
LECTURE 4

Forecasting
with ARMA Models

Minumum Mean-Square Error Prediction

Imagine that y(t) is a stationary stochastic process with E{y(t)} = 0.
We may be interested in predicting values of this process several periods into
the future on the basis of its observed history. This history is contained in
our so-called information set. In practice, the latter is always a finite set
{yt, yt−1, . . . , yt−p} representing the recent past. Nevertheless, in developing
the theory of prediction, it is also useful to consider an infinite information set
It = {yt, yt−1, . . . , yt−p, . . .} representing the entire past.

We shall denote the prediction of yt+h which is made at the time t by
ŷt+h|t or by ŷt+h when it is clear that we are predicting h steps ahead.

The criterion by which we usually judge the performance of an estimator or
predictor ŷ of a random variable y is its mean-square error defined by E{(y −
ŷ)2}. If all of the available information on y is summarised in its marginal
distribution, then the minimum mean-square error prediction is simply the
expected value E(y). However, if y is statistically related to another random
variable x whose value we can observe, and if we know the form of the joint
distribution of x and y, then the minimum mean-square error prediction of y
is the conditional expectation E(y|x). We may state this proposition formally:

(1) Let ŷ = ŷ(x) be the conditional expectation of y given x which
is also expressed as ŷ = E(y|x). Then we have E{(y − ŷ)2} ≤
E{(y − π)2}, where π = π(x) is any other function of x.

Proof. Consider

(2)
E

{
(y − π)2

}
= E

[{
(y − ŷ) + (ŷ − π)

}2
]

= E
{
(y − ŷ)2

}
+ 2E

{
(y − ŷ)(ŷ − π)

}
+ E

{
(ŷ − π)2

}
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In the second term, we have

(3)

E
{
(y − ŷ)(ŷ − π)

}
=

∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫

x

{ ∫
y

(y − ŷ)f(y|x)∂y

}
(ŷ − π)f(x)∂x

= 0.

Here the second equality depends upon the factorisation f(x, y) = f(y|x)f(x)
which expresses the joint probability denisty function of x and y as the product
of the conditional density function of y given x and the marginal density func-
tion of x. The final equality depends upon the fact that

∫
(y − ŷ)f(y|x)∂y =

E(y|x) − E(y|x) = 0. Therefore E{(y − π)2} = E{(y − ŷ)2} + E{(ŷ − π)2} ≥
E{(y − ŷ)2} and our assertion is proved.

We might note that the definition of the conditional expectation implies
that

(4)

E(xy) =
∫

x

∫
y

xyf(x, y)∂y∂x

=
∫

x

x

{ ∫
y

yf(y|x)∂y

}
f(x)∂x

= E(xŷ).

When the equation E(xy) = E(xŷ) is rewritten as

(5) E
{
x(y − ŷ)

}
= 0,

it may be described as an orthogonality condition. This condition indicates
that the prediction error y − ŷ is uncorrelated with x. The result is intuitively
appealing; for, if the error were correlated with x, we should not using the
information of x efficiently in forming ŷ.

The proposition of (1) is readily generalised to accommodate the case
where, in place of the scalar x, we have a vector x = [x1, . . . , xp]′. This gen-
eralisation indicates that the minimum-mean-square-error prediction of yt+h

given the information in {yt, yt−1, . . . , yt−p} is the conditional expectation
E(yt+h|yt, yt−1, . . . , yt−p).

In order to determine the conditional expectation of yt+h given {yt, yt−1,
. . . , yt−p}, we need to known the functional form of the joint probability den-
sity function all of these variables. In lieu of precise knowledge, we are often
prepared to assume that the distribution is normal. In that case, it follows that
the conditional expectation of yt+h is a linear function of {yt, yt−1, . . . , yt−p};
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and so the problem of predicting yt+h becomes a matter of forming a linear
regression. Even if we are not prepared to assume that the joint distribution
of the variables in normal, we may be prepared, nevertheless, to base our pre-
diction of y upon a linear function of {yt, yt−1, . . . , yt−p}. In that case, we
satisfy the criterion of minimum-mean-square-error linear prediction by form-
ing ŷt+h = φ1yy + φ2yt−1 + · · · + φp+1yt−p from the values φ1, . . . , φp+1 which
minimise

(6)
E

{
(yt+h − ŷt+h)2

}
= E

{(
yt+h −

p+1∑
j=1

φjyt−j+1

)2
}

= γ0 − 2
∑

j

φjγh+j−1 +
∑

i

∑
j

φiφjγi−j ,

wherein γi−j = E(εt−iεt−j). This is a linear least-squares regression problem
which leads to a set of p + 1 orthogonality conditions described as the normal
equations:

(7)
E

{
(yt+h − ŷt+h)yt−j+1

}
= γh+j−1 −

p∑
i=1

φiγi−j

= 0 ; j = 1, . . . , p + 1.

