
LECTURE 5

Hypothesis Testing in the
Classical Regression Model

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vec-
tor ε within the regression equations y = Xβ + ε are distributed independently
and identically according to a normal law. Under this assumption, the sampling
distributions of the estimates may be derived and various hypotheses relating
to the underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean
of E(x) = µ and a dispersion matrix of D(x) = Σ, we shall write x ∼ N(µ,Σ).
A vector z ∼ N(0, I) with a mean of zero and a dispersion matrix of D(z) = I
is described as a standard normal vector. Any normal vector x ∼ N(µ,Σ) can
be standardised:

(1) If T is a transformation such that TΣT ′ = I and T ′T = Σ−1, then
T (x − µ) ∼ N(0, I).

Associated with the normal distribution are a variety of so-called sam-
pling distributions, which occur frequently in problems of statistical inference.
Amongst these are the chi-square distribution, the F distribution and the t
distribution.

If z ∼ N(0, I) is a standard normal vector of n elements, then the sum
of squares of its elements has a chi-square distribution of n degrees of free-
dom; and this is denoted by z′z ∼ χ2(n). With the help of the standardising
transformation, it can be shown that,

(2) If x ∼ N(µ,Σ) is a vector of order n, then (x − µ)′Σ−1(x − µ) ∼
χ2(n).

The sum of any two independent chi-square variates is itself a chi-square
variate whose degrees of freedom equal the sum of the degrees of freedom of its
constituents. Thus,

(3) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates of
m and n degrees of freedom respectively, then (u+v) ∼ χ2(m+n)
is a chi-square variate of m + n degrees of freedom.
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The ratio of two independent chi-square variates divided by their respective
degrees of freedom has a F distribution which is completely characterised by
these degrees of freedom. Thus,

(4) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates,
then the variate F = (u/m)/(v/n) has an F distribution of m and
n degrees of freedom; and this is denoted by writing F ∼ F (m, n).

The sampling distribution which is most frequently used is the t distribu-
tion. A t variate is a ratio of a standard normal variate and the root of an
independent chi-square variate divided by its degrees of freedom. Thus,

(5) If z ∼ N(0, 1) and v ∼ χ2(n) are independent variates, then t =
z/

√
(v/n) has a t distribution of n degrees of freedom; and this is

denoted by writing t ∼ t(n).

It is clear that t2 ∼ F (1, n).

Hypothesis Concerning the Coefficients

A linear function of a normally distributed vector is itself normally dis-
tributed. The oridinary least squares estimate β = (X ′X)−1X ′y of the pa-
rameter vector β in the regression model (y; Xβ, σ2I) is a linear function of
y, which has an expected value of E(β̂) = β and a dispersion matrix of
D(β̂) = σ2(X ′X)−1, Thus, it follows that, if y ∼ N(Xβ, σ2I) is normally
distributed, then

(6) β̂ ∼ Nk{β, σ2(X ′X)−1}.

Likewise, the marginal distributions of β̂1, β̂2 within β̂′ = [β̂′
1, β̂

′
2] are given by

β̂1 ∼ Nk1

(
β1, σ

2{X ′
1(I − P2)X1}−1

)
,(7)

β̂2 ∼ Nk2

(
β2, σ

2{X ′
2(I − P1)X2}−1

)
.(8)

From the results under (2) to (6), it follows that

(9) σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k).

Similarly, it follows from (7) and (8) that

σ−2(β̂1 − β1)′X ′
1(I − P2)X1(β̂1 − β1) ∼ χ2(k1),(10)

σ−2(β̂2 − β2)′X ′
2(I − P1)X2(β̂2 − β2) ∼ χ2(k2).(11)

The distribution of the residual vector e = y−Xβ̂ is degenerate in the sense
that the mapping e = (I − P )ε from the disturbance vector ε to the residual
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Figure 1. The critical region, at the 10% significance level, of an F (5, 60) statistic.

vector e entails a singular transformation. Nevertheless, it is possible to obtain
a factorisation of the transformation in the form of I − P = CC ′, where C
is matrix of order T × (T − k) comprising T − k orthonormal columns, which
are orthogonal to the columns of X such that C ′X = 0. Since C ′C = IT−k,
it follows that, on premultiplying y ∼ NT (Xβ, σ2I) by C ′, we get C ′y ∼
NT−k(0, σ2I). Hence

(12) σ−2y′CC ′y = σ−2(y − Xβ̂)′(y − Xβ̂) ∼ χ2(T − k).

