
APPENDIX 4

The Identification
of ARIMA Models

As we have established in a previous lecture, there is a one-to-one cor-
respondence between the parameters of an ARMA(p, q) model, including the
variance of the disturbance, and the leading p + q + 1 elements of the auto-
covariance function. Given the true autocovariances of a process, we might
be able to discern the orders p and q of its autoregressive and moving-average
operators and, given these orders, we should then be able to deduce the values
of the parameters.

There are two other functions, prominent in time-series analysis, from
which it is possible to recover the parameters of an ARMA process. These
are the partial autocorrelation function and the spectral density function. The
appearance of each of these functions gives an indication of the nature of the
underlying process to which they belong; and, in theory, the business of iden-
tifying the model and of recovering its parameters can be conducted on the
basis of any of them. In practice, the process is assisted by taking account of
all three functions.

The empirical versions of the three functions which are used in a model-
building exercise may differ considerably from their theoretical counterparts.
Even when the data are truly generated by an ARMA process, the sampling
errors which affect the empirical functions can lead one to identify the wrong
model. This hazard is revealed by sampling experiments. When the data come
from the real world, the notion that there is an underlying ARMA process
is a fiction, and the business of model identification becomes more doubtful.
Then there may be no such thing as the correct model; and the choice amongst
alternative models must be made partly with a view their intended uses.

The Autocorrelation Functions

The techniques of model identification which are most commonly used were
propounded originally by Box and Jenkins (1972). Their basic tools were the
sample autocorrelation function and the partial autocorrelation function. We
shall describe these functions and their use separately from the spectral density
function which ought, perhaps, to be used more often in selecting models.
The fact that spectral density function is often overlooked is probably due to
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an unfamiliarity with frequency-domain analysis on the part of many model
builders.

Autocorrelation function (ACF). Given a sample y0, y1, . . . , yT−1 of T
observations, we define the sample autocorrelation function to be the sequence
of values

(1) rτ = cτ/c0, τ = 0, 1, . . . , T − 1,

wherein

(2) cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ)

is the empirical autocovariance at lag τ and c0 is the sample variance. One
should note that, as the value of the lag increases, the number of observations
comprised in the empirical autocovariance diminishes until the final element
cT−1 = T−1(y0 − ȳ)(yT−1 − ȳ) is reached which comprises only the first and
last mean-adjusted observations.

In plotting the sequence {rτ}, we shall omit the value of r0 which is in-
variably unity. Moreover, in interpreting the plot, one should be wary of giving
too much credence to the empirical autocorrelations at lag values which are
significantly high in relation to the size of the sample.

Partial autocorrelation function (PACF). The sample partial autocor-
relation pτ at lag τ is simply the correlation between the two sets of residuals
obtained from regressing the elements yt and yt−τ on the set of intervening
values y1, y2, . . . , yt−τ+1. The partial autocorrelation measures the dependence
between yt and yt−τ after the effect of the intervening values has been removed.

The sample partial autocorrelation pτ is virtually the same quantity as
the estimated coefficient of lag τ obtained by fitting an autoregressive model of
order τ to the data. Indeed, the difference between the two quantities vanishes
as the sample size increases. The Durbin–Levinson algorithm provides an effi-
cient way of computing the sequence {pτ} of partial autocorrelations from the
sequence of {cτ} of autocovariances. It can be seen, in view of this algorithm,
that the information in {cτ} is equivalent to the information contained jointly
in {pτ} and c0. Therefore the sample autocorrelation function {rt} and the
sample partial autocorrelation function {pt} are equivalent in terms of their
information content.

The Methodology of Box and Jenkins

The model-building methodology of Box and Jenkins, relies heavily upon
the two functions {rt} and {pt} defined above. It involves a cycle comprising
the three stages of model selection, model estimation and model checking. In
view of the difficulties of selecting an appropriate model, it is envisaged that
the cycle might have to be repeated several times and that, at the end, there
might be more than one model of the same series.
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Figure 1. The concentration readings from a chemical process with the

autocorrelation function and the autocorrelation function of the differences.
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Reduction to stationarity. The first step, which is taken before embarking
on the cycle, is to examine the time plot of the data and to judge whether or
not it could be the outcome of a stationary process. If a trend is evident in
the data, then it must be removed. A variety of techniques of trend removal,
which include the fitting of parametric curves and of spline functions, have
been discussed in previous lectures. When such a function is fitted, it is to the
sequence of residuals that the ARMA model is applied.

However, Box and Jenkins were inclined to believe that many empirical
series can be modelled adequately by supposing that some suitable difference
of the process is stationary. Thus the process generating the observed series
y(t) might be modelled by the ARIMA(p, d, q) equation

(3) α(L)∇dy(t) = µ(L)ε(t),

wherein ∇d = (I − L)d is the dth power of the difference operator. In that
case, the differenced series z(t) = ∇dy(t) will be described by a stationary
ARMA(p, q) model. The inverse operator ∇−1 is the summing or integrating
operator, which accounts for the fact that the model depicted by equation (3)
is described an autoregressive integrated moving-average model.

To determine whether stationarity has been achieved, either by trend re-
moval or by differencing, one may examine the autocorrelation sequence of the
residual or processed series. The sequence corresponding to a stationary process
should converge quite rapidly to zero as the value of the lag increases. An em-
pirical autocorrelation function which exhibits a smooth pattern of significant
values at high lags indicates a nonstationary series.

An example is provided by Figure 1 where a comparison is made between
the autocorrelation function of the original series and that of its differences.
Although the original series does not appear to embody a systematic trend,
it does drift in a haphazard manner which suggests a random walk; and it is
appropriate to apply the difference operator.