In matrix terms, we have

(8)


γ0 γ1 . . . γp

γ1 γ0 . . . γp−1

...
...

. . .
...

γp γp−1 . . . γ0




φ1

φ2
...

φp+1

 =


γh

γh+1

...
γh+p

 .

Notice that, for the one-step-ahead prediction of yt+1, these are nothing but
the Yule–Walker equations.

In the case of an optimal predictor combines previous values of the series, it
follows from the orthogonality principle that the forecast errors are uncorrelated
with the previous predictions.

A result of this sort is familiar to economists in connection with the so-
called efficient-markets hypothesis. A financial market is efficient if the prices of
the traded assets constitute optimal forecasts of their discounted future returns,
which consist of interest and dividend payments and of capital gains.

According to the hypothesis, the changes in asset prices will be uncorre-
lated with the past or present price levels; which is to say that asset prices will
follow random walks. Moreover, it should not be possible for someone who is
appraised only of the past history of asset prices to reap speculative profits on
a systematic and regular basis.
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Forecasting with ARMA Models

So far, we have avoided making specific assumptions about the nature of
the process y(t). We are greatly assisted in the business of developing practical
forecasting procedures if we can assume that y(t) is generated by an ARMA
process such that

(9) y(t) =
µ(L)
α(L)

ε(t) = ψ(L)ε(t).

We shall continue to assume, for the sake of simplicity, that the forecasts
are based on the information contained in the infinite set {yt, yt−1, yt−2, . . .} =
It comprising all values that have been taken by the variable up to the present
time t. Knowing the parameters in ψ(L) enables us to recover the sequence
{εt, εt−1, εt−2, . . .} from the sequence {yt, yt−1, yt−2, . . .} and vice versa; so ei-
ther of these constitute the information set. This equivalence implies that the
forecasts may be expressed in terms {yt} or in terms {εt} or as a combination
of the elements of both sets.

Let us write the realisations of equation (9) as

(10)
yt+h = {ψ0εt+h + ψ1εt+h−1 + · · · + ψh−1εt+1}

+ {ψhεt + ψh+1εt−1 + · · ·}.

Here the first term on the RHS embodies disturbances subsequent to the time
t when the forecast is made, and the second term embodies disturbances which
are within the information set {εt, εt−1, εt−2, . . .}. Let us now define a forecast-
ing function, based on the information set, which takes the form of

(11) ŷt+h|t = {ρhεt + ρh+1εt−1 + · · ·}.

Then, given that ε(t) is a white-noise process, it follows that the mean square
of the error in the forecast h periods ahead is given by

(12) E
{
(yt+h − ŷt+h)2

}
= σ2

ε

h−1∑
i=0

ψ2
i + σ2

ε

∞∑
i=h

(ψi − ρi)2.

Clearly, the mean-square error is minimised by setting ρi = ψi; and so the
optimal forecast is given by

(13) ŷt+h|t = {ψhεt + ψh+1εt−1 + · · ·}.

This might have been derived from the the equation y(t + h) = ψ(L)ε(t + h),
which generates the the true value of yt+h, simply by putting zeros in place of
the unobserved disturbances εt+1, εt+2, . . . , εt+h which lie in the future when
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the forecast is made. Notice that, as the lead time h of the forecast increases,
the mean-square error of the forecast tends to the value of

(14) V
{
y(t)

}
= σ2

ε

∑
ψ2

i

which is nothing but the variance of the process y(t).
We can also derive the optimal forecast of (5) by specifying that the forecast

error should be uncorrelated with the disturbances up to the time of making the
forecast. For, if the the forecast errors were correlated with some of the elements
of our information set, then, as we have noted before, we would not be using
the information efficiently, and we could not be generating optimal forecasts.
To demonstrate this result anew, let us consider the covariance between the
forecast error and the disturbance εt−i:

(15)

E
{
(yt+h − ŷt+h)εt−i

}
=

h∑
k=1

ψh−kE(εt+kεt−i)

+
∞∑

j=0

(ψh+j − ρh+j)E(εt−jεt−i)

= σ2
ε(ψh+i − ρh+i).

Here the final equality follows from the fact that

(16) E(εt−jεt−i) =

{
σ2

ε , if i = j,

0, if i �= j.

