
LECTURE 1

Conditional Expectations
and Regression Analysis

In this chapter, we shall study three methods that are capable of generating
estimates of statistical parameters in a wide variety of contexts. These are the
method of moments, the method of least squares and the principle of maximum
likelihood.

The methods will be studied only in relation to the simple linear regression
model; and it will be seen that each entails assumptions that may be more or
less appropriate to the context in which the model is to be applied.

In the case of the regression model, the three methods generate estimating
equations that are formally identical; but this does not justify us in taking a
casual approach to the statistical assumptions that sustain the model. To be
casual in making our assumptions is to invite the danger of misinterpretation
when the results of the estimation are in hand.

We begin with the method of moments, we shall proceed to the method
of least squares, and we shall conclude with a brief treatment of the method of
maximum likelihood.

Conditional Expectations

Let y be a continuously distributed random variable whose probability
density function is f(y). If we wish to predict the value of y without the
help of any other information, then we might take its expected value, which is
defined by

E(y) =
∫

yf(y)dy.

The expected value is a so-called minimum-mean-square-error (m.m.s.e.)
predictor. If π is the value of a prediction, then the mean-square error is given
by

(1)

M =
∫

(y − π)2f(y)dy

= E
{
(y − π)2

}
= E(y2) − 2πE(y) + π2;
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and, using the methods of calculus, it is easy to show that this quantity is
minimised by taking π = E(y).

Now let us imagine that y is statistically related to another random variable
x, whose values have already been observed. For the sake of argument, it may
be assumed that the form of the joint distribution of x and y, which is f(x, y),
is known. Then, the minimum-mean-square-error prediction of y is given by
the conditional expectation

(2) E(y|x) =
∫

y
f(x, y)
f(x)

dy

wherein

(3) f(x) =
∫

f(x, y)dy

is the so-called marginal distribution of x. This proposition may be stated
formally in a way that will assist us in proving it:

(4) Let ŷ = ŷ(x) be the conditional expectation of y given x, which is
also expressed as ŷ = E(y|x). Then E{(y − ŷ)2} ≤ E{(y − π)2},
where π = π(x) is any other function of x.

Proof. Consider

(5)
E

{
(y − π)2

}
= E

[{
(y − ŷ) + (ŷ − π)

}2
]

= E
{
(y − ŷ)2

}
+ 2E

{
(y − ŷ)(ŷ − π)

}
+ E

{
(ŷ − π)2

}
.

In the second term, there is

(6)

E
{
(y − ŷ)(ŷ − π)

}
=

∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫

x

{ ∫
y

(y − ŷ)f(y|x)∂y

}
(ŷ − π)f(x)∂x

= 0.

Here, the second equality depends upon the factorisation f(x, y) = f(y|x)f(x),
which expresses the joint probability density function of x and y as the product
of the conditional density function of y given x and the marginal density func-
tion of x. The final equality depends upon the fact that

∫
(y − ŷ)f(y|x)∂y =

E(y|x) − E(y|x) = 0. Therefore, E{(y − π)2} = E{(y − ŷ)2} + E{(ŷ − π)2} ≥
E{(y − ŷ)2}, and the assertion is proved.
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The definition of the conditional expectation implies that

(7)

E(xy) =
∫

x

∫
y

xyf(x, y)∂y∂x

=
∫

x

x

{ ∫
y

yf(y|x)∂y

}
f(x)∂x

= E(xŷ).

When the equation E(xy) = E(xŷ) is rewritten as

(8) E
{
x(y − ŷ)

}
= 0,

it may be described as an orthogonality condition. This condition indicates
that the prediction error y − ŷ is uncorrelated with x. The result is intuitively
appealing; for, if the error were correlated with x, then the information of x
could not have been used efficiently in forming ŷ.

If the joint distribution of x and y is a normal distribution, then it is
straightforward to find an expression for the function E(y|x). In the case of a
normal distribution, there is

(9) E(y|x) = α + βx,

which is to say that the conditional expectation of y given x is a linear func-
tion of x. Equation (9) is described as a linear regression equation; and this
terminology will be explained later.