Once the degree of differencing has been determined, the autoregressive
and moving-average orders are selected by examining the sample autocorrela-
tions and sample partial autocorrelations. The characteristics of pure autore-
gressive and pure moving-average process are easily spotted. Those of a mixed
autoregressive moving-average model are not so easily unravelled.

Moving-average processes. The theoretical autocorrelation function {ρτ}
of a pure moving-average process of order q has ρτ = 0 for all τ > q. The
corresponding partial autocorrelation function {πτ} is liable to decay towards
zero gradually. To judge whether the corresponding sample autocorrelation
function {rτ} shows evidence of a truncation, we need some scale by which to
judge the significance of the values of its elements.
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Figure 2. The graph of 120 observations on a simulated series generated

by the MA(2) process y(t) = (1 + 0.90L + 0.81L2)ε(t) together with the

theoretical and empirical ACF’s (middle) and the theoretical and empirical

PACF’s (bottom). The theoretical values correspond to the solid bars.
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As a guide to determining whether the parent autocorrelations are in fact
zero after lag q, we may use a result of Bartlett [1946] which shows that, for a
sample of size T , the standard deviation of rτ is approximately

(4)
1√
T

{
1 + 2(r2

1 + r2
2 + · · · + r2

q)
}1/2 for τ > q.

The result is also given by Fuller [1976, p. 237]. A simpler measure of the scale
of the autocorrelations is provided by the limits of ±1.96/

√
T which are the

approximate 95% confidence bounds for the autocorrelations of a white-noise
sequence. These bounds are represented by the dashed horizontal lines on the
accompanying graphs.

Autoregressive processes. The theoretical autocorrelation function {ρτ}
of a pure autoregressive process of order p obeys a homogeneous difference
equation based upon the autoregressive operator α(L) = 1 + α1L + · · ·+ αpL

p.
That is to say

(5) ρτ = −(α1ρτ−1 + · · · + αpρτ−p) for all τ ≥ p.

In general, the sequence generated by this equation will represent a mixture of
damped exponential and sinusoidal functions. If the sequence is of a sinusoidal
nature, then the presence of complex roots in the operator α(L) is indicated.
One can expect the empirical autocovariance function of a pure AR process to
be of the same nature as its theoretical parent.

It is the partial autocorrelation function which serves most clearly to iden-
tify a pure AR process. The theoretical partial autocorrelations function {πτ}
of a AR(p) process has πτ = 0 for all τ > p. Likewise, all elements of the
sample partial autocorrelation function are expected to be close to zero for lags
greater than p, which corresponds to the fact that they are simply estimates
of zero-valued parameters. The significance of the values of the partial auto-
correlations is judged by the fact that, for a pth order process, their standard
deviations for all lags greater that p are approximated by 1/

√
T . Thus the

bounds of ±1.96/
√

T are also plotted on the graph of the partial autocorrela-
tion function.

Mixed processes. In the case of a mixed ARMA(p, q) process, neither the
theoretical autocorrelation function not the theoretical partial autocorrelation
function have any abrupt cutoffs. Indeed, there is little that can be inferred
from either of these functions or from their empirical counterparts beyond the
fact that neither a pure MA model nor a pure AR model would be inappropriate.
On its own, the autocovariance function of an ARMA(p, q) process is not easily
distinguished from that of a pure AR process. In particular, its elements γτ

satisfy the same difference equation as that of a pure AR model for all values
of τ > max(p, q).
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Figure 3. The graph of 120 observations on a simulated series generated

by the AR(2) process (1 − 1.69L + 0.81L2)y(t) = ε(t) together with the

theoretical and empirical ACF’s (middle) and the theoretical and empirical

PACF’s (bottom). The theoretical values correspond to the solid bars.
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Figure 4. The graph of 120 observations on a simulated series generated by the

ARMA(2, 2) process (1−1.69L+0.81L2)y(t) = (1+0.90L+0.81L2)ε(t) together

with the theoretical and emprical ACF’s (middle) and the theoretical and empirical

PACF’s (bottom). The theoretical values correspond to the solid bars.
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There is good reason to regard mixed models as more appropriate in prac-
tice than pure models of either variety. For a start, there is the fact that a
rational transfer function is far more effective in approximating an arbitrary
impulse response than is an autoregressive transfer function, whose parameters
are confined to the denominator, or a moving-average transfer function, which
has its parameters in the numerator. Indeed, it might be appropriate, some-
times, to approximate a pure process of a high order by a more parsimonious
mixed model.

Mixed models are also favoured by the fact that the sum of any two mu-
tually independent autoregressive process gives rise to an ARMA process. Let
y(t) and z(t) be autoregressive processes of orders p and r respectively which
are described by the equations α(L)y(t) = ε(t) and ρ(L)z(t) = η(t), wherein
ε(t) and η(t) are mutually independent white-noise processes. Then their sum
will be

(6)
y(t) + z(t) =

ε(t)
α(L)

+
η(t)
ρ(L)

=
ρ(L)ε(t) + α(L)η(t)

α(L)ρ(L)
=

µ(L)ζ(t)
α(L)ρ(L)

,

where µ(L)ζ(t) = ρ(L)ε(t) + α(L)η(t) constitutes a moving-average process of
order max(p, r).

In economics, where the data series are highly aggregated, mixed models
would seem to be called for often. In the context of electrical and mechanical
engineering, there may be some justification for pure AR models. Here there is
often abundant data, sufficient to sustain the estimation of pure autoregressive
models of high order. Therefore the principle of parametric parsimony is less
persuasive than it might be in an econometric context. However, pure AR
models perform poorly whenever the data is affected by errors of observation;
and, in this respect, a mixed model is liable to be more robust. One can
understand this feature of mixed models by recognising that the sum of a pure
AR(p) process an a white-noise process is an ARMA(p, p) process.
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