If the covariance in (15) is to be equal to zero for all values of i ≥ 0, then we
must have ρi = ψi for all i, which means that our forecasting function must be
the one that we have already specified under (13).

It is helpful, sometimes, to have a functional notation for describing the
process which generates the h-steps-ahead forecast. The notation provided by
Whittle (1963) is widely used. To derive this, let us begin by writing

(17) y(t + h|t) =
{
L−hψ(L)

}
ε(t).

On the LHS, we have not only the lagged sequences {ε(t), ε(t−1), . . .} but also
the sequences ε(t + h) = L−hε(t), . . . , ε(t + 1) = L−1ε(t), which are associated
with negative powers of L which serve to shift a sequence forwards in time. Let
{L−hψ(L)}+ be defined as the part of the operator containing only nonnegative
powers of L. Then we can express the forecasting function as

(18)
ŷ(t + h|t) =

{
L−hψ(L)

}
+
ε(t),

=
{

ψ(L)
Lh

}
+

1
ψ(L)

y(t).
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Example. Consider an ARMA (1, 1) process represented by the equation

(19) (1 − φL)y(t) = (1 − θL)ε(t).

The function which generates the sequence of forecasts h steps ahead is given
by

(20)

ŷ(t + h|t) =
{

L−h

[
1 +

(φ − θ)L
1 − φL

]}
+

ε(t)

= φh−1 (φ − θ)
1 − φL

ε(t)

= φh−1 (φ − θ)
1 − θL

y(t).

When θ = 0, this gives the simple result that ŷ(t + h|t) = φhy(t).

Generating The Forecasts Recursively

We have already seen that we can regard the optimal (minimum mean-
square error) forecast of yt+h as the conditional expectation of yt+h given the
information set It which comprises the values of {εt, εt−1, εt−2, . . .} or equally
the values of {yt, yt−1, yt−2, . . .}. On taking expectations y(t) and ε(t) condi-
tonal on It, we find that

(21)

E(yt+k|It) = ŷt+k if k > 0,

E(yt−j |It) = yt−j if j ≥ 0,

E(εt+k|It) = 0 if k > 0,

E(εt−j |It) = εt−j = yt−j − ŷt−j if j ≥ 0.

In this notation, the forecast h periods ahead is

(22)

E(yt+h|It) =
h∑

k=1

ψh−kE(εt+k|It) +
∞∑

j=0

ψh+jE(εt−j |It)

=
∞∑

j=0

ψh+jεt−j .

In practice, we may generate the forecasts using a recursion based on the
equation

(23)
y(t) = −

{
α1y(t − 1) + α2y(t − 2) + · · · + αpy(t − p)

}
+ µ0ε(t) + µ1ε(t − 1) + · · · + µqε(t − q).
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By taking the conditional expectation of this function, we get

(24)
ŷt+h = −{α1ŷt+h−1 + · · · + αpyt+h−p}

+ µhεt + · · · + µqεt+h−q when 0 < h ≤ p, q,

(25) ŷt+h = −{α1ŷt+h−1 + · · · + αpyt+h−p} if q < m ≤ p,

(26)
ŷt+h = −{α1ŷt+h−1 + · · · + αpŷt+h−p}

+ µhεt + · · · + µqεt+h−q if p < h ≤ q,

and

(27) ŷt+h = −{α1ŷt+h−1 + · · · + αpŷt+h−p} when p, q < h.

We can see from (27) that, for h > p, q, the forecasting function becomes a
pth-order homogeneous difference equation in y. The p values of y(t) from
t = r = max(p, q) to t = r − p + 1 serve as the starting values for the equation.

The behaviour of the forecast function beyond the reach of the starting
values can be characterised in terms of the roots of the autoregressive operator.
We can assume that none of the roots of α(L) = 0 lie inside the unit circle. If all
of the roots are less than unity, then ŷt+h will converge to zero as h increases. If
one of the roots of α(L) = 0 is unity, then we have and ARIMA(p, 1, q) model;
and the general solution of the homogeneous equation of (27) will include a
constant term which represents the product of the unit root with an coefficient
which is determined by the starting values. Hence the the forecast will tend to
a nonzero constant. If two of the roots are unity, then the the general solution
will embody a linear time trend which is the asymptote to which the forecasts
will tend. In general, if d of the roots are unity, then the general solution will
comprise a polynomial in t of order d − 1.

The forecasts can be updated easily once the coefficients in the expansion
of ψ(L) = µ(L)/α(L) have been obtained. Consider

(28)
ŷt+h|t+1 = {ψh−1εt+1 + ψhεt + ψh+1εt−1 + · · ·} and

ŷt+h|t = {ψhεt + ψh+1εt−1 + ψh+2εt−2 + · · ·}.