The object is to find expressions for α and β that are in terms of the first-
order and second-order moments of the joint distribution. That is to say, we
wish to express α and β in terms of the expectations E(x), E(y), the variances
V (x), V (y) and the covariance C(x, y).

Admittedly, if we had already pursued the theory of the Normal distri-
bution to the extent of demonstrating that the regression equation is a linear
equation, then we should have already discovered these expressions for α and
β. However, present purposes are best served by taking equation (9) as the
starting point; and the linearity of the regression equation may be regarded as
an assumption in its own right rather than as a deduction from the assumption
of a normal distribution.

To begin, equation (9) may be multiplying throughout by f(x), and inte-
grates with respect to x. This gives

(10) E(y) = α + βE(x),

whence

(11) α = E(y) − βE(x).
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Equation (10) shows that the regression line passes through the point E(x, y) =
{E(x), E(y)}, which is the expected value of the joint distribution.

Putting (11) into (9) gives

(12) E(y|x) = E(y) + β
{
x − E(x)

}
,

which shows that the conditional expectation of y differs from the unconditional
expectation in proportion to the error of predicting x by taking its expected
value.

Next, (9) is multiplied by x and f(x) and then integrated with respect to
x to provide

(13) E(xy) = αE(x) + βE(x2).

Multiplying (10) by E(x) gives

(14) E(x)E(y) = αE(x) + β
{
E(x)

}2
,

whence, on taking (14) from (13), we get

(15) E(xy) − E(x)E(y) = β
[
E(x2) −

{
E(x)

}2
]
,

which implies that

(16)

β =
E(xy) − E(x)E(y)

E(x2) −
{
E(x)

}2

=
E

[{
x − E(x)

}{
y − E(y)

}]
E

[{
x − E(x)

}2
]

=
C(x, y)
V (x)

.

Thus, α and β have been expressed in terms of the moments E(x), E(y), V (x)
and C(x, y) of the joint distribution of x and y.

Example. Let x = ξ + η be an observed random variable which combines a
signal component ξ and a noise component η. Imagine that the two components
are uncorrelated with C(ξ, η) = 0, and let V (ξ) = σ2

ξ and V (η) = σ2
η. The

object is to extract the signal from the observation.
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According to the formulae of (12) and (16), the expectation of the signal
conditional upon the observation is

(17) E(ξ|x) = E(ξ) +
C(x, ξ)
V (x)

{
x − E(x)

}
.

Given that ξ and η are uncorrelated, it follows that

(18) V (x) = V (ξ + η) = σ2
ξ + σ2

η

and that

(19) C(x, ξ) = V (ξ) + C(ξ, η) = σ2
ξ .

Therefore

(20) E(ξ|x) = E(ξ) +
σ2

ξ

σ2
ξ + σ2

η

{
x − E(x)

}
.

Estimation by the Method of Moments

The values of the various moments comprised in the formulae for the re-
gression parameters are unlikely to be know in the absense of sample data.
However, they are easily estimated from the data. Imagine that a sample of T
observations on x and y is available: (x1, y1), (x2, y2), . . . , (xT , yT ). Then, the
following empirical or sample moments can be calculated:

(21)

x̄ =
1
T

T∑
t=1

xt,

ȳ =
1
T

T∑
t=1

yt,

s2
x =

1
T

T∑
t=1

(xt − x̄)2 =
1
T

T∑
t=1

x2
t − x̄2,

sxy =
1
T

T∑
t=1

(xt − x̄)(yt − ȳ) =
1
T

T∑
t=1

xtyt − x̄ȳ.

The method of moments suggests that, in order to estimate α and β, the
moments should be replaced in the formulae of (11) and (16) by the corre-
sponding sample moments. Thus the estimates of α and β are

(22)
α̂ = ȳ − β̂x̄,

β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.
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The justification of the method is that, in many of the circumstances under
which the data are liable to be generated, the sample moments are expected
to converge to the true moments of the bivariate distribution, thereby causing
the estimates of the parameters to converge, likewise, to the true values.