The vectors Xβ̂ = Py and y−Xβ̂ = (I−P )y have a zero-valued covariance
matrix. If two normally distributed random vectors have a zero covariance
matrix, then they are statistically independent. Therefore, it follows that

(13)
σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k) and

σ−2(y − Xβ̂)′(y − Xβ̂) ∼ χ2(T − k)

are mutually independent chi-square variates. From this, it can be deduced
that

(14)
F =

{
(β̂ − β)′X ′X(β̂ − β)

k

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
1

σ̂2k
(β̂ − β)′X ′X(β̂ − β) ∼ F (k, T − k).

To test an hypothesis specifying that β = β#, the hypothesised parameter vector
can be inserted in the above statistic and the resulting value can be compared
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with the critical values of an F distribution of k and T − k degrees of freedom.
If a critical value is exceeded, then the hypothesis is liable to be rejected.

The test is readily intelligible, since it is based on a measure of the dis-
tance between the hypothesised value Xβ# of the systematic component of the
regression and the value Xβ̂ that is suggested by the data. If the two values are
remote from each other, then we may suspect that the hypothesis is at fault.

It is usual to suppose that a subset of the elements of the parameter vector
β are zeros. This represents an instance of a class of hypotheses that specify
values for a subvector β2 within the partitioned model y = X1β1 + Xβ2 + ε
without asserting anything about the values of the remaining elements in the
subvector β1. The appropriate test statistic for testing the hypothesis that
β2 = β2# is

(15) F =
1

σ̂2k2
(β̂2 − β2#)′X ′

2(I − P1)X2(β̂2 − β2#).

This will have an F (k2, T − k) distribution if the hypothesis is true.
A limiting case of the F statistic concerns the test of an hypothesis affecting

a single element βi within the vector β. By specialising the expression under
(15), a statistic may be derived in the form of

(16) F =
(β̂i − βi#)2

σ̂2wii
,

wherein wii stands for the ith diagonal element of (X ′X)−1. If the hypothesis
is true, then this will be distributed according to the F (1, T −k) law. However,
the usual way of assessing such an hypothesis is to relate the value of the
statistic

(17) t =
β̂i − βi#√
(σ̂2wii)

to the tables of the t(T − k) distribution. The advantage of the t statistic
is that it shows the direction in which the estimate of βi deviates from the
hypothesised value as well as the size of the deviation.

Cochrane’s Theorem and the Decomposition of a Chi-Square Variate

The standard test of an hypothesis regarding the vector β in the model
N(y; Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(18)
y = Xβ̂ + (y − Xβ̂) and

y − Xβ = (Xβ̂ − Xβ) + (y − Xβ̂),
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Figure 2. The vector Py = Xβ̂ is formed by the orthogonal projection of

the vector y onto the subspace spanned by the columns of the matrix X .

where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in terms
of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I − P )y =
y − Xβ̂ = e. Also, the definition ε = y − Xβ can be used within the second of
the equations. Thus,

(19)
y = Py + (I − P )y and

ε = Pε + (I − P )ε.

The reason for adopting this notation is that it enables us to envisage more
clearly the Pythagorean relationship between the vectors. Thus, from the fact
that P = P ′ = P 2 and that P ′(I − P ) = 0, it can be established that

(20)
ε′ε = ε′Pε + ε′(I − P )ε or, equivalently,

ε′ε = (Xβ̂ − Xβ)′(Xβ̂ − Xβ) + (y − Xβ̂)′(y − Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I −P )ε as
the vertical side and ε as the hypotenuse. These relationship are represented
by Figure 2, where γ = Xβ and where ε = y − γ.

The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
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that the true value of the parameter vector is β#. To test this proposition, the
value of Xβ# is compared with the estimated mean vector Xβ̂. The test is a
matter of assessing the proximity of the two vectors, which is measured by the
square of the distance that separates them. This would be given by

(21) ε′Pε = (Xβ̂ − Xβ#)′(Xβ̂ − Xβ#).

If the hypothesis is untrue and if Xβ# is remote from the true value of Xβ,
then the distance is liable to be excessive.