The first of these is the forecast for h − 1 periods ahead made at time t + 1
whilst the second is the forecast for h periods ahead made at time t. It can be
seen that

(29) ŷt+h|t+1 = ŷt+h|t + ψh−1εt+1,

7
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where εt+1 = yt+1 − ŷt+1 is the current disturbance at time t + 1. The later is
also the prediction error of the one-step-ahead forecast made at time t.

Ad-hoc Methods of Forecasting

There are some time-honoured methods of forecasting which, when anal-
ysed carefully, reveal themselves to be the methods which are appropriate to
some simple ARIMA models which might be suggested by a priori reason-
ing. Two of the leading example are provided by the method of exponential
smoothing and the Holt–Winters trend-extrapolation method.

Exponential Smoothing. A common forecasting procedure is exponential
smoothing. This depends upon taking a weighted average of past values of the
time series with the weights following a geometrically declining pattern. The
function generating the one-step-ahead forecasts can be written as

(30)
ŷ(t + 1|t) =

(1 − θ)
1 − θL

y(t)

= (1 − θ)
{
y(t) + θy(t − 1) + θ2y(t − 2) + · · ·

}
.

On multiplying both sides of this equation by 1 − θL and rearranging, we get

(31) ŷ(t + 1|t) = θŷ(t|t − 1) + (1 − θ)y(t),

which shows that the current forecast for one step ahead is a convex combina-
tion of the previous forecast and the value which actually transpired.

The method of exponential smoothing corresponds to the optimal fore-
casting procedure for the ARIMA(0, 1, 1) model (1 − L)y(t) = (1 − θL)ε(t),
which is better described as an IMA(1, 1) model. To see this, let us consider
the ARMA(1, 1) model y(t) − φy(t − 1) = ε(t) − θε(t − 1). This gives

(32)

ŷ(t + 1|t) = φy(t) − θε(t)

= φy(t) − θ
(1 − φL)
1 − θL

y(t)

=
{(1 − θL)φ − (1 − φL)θ}

1 − θL
y(t)

=
(φ − θ)
1 − θL

y(t).

On setting φ = 1, which converts the ARMA(1, 1) model to an IMA(1, 1) model,
we obtain precisely the forecasting function of (30).

The Holt–Winters Method. The Holt–Winters algorithm is useful in ex-
trapolating local linear trends. The prediction h periods ahead of a series
y(t) = {yt, t = 0,±1,±2, . . .} which is made at time t is given by

(33) ŷt+h|t = α̂t + β̂th,
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where

(34)
α̂t = λyt + (1 − λ)(α̂t−1 + β̂t−1)

= λyt + (1 − λ)ŷt|t−1

is the estimate of an intercept or levels parameter formed at time t and

(35) β̂t = µ(α̂t − α̂t−1) + (1 − µ)β̂t−1

is the estimate of the slope parameter, likewise formed at time t. The coeffi-
cients λ, µ ∈ (0, 1] are the smoothing parameters.

The algorithm may also be expressed in error-correction form. Let

(36) et = yt − ŷt|t−1 = yt − α̂t−1 − β̂t−1

be the error at time t arising from the prediction of yt on the basis of information
available at time t− 1. Then the formula for the levels parameter can be given
as

(37)
α̂t = λet + ŷt|t−1

= λet + α̂t−1 + β̂t−1,

which, on rearranging, becomes

(38) α̂t − α̂t−1 = λet + β̂t−1.

When the latter is drafted into equation (35), we get an analogous expression
for the slope parameter:

(39)
β̂t = µ(λet + β̂t−1) + (1 − µ)β̂t−1

= λµet + β̂t−1.

In order reveal the underlying nature of this method, it is helpful to com-
bine the two equations (37) and (39) in a simple state-space model:

(40)
[

α̂(t)
β̂(t)

]
=

[
1 1
0 1

] [
α̂(t − 1)
β̂(t − 1)

]
+

[
λ
λµ

]
e(t).

This can be rearranged to give

(41)
[

1 − L −L
0 1 − L

] [
α̂(t)
β̂(t)

]
=

[
λ
λµ

]
e(t).

9
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The solution of the latter is

(42)
[

α̂(t)
β̂(t)

]
=

1
(1 − L)2

[
1 − L L

0 1 − L

] [
λ
λµ

]
e(t).

Therefore, from (33), it follows that

(43)

ŷ(t + 1|t) = α̂(t) + β̂(t)

=
(λ + λµ)e(t) + λe(t − 1)

(1 − L)2
.

This can be recognised as the forecasting function of an IMA(2, 2) model of
the form

(44) (I − L)2y(t) = µ0ε(t) + µ1ε(t − 1) + µ2ε(t − 2)

for which

(45) ŷ(t + 1|t) =
µ1ε(t) + µ2ε(t)(t − 1)

(1 − L)2
.

The Local Trend Model. There are various arguments which suggest that
an IMA(2, 2) model might be a natural model to adopt. The simplest of these
arguments arises from an elaboration of a second-order random walk which
adds an ordinary white-noise disturbance to the tend. The resulting model
may be expressed in two equations

(46)
(I − L)2ξ(t) = ν(t),

y(t) = ξ(t) + η(t).

Combining the equations, and using the notation ∇ = 1 − L, gives

(47)
y(t) =

ν(t)
∇2

+ η(t)

=
ν(t) + ∇2η(t)

∇2
.

Here the numerator ν(t)+∇2η(t) = {ν(t)+η(t)}−2η(t−1)+η(t−2) constitutes
an second-order MA process.

10
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Slightly more elaborate models with the same outcome have also been
proposed. Thus the so-called structural model consists of the equations

(48)

y(t) = µ(t) + ε(t),

µ(t) = µ(t − 1) + β(t − 1) + η(t),

β(t) = β(t − 1) + ζ(t).

Working backwards from the final equation gives

(49)

β(t) =
ζ(t)
∇ ,

µ(t) =
β(t − 1)

∇ +
η(t)
∇

=
ζ(t − 1)

∇2
+

η(t)
∇ ,

y(t) =
ζ(t − 1)

∇2
+

η(t)
∇ + ε(t)

=
ζ(t − 1) + ∇η(t) + ∇2ε(t)

∇2
.

Once more, the numerator constitutes a second-order MA process.

Equivalent Forecasting Functions

Consider a model which combines a global linear trend with an autoregres-
sive disturbance process:

(50) y(t) = γ0 + γ1t +
ε(t)

I − φL
.

The formation of an h-step-ahead prediction is straightforward; for we can
separate the forecast function into two additive parts.

The first part of the function is the extrapolation of the global linear trend.
This takes the form of

(51)
zt+h|t = γ0 + γ1(t + h)

= zt + γ1h

where zt = γ0 + γ1t.
The second part is the prediction associated with the AR(1) disturbance

term η(t) = (I −φL)−1ε(t). The following iterative scheme is provides a recur-
sive solution to the problem of generating the forecasts:

(52)

η̂t+1|t = φηt,

η̂t+2|t = φη̂t+1|t,

η̂t+3|t = φη̂t+2|t, etc.

11
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Notice that the analytic solution of the associated difference equation is just

(53) η̂t+h|t = φhηt.

This reminds us that, whenever we can express the forecast function in terms
of a linear recursion, we can also express it in an analytic form embodying the
roots of a polynomial lag operator. The operator in this case is the AR(1)
operator I−φL. Since, by assumption, |φ| < 1, it is clear that the contribution
of the disturbance part to the overall forecast function

(54) ŷt+h|t = zt+h|t + η̂t+h|t,

becomes negligible when h becomes large.
Consider the limiting case when φ → 1. Now, in place of an AR(1) distur-

bance process, we have to consider a random-walk process. We know that the
forecast function of a random walk consists of nothing more than a constant
function. On adding this constant to the linear function zt+h|t = γ0 + γ1(t+h)
we continue to have a simple linear function.

Another way of looking at the problem depends upon writing equation
(40) as

(55) (I − φL)
{
y(t) − γ0 − γ1t

}
= ε(t).

Setting φ = 1 turns the operator I−φL into the difference operator I−L = ∇.
But ∇γ0 = 0 and ∇γ1t = γ1, so equation (55) with φ = 1 can also be written
as

(56) ∇y(t) = γ1 + ε(t).

This is the equation of a process which is described as random walk with drift.
Yet another way of expressing the process is via the equation y(t) = y(t− 1) +
γ1 + ε(t).

It is intuitively clear that, if the random walk process ∇z(t) = ε(t) is
associated with a constant forecast function, and if z(t) = y(t)− γ0 − γ1t, then
y(t) will be associated with a linear forecast function.

The purpose of this example has been to offer a limiting case where mod-
els with local stochastic trends—ie. random walk and unit root models—and
models with global polynomial trends come together. Finally, we should notice
that the model of random walk with drift has the same linear forecast function
as the model

(57) ∇2y(t) = ε(t)

which has two unit roots in the AR operator.
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