In this context, the concept of convergence has a special definiton. Ac-
cording to the concept of convergence which is used in mathematical analysis,

(23) A sequence of numbers {an} is said to converge to a limit a if, for
any arbitrarily small real number ε, there exists a corresponding
integer N such that |an − a| < ε for all n ≥ N .

This concept is not appropriate to the case of a stochastic sequence, such as
a sequence of estimates. For, no matter how many observations N have been
incorporated in the estimate aN , there remains a possibility that, subsequently,
an aberrant observation yn will draw the estimate an beyond the bounds of a±ε.
A criterion of convergence must be adopted that allows for this possibility:

(24) A sequence of random variables {an} is said to converge weakly in
probability to a limit a if, for any ε, there is lim P (|an−a| > ε) = 0
as n → ∞ or, equivalently, limP (|an − a| ≤ ε) = 1.

This means that, by increasing the size of the sample, we can make it virtually
certain that an will ‘fall within an epsilon of a.’ It is conventional to describe
a as the probability limit of an and to write plim(an) = a.

The virtue of this definition of convergence is that it does not presuppose
that the random variable an has a finite variance or even a finite mean. How-
ever, if an does have finite moments, then a concept of mean-square convergence
can be employed.

(25) A sequence of random variables {an} is said to converge in mean
square to a limit a if lim(n → ∞)E{(an − a)2} = 0.

It should be noted that

(26)
E

{(
an − a

)2
}

= E

{([
an − E(an)

]
−

[
a − E(an)

])2
}

= V (an) + E
[{

a − E(an)
}2

]
;

which is to say that the mean-square error of an is the sum of its variance and
the square of its bias. If an is to converge in mean square to a, then both of
these quantities must vanish.

Convergence in mean square is a stronger condition than convergence in
probability in the sense that it implies the latter. Whenever an estimator
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converges in probability to the value of the parameter which it purports to
represent, then it is said to be a consistent estimator.

Regression and the Eugenic Movement

The theory of linear regression has its origins in the late 19th century when
it was closely associated with the name of the English eugenicist Francis Galton
(1822–1911).

Galton was concerned with the hereditibility of physical and mental char-
acteristics; and he sought ways of improving the genetic quality of the human
race. His disciple Karl Pearson, who espoused the same eugenic principles as
Galton and who was a leading figure in the early development of statistical
theory in Britain, placed Galton’s contributions to science on a par with those
of Charles Darwin who was Galton’s cousin.

Since the 1930’s, the science of eugenics has fallen into universal disrepute,
and its close historical association with statistics has been largely forgotten.
However it should be recalled that one of the premier journals in its field,
which now calls itself the Annals of Human Genetics, began life as The Annals
of Eugenics. The thoughts which inspired the Eugenic Movement still arise,
albeit that they are expressed, nowadays, in different guises.

One of Galton’s studies that is best remembered concerns the relationship
between the heights of fathers and the heights of their sons. The data that was
gathered was plotted on a graph and it was found to have a distribution that
resembles a bivariate normal distribution.

It might be supposed that the best way to predict the height of a son is to
take the height of the father. In fact, such a method would lead of a systematic
over-estimation of the height of the sons if their fathers were above-average
height. In the terminology of Galton, we usually witness a regression of the
son’s height towards “mediocrity ”.

Galton’s terminology suggests a somewhat unbalanced point of view. The
phenomenon of regression is accompanied by a corresponding phenomenon of
progression whereby fathers of less than average height are liable to have sons
who are taller than themselves. Also, if the distribution of heights is to remain
roughly the same from generation to generation and if it is not to loose its
dispersion, then there are bound to be cases which conflict with the expectation
of an overall reversion towards the mean.

A little reflection will go a long way toward explaining the phenomenon of
reversion; for we need only consider the influence of the mother’s height. If we
imagine that, in general, men of above-average height show no marked tendency
to marry tall women, then we might be prepared to attribute an average height
to the mother, regardless of the father’s height. If we acknowledge that the
two parents are equally influential in determining the physical characteristics
of their offspring, then we have a ready explanation of the tendency of heights
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Figure 1. Pearson’s data comprising 1078 measurements of on the heights of
father (the abscissae) and of their sons (the ordinates), together with the two
regression lines. The correlation coefficient is 0.5013.

to revert to the mean. To the extent that tall people choose tall partners, we
shall see a retardation of the tendency; and the characteristics of abnormal
height will endure through a greater number of generations.