The distance can only be assessed in comparison with the variance σ2 of
the disturbance term or with an estimate thereof. Usually, one has to make do
with the estimate of σ2 which is provided by

(22)
σ̂2 =

(y − Xβ̂)′(y − Xβ̂)
T − k

=
ε′(I − P )ε

T − k
.

The numerator of this estimate is simply the squared length of the vector
e = (I −P )y = (I −P )ε, which constitutes the vertical side of the right-angled
triangle.

Simple arguments, which have been given in the previous section, serve to
demonstrate that

(23)

(a) ε′ε = (y − Xβ)′(y − Xβ) ∼ σ2χ2(T ),

(b) ε′Pε = (β̂ − β)′X ′X(β̂ − β) ∼ σ2χ2(k),

(c) ε′(I − P )ε = (y − Xβ̂)′(y − Xβ̂) ∼ σ2χ2(T − k),

where (b) and (c) represent statistically independent random variables whose
sum is the random variable of (a). These quadratic forms, divided by their
respective degrees of freedom, find their way into the F statistic of (14) which
is

(24) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
∼ F (k, T − k).

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to the present requirements:
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(25) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and
identically distributed elements. Also, let P = X(X ′X)−1X ′ be a
symmetric idempotent matrix, such that P = P ′ = P 2, which is
constructed from a matrix X of order T × k with Rank(X) = k.
Then

ε′Pε

σ2
+

ε′(I − P )ε
σ2

=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents
the sum of two independent chi-square variates ε′Pε/σ2 ∼ χ2(k)
and ε′(I −P )ε/σ2 ∼ χ2(T − k) of k and T − k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X(X ′X)−1X ′. First, consider the fact that X ′X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation T
such that T (X ′X)T ′ = I and T ′T = (X ′X)−1. Therefore, P = XT ′TX ′ =
C1C ′

1, where C1 = XT ′ is a T × k matrix comprising k orthonormal vectors
such that C ′

1C1 = Ik is the identity matrix of order k.
Now define C2 to be a complementary matrix of T−k orthonormal vectors.

Then, C = [C1, C2] is an orthonormal matrix of order T such that

(26)
CC ′ = C1C

′
1 + C2C

′
2 = IT and

C ′C =
[

C ′
1C1 C ′

1C2

C ′
2C1 C ′

2C2

]
=

[
Ik 0
0 IT−k

]
.

The first of these results allows us to set I − P = I − C1C ′
1 = C2C ′

2. Now,
if ε ∼ N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT ,
then it follows that C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C ′ε, we find
that

(27)
[

C ′
1ε

C ′
2ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2IT−k

])
,

which is to say that C ′
1ε ∼ N(0, σ2Ik) and C ′

2ε ∼ N(0, σ2IT−k) are indepen-
dently distributed normal vectors. It follows that

(28)

ε′C1C ′
1ε

σ2
=

ε′Pε

σ2
∼ χ2(k) and

ε′C2C ′
2ε

σ2
=

ε′(I − P )ε
σ2

∼ χ2(T − k)
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are independent chi-square variates. Since C1C ′
1 +C2C ′

2 = IT , the sum of these
two variates is

(29)
ε′C1C ′

1ε

σ2
+

ε′C2C ′
2ε

σ2
=

ε′ε

σ2
∼ χ2(T );

and thus the theorem is proved.
The statistic under (14) can now be expressed in the form of

(30) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
.

This is manifestly the ratio of two chi-square variates divided by their respec-
tive degrees of freedom; and so it has an F distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector β.

Hypotheses Concerning Subsets of the Regression Coefficients

Consider a set of linear restrictions on the vector β of a classical linear regression
model N(y; Xβ, σ2I), which take the form of

(31) Rβ = r,

where R is a matrix of order j × k and of rank j, which is to say that the j
restrictions are independent of each other and are fewer in number than the
parameters within β. Given that the ordinary least-squares estimator of β is a
normally distributed vector β̂ ∼ N{β, σ2(X ′X)−1}, it follows that

(32) Rβ̂ ∼ N
{
Rβ = r, σ2R(X ′X)−1R′};

and, from this, it can be inferred immediately that

(33)
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

σ2
∼ χ2(j).

