The off-diaogonal blocks of D(w), which are C{y − E(y|x), x} = 0 and its
transpose, bear witness to the fact that the prediction error ε = y − E(y|x) is
uncorrelated with x, which is the instrument of the prediction.

The quadratic exponent of the joint distribution of x and y may be ex-
pressed in terms either of z or w. Thus, z0Σ−1

zz z = w0Σ−1
www = z0Q0Σ−1

wwQz,
which indicates that Σzz = Q−1ΣwwQ0−1. This is written more explicitly as

(32)

∑
Σyy Σyx

Σxy Σxx

∏
=

∑
I B0

0 I

∏ ∑
Σεε 0
0 Σxx

∏ ∑
I 0
B I

∏

=
∑

Σεε + B0ΣxxB B0Σxx

ΣxxB Σxx

∏
.

The equation is solved for

(33) B = Σ−1
xx Σxy and Σεε = Σyy − ΣyxΣ−1

xx Σxy.
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Therefore, the joint density function of x and y|x can be written as

(34) N(x;µx,Σxx)N(y|x;µy − ΣyxΣ−1
xx µx,Σyy − ΣyxΣ−1

xx Σxy).

Integrating the conditional distribution N(y|x) with respect to x gives the
marginal distribution N(y;µy,Σyy).

The linear function

(35)
E(y|x) = E(y) + C(y, x)D−1(x){x−E(x)}

= µy + ΣyxΣ−1
xx (x− µx),

which defines the expected value of x for given values of y, is described as the
regression of y on x. The matrix B = Σ−1

xx Σxy is the matrix of the regression
coefficients.

Now that the general the form of the marginal distribution has been estab-
lished, it can be shown that any nondegenerate random vector which represents
a linear function of a normal vector is itself normally distributed. To this end,
it can be proved that

(36) If x ∼ N(µ,Σ) and y = B(x − b) where null(B0) = 0 or, equiva-
lently, B has full row rank, then y ∼ N(B(µ− b), BΣB0).

Proof. If B has full row rank, then there exists a nonsingular matrix A0 =
[B0, C0] such that

(37) q =
∑

y
z

∏
=

∑
B
C

∏
(x− b).

Then q has the distribution N(q;A(µ− b), AΣA0) where

(38) A(µ− b) =
∑

B(µ− b)
C(µ− b)

∏
, AΣA0 =

∑
BΣB0 BΣC0

CΣB0 CΣC0

∏
.

It follows from (27) that y has the marginal distribution

(39) N{B(µ− b), BΣB0}.

Distributions Associated with the Normal Distribution

(40) Let η ∼ N(0, I) be an n×1 vector of independently and identically
distributed normal variates ηi ∼ N(0, 1); i = 1, . . . , n. Then η0η
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has a chi-square distribution of n degrees of freedom denoted by
χ2(n).

The cumulative chi-square distribution is tabulated in most statistics textbooks;
typically for degrees of freedom from n = 1 to n = 30. One need not bother,
at present. with the formula for the density function; but it should be noted
that, if w ∼ χ2(n), then E(w) = n and V (w) = 2n.

(41) Let x ∼ N(0, 1) be a standard normal variate, and let w ∼ χ2(n)
be a chi-square variate of n degrees of freedom. Then the ratio
t = x/

p
w/n has a t distribution of n degrees of freedom denoted

by t(n).

The t distribution, which is perhaps the most important of the sampling dis-
tributions, is also extensively tabulated. Again, we shall not give the formula
for the density function; but we may note that the distribution is symmetrical
and that E(t) = 0 and V (t) = n/(n− 2). The distribution t(n) approaches the
standard normal N(0, 1) as n tends to infinity. This results from the fact that,
as n tends to infinity, the distribution of the denominator in the ratio defining
the t variate becomes increasingly concentrated around the value of unity, with
the effect that the variate is dominated by its numerator. Finally,

(42) Let w1 ∼ χ2(n) and w2 ∼ χ2(m) be independently distributed
chi-square variates of n and m degrees of freedom respectively.
Then F = {(w1/n)/(w2/m)} has an F distribution of n and m
degrees of freedom denoted by F (n,m).

We may record that E(F ) = m/(m−2) and V (F ) = 2m2[1+ (m−2)/n]/(m−
2)2(m− 4).

It should be recognised that

(43) If t ∼ t(n), then t2 ∼ F (1, n).

This follows from (30) which indicates that t2 = {(x2/1)/(w/n)}, where w ∼
χ2(n) and x2 ∼ χ2(1), since x ∼ N(0, 1).

Quadratic Functions of Normal Vectors

Next, we shall establish a number of specialised results concerning
quadratic functions of normally distributed vectors. The standard notation
for the dispersion of the random vector ε now becomes D(ε) = Q. When it is
important to know that the random vector ε ∼ N(0, Q) has the order p×1, we
shall write ε ∼ Np(0, Q).
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We begin with some specialised results concerning the standard normal
distribution N(η; 0, I).

(44) If η ∼ N(0, I) and C is an orthonormal matrix such that C0C =
CC0 = I, then C0η ∼ N(0, I).

This is a straightforward specialisation of the basic result in (36). More gener-
ally,

(45) If η ∼ Nn(0, I) is an n × 1 vector and C is an n × r matrix of
orthonormal vectors, where r ≤ n, such that C0C = Ir, then
C0η ∼ Nr(0, I).

Occasionally, it is necessary to transform a nondegenerate vector ε ∼ N(0, Q)
to a standard normal vector.

(46) Let ε ∼ N(0, Q), where null(Q) = 0. Then there exists a nonsin-
gular matrix T such that T 0T = Q−1, TQT 0 = I, and it follows
that Tε ∼ N(0, I).

This result can be used immediately to prove the first result concerning
quadratic forms:

(47) If ε ∼ Nn(0, Q) and Q−1 exists, then ε0Q−1ε ∼ χ2(n).

This follows since, if T is a matrix such that T 0T = Q, TQT 0 = I, then
η = Tε ∼ Nn(0, I); whence, from (40), it follows that η0η = ε0T 0Tε = ε0Q−1ε ∼
χ2(n).
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