An investigation into the relationship between the heights of parents and
the heights of their offspring was published in 1886 by Francis Galton. He
collected the data of 928 adult offspring and their parents. He combined the
height of the two parents by averaging the father’s height and the mother’s
height scaled by a factor of 1.08, which was obtained by a comparison of the
average male height and the average female height. This created a total of 205
midparents. Likewise, all female heights were multiplied by a factor 1.08. Even
when the sexes are combined in this manner there, is a clear regression towards
the mean.

Galton’s analysis was extended by Karl Pearson (1857–1936) in a series
of papers. In 1903, Pearson and Lee published an analysis that comprised
separate data on fathers and sons and on mothers and daughters. Figure 1 is
based on 1078 measurements from Pearson’s data of a father’s height and his
son’s height. It appears to indicate that, in the late 19th century, there was a
small but significant increase in adult male stature.

The Bivariate Normal Distribution

Most of the results in the theory of regression that have described so far
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can be obtained by examining the functional form of the bivariate normal dis-
tribution. Let x and y be the two variables. Let their means be denoted by

(27) E(x) = µx, E(y) = µy,

their variances by

(28) V (x) = σ2
x, V (y) = σ2

y

and their covariance by

(29) C(x, y) = ρσxσy.

Here

(30) ρ =
C(x, y)√
V (x)V (y)

,

which is called the correlation coefficient of x and y, provides a measure of the
relatedness of these variables.

The Cauchy–Schwarz inequality indicates that −1 ≤ ρ ≤ 1. If ρ = 1, then
there is an exact positive linear relationship between the variables whereas,
if ρ = −1, then there is an exact negative linear relationship. Neither of
these extreme cases is admissible in the present context for, as can be seen
by examining the following formulae, they lead to the collapse of the bivariate
distribution.

The bivariate distribution is specified by

(31) f(x, y) =
1

2πσxσy

√
1 − ρ2

expQ(x, y),

where

(32) Q =
−1

2(1 − ρ2)

{(
x − µx

σx

)2

− 2ρ

(
x − µx

σx

) (
y − µy

σy

)
+

(
y − µy

σy

)2
}

is a quadratic function of x and y.
The function can also be written as

(33) Q =
−1

2(1 − ρ2)

{(
y − µy

σy
− ρ

x − µx

σx

)2

− (1 − ρ2)
(

x − µx

σx

)2
}

.

Thus, there is

(34) f(x, y) = f(y|x)f(x),
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where

(35) f(x) =
1

σx

√
2π

exp
{
− (x − µx)2

2σ2
x

}
,

and

(36) f(y|x) =
1

σy

√
2π(1 − ρ2)

exp
{
− (y − µy|x)2

2σ2
y(1 − ρ)2

}
,

with

(37) µy|x = µy +
ρσy

σx
(x − µx).

Equation (37) is the linear regression equation, which specifies the value
of E(y|x) = µy|x in terms of x; and it is simply the equation (12) in another
notation. Equation (36) indicates that the variance of y about its conditional
expectation is

(38) V (y|x) = σ2
y(1 − ρ2).

Since (1 − ρ2) ≤ 1, it follows that variance of the conditional predictor E(y|x)
is less than that of the unconditional predictor E(y) whenever ρ �= 0—which is
whenever there is a correlation between x and y. Moreover, as this correlation
increases, the variance of the conditional predictor diminishes.

There is, of course, a perfect symmetry between the arguments x and y in
the bivariate distribution. Thus, if we choose to factorise the joint probability
density function as f(x, y) = f(x|y)f(y), then, to obtain the relevant results,
we need only interchange the x’s and the y’s in the formulae above.