It has already established been established that

(34)
(T − k)σ̂2

σ2
=

(y − Xβ̂)′(y − Xβ̂)
σ2

∼ χ2(T − k)

is a chi-square variate that is statistically independent of the chi-square variate

(35)
(β̂ − β)′X ′X(β̂ − β)

σ2
∼ χ2(k)
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derived from the estimator of the regression parameters. The variate of (33)
must also be independent of the chi-square of (34); and it is straightforward to
deduce that

(36)

F =

{
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

j

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

σ̂2j
∼ F (j, T − k),

which is to say that the ratio of the two independent chi-square variates, di-
vided by their respective degrees of freedom, is an F statistic. This statistic,
which embodies only know and observable quantities, can be used in testing
the validity of the hypothesised restrictions Rβ = r.

A specialisation of the statistic under (36) can also be used in testing
an hypothesis concerning a subset of the elements of the vector β. Let β′ =
[β′

1, β
′
2]′. Then, the condition that the subvector β1 assumes the value of β#

1

can be expressed via the equation

(37) [Ik1 , 0]
[
β1

β2

]
= β#

1 .

This can be construed as a case of the equation Rβ = r, where R = [Ik1 , 0] and
r = β#

1 .
In order to discover the specialised form of the requisite test statistic, let

us consider the following partitioned form of an inverse matrix:

(38)

(X ′X)−1 =
[

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

]−1

=

[
{X ′

1(I − P2)X1}−1 − {X ′
1(I − P2)X1}−1X ′

1X2(X ′
2X2)−1

−{X ′
2(I − P1)X2}−1X ′

2X1(X ′
1X1)−1 {X ′

2(I − P1)X2}−1

]
,

Then, with R = [I, 0], we find that

(39) R(X ′X)−1R′ =
{
X ′

1(I − P2)X1

}−1
.

It follows, in a straightforward manner, that the specialised form of the F
statistic of (36) is

(40)

F =

{
(β̂1 − β#

1)′
{
X ′

1(I − P2)X1

}
(β̂1 − β#

1)
k1

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
(β̂1 − β#

1)′
{
X ′

1(I − P2)X ′
1

}
(β̂1 − β#

1)
σ̂2k1

∼ F (k1, T − k).
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Finally, for the jth element of β̂, there is

(41)
(β̂j − βj)2/σ2wjj ∼ F (1, T − k) or, equivalently,

(β̂j − βj)
√

σ2wjj ∼ t(T − k),

where wjj is the jth diagonal element of (X ′X)−1 and t(T − k) denotes the t
distribution of T − k degrees of freedom.

An Alternative Formulation of the F statistic

An alternative way of forming the F statistic uses the products of two sepa-
rate regressions. Consider the formula for the restricted least-squares estimator
that has been given under (2.76):

(42) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

From this, the following expression for the residual sum of squares of the re-
stricted regression is is derived:

(43) y − Xβ∗ = (y − Xβ̂) + X(X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

The two terms on the RHS are mutually orthogonal on account of the defining
condition of an ordinary least-squares regression, which is that (y−Xβ̂)′X = 0.
Therefore, the residual sum of squares of the restricted regression is

(44)
(y − Xβ∗)′(y − Xβ∗) = (y − Xβ̂)′(y − Xβ̂) +

(Rβ̂ − r)′
{
R(X ′X)−1R′}−1(Rβ̂ − r).

This equation can be rewritten as

(45) RSS − USS = (Rβ̂ − r)′
{
R(X ′X)−1R′}−1(Rβ̂ − r),

where RSS denotes the restricted sum of squares an USS denotes the unre-
stricted sum of squares. It follows that the test statistic of (36) can be written
as

(46) F =

{
RSS − USS

j

/
USS

T − k

}
.

This formulation can be used, for example, in testing the restriction that
β1 = 0 in the partitioned model N(y; X1β1 + X2β2, σ2I). Then, in terms of
equation (37), there is R = [Ik1 , 0] and there is r = β#

1 = 0, which gives

(47)
RSS − USS = β̂′

1X
′
1(I − P2)X1β̂1

= y′(I − P2)X1{X ′
1(I − P2)X1}−1X ′

1(I − P2)y.
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Figure 3. The test of the hypothesis entailed by the resticted model is

based on a measure of the proximity of the restricted estimate Xβ∗, and

the unrestricted estimate Xβ̂. The USS is the squared distance ‖y−Xβ̂‖2.

The RSS is the squared distance ‖y − Xβ∗‖2.

On the other hand, there is

(48) RSS − USS = y′(I − P2)y − y′(I − P )y = y′(P − P2)y,

Since the two expressions must be identical for all values of y, the comparison
of (36) and (37) is sufficient to establish the following identity:

(49) (I − P2)X1{X ′
1(I − P2)X1}−1X ′

1(I − P2) = P − P2.

The geometric interpretation of the alternative formulation of the test
statistic is straightforward. It can be understood, in reference to Figure 3,
that the square of the distance between the restricted estimate Xβ∗ and the
unrestricted estimate Xβ̂, denoted by ‖Xβ̂ − Xβ∗‖2, which is the basis of the
original formulation of the test statistic, is equal to the restricted sum of squares
‖y − Xβ∗‖2 less the unrestricted sum of squares ‖y − Xβ̂‖2. The latter is the
basis of the alternative formulation.

The Partitioned Inverse and Associated Identities

The first objective is to derive the formula for the partitioned inverse of
X ′X that has been given in equation (38). Write

(50)
[

A B′

B C

]
=

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]−1

11
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and consider, the equation

(51)
[

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

] [
A B′

B C

]
=

[
I 0
0 I

]
.

From this system, the following two equations can be extracted:

X ′
1X1A + X ′

1X2B = I,(52)

X ′
2X1A + X ′

2X2B = 0.(53)

To isolate A, equation (53) is premultiplied by X ′
1X2(X ′

2X2)−1 to give

(54) X ′
1X2(X ′

2X2)−1X ′
2X1A + X ′

1X2B = 0,

and this is taken from (52) to give

(55) {X ′
1X1 − X ′

1X2(X ′
2X2)−1X ′

2X1}A = I

whence

(56) A = {X ′
1(I − P2)X1}−1 with P2 = X2(X ′

2X2)−1X ′
2.

An argument of symmetry will serve to show that

(57) C = {X ′
2(I − P1)X2}−1 with P1 = X1(X ′

1X1)−1X ′
1.

To find B, and therefore B′, the expression for A from (56) is substituted into
(53). This gives

(58) X ′
2X1{X ′

1(I − P2)X1}−1 + X ′
2X2B = 0,

whence

(59) B′ = −{X ′
1(I − P2)X1}−1X ′

1X2(X ′
2X2)−1

The matrix B is the transpose of this, but an argument of symmetry will serve
to show that this is also given by the expression

(60) B = −{X ′
2(I − P1)X2}−1X ′

2X1(X ′
1X1)−1

When the expression for A, B, B′ and C are put in place, the result is

(61)

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]−1

=
[

A B′

B C

]

=

[
{X ′

1(I − P2)X1}−1 − {X ′
1(I − P2)X1}−1X ′

1X2(X ′
2X2)−1

−{X ′
2(I − P1)X2}−1X ′

2X1(X ′
1X1)−1 {X ′

2(I − P1)X2}−1

]
,

12



5. HYPOTHESIS TESTS

Next consider

(62)
X(X ′X)−1X ′ = [X1 X2 ]

[
A B′

B C

] [
X ′

1

X ′
2

]

= {X1AX ′
1 + X1BX ′

2} + {X2CX ′
2 + X2B

′X ′
1}

Substituting the expressions for A, B, C and B′ shows that

(63)
X(X ′X)−1X ′ =X1{X ′

1(I − P2)X1}−1X ′
1(I − P2)

+ X2{X ′
2(I − P1)X2}−1X ′

2(I − P1),

which can be written as

(64) P = P1/2 + P2/1

with

P1/2 = X1{X ′
1(I − P2)X1}−1X ′

1(I − P2),(65)

P2/1 = X2{X ′
2(I − P1)X2}−1X ′

2(I − P1).(66)

Next, observe that there are

P1/2P1 = P1, P1/2P2 = 0,(67)

P2/1P2 = P2, P2/1P1 = 0.(68)

It follows that

(69) PP1 = (P1/2 + P2/1)P1 = P1 = P1P,

where the final equality follows in consequence of the symmetry of P1 and P .
It also follows, by an argument of symmetry, that

(70) P (I − P1) = P − P1 = (I − P1)P

Therefore, since (I − P1)P = (I − P1)P2/1, there is

(71) P − P1 = (I − P1)X2{X ′
2(I − P1)X2}−1X2(I − P1).

By interchanging the two subscripts, the identity of (49) is derived.
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