The fact shuould be noted that x and y will be statistically independent
random variables that are uncorrelated with each other if and only if their
joint distribution can be factorised as the product of their marginal distribu-
tions: f(y, y) = f(y)f(y). In the absence of statistical independence, the joint
distribution becomes the product of a conditional distribution and a marginal
distribution: f(y, x) = f(y|x)f(x). The arguments of these two distributions
will retain the properties of statistical independence. That is to say, the ran-
dom variables ε = y − µy|x and ν = x − µx are, by construction, statistically
independent with C(ε, ν) = 0.

Least-Squares Regression Analysis

Galton’s analysis, which described the regression relationship between the
heights of fathers and their sons, was an exercise in descriptive statistics based
on a given set of data. There can be no presumption that, for a different
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race of men living in a different environment, the same parameters would be
uncovered. It is only as an experiment in thought that we may vary the value
of the explanatory variable x and watch the concomitant variation of y. The
heights of individual men are not subject to experimental manipulation.

Econometrics, in contrast to descriptive statistics, is often concerned with
functional regression relationships, which purport to describe the effects of
manipulating the instruments of economic policy such as interest rates and rates
of taxation. In such cases, it is no longer appropriate to attribute a statistical
distribution to the explanatory variable x, which now assumes the status of a
control variable. Therefore, it is necessary to derive the formulae of regression
analysis from principles that make no reference to the joint distribution of the
variables. The principle of least squares is appropriate to this purpose.

Before admitting this change of emphasis, we should offer some words of
caution. For it seems that many of the errors of applied econometrics arise when
an analyst imagines that, in fitting a regression equation, he has uncovered a
causal connection.

The data that are used in inferring a regression relationship are part of an
historical record of the evolution of the economy; and it is never certain that
the same statistical relationships would have prevailed in other circumstances.
Nor is it clear that they will prevail in the future.

An econometric analysis is often conducted with a view to guiding the
actions of a regulatory agent. However, such actions are liable to alter the
statistical relationships prevailing amongst economic variables. An assertion
that a particular relationship will endure through time and that it will be
unaffected by regulatory intercessions ought to be greeted with skepticism.
Yet, in such matters, applied econometricians are often eager to suspend their
disbelief.

To assist the application of the method of least squares, the regression
equation, which has been defined by E(y|x) = α + βx, can be written, alterna-
tively, as

(39) y = α + xβ + ε,

where ε = y −E(y|x) is a random variable with E(ε) = 0 and V (ε) = σ2. This
equation may be used to depict a functional relationship between an indepen-
dent variable x and a dependent variable y. The relationship is affected by a
disturbance ε, which is independent of x and which might be taken to represent
the effect of a large number of variables of minor importance that are not taken
into account explicitly in describing the relationship.

Imagine that there is a sample of observations (x1, y1), . . . , (xT , yT ) and
that, from these data, the parameters α and β are to be estimated. The
principle of least squares suggests that this should be done by choosing the
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values that minimise the quantity

(40)

S =
T∑

t=1

ε2
t

=
T∑

t=1

(yt − α − xtβ)2.

This is the sum of squares of the vertical distances—measured parallel to the
y-axis—of the data points from an interpolated regression line.

Differentiating the function S with respect to α and setting the results to
zero for a minimum gives

(41)
−2

∑
(yt − α − βxt) = 0, or, equivalently,

ȳ − α − βx̄ = 0.

This generates the following estimating equation for α:

(42) α(β) = ȳ − βx̄.

Next, differentiating with respect to β and setting the result to zero gives

(43) −2
∑

xt(yt − α − βxt) = 0.

On substituting for α from (42) and eliminating the factor −2, this becomes

(44)
∑

xtyt −
∑

xt(ȳ − βx̄) − β
∑

x2
t = 0,

whence we get

(45)

β̂ =
∑

xtyt − T x̄ȳ∑
x2

t − T x̄2

=
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.

This expression is identical to the one under (22) which has been derived via
the method of moments. Putting β̂ into the estimating equation for α under
(42) gives the same estimate α̂ for the intercept parameter as the one to be
found under (22).

The method of least squares does not automatically provide an estimate of
σ2 = E(ε2

t ). To obtain an estimate, the method of moments is invoked. In view
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of the fact that the regression residuals et = yt − α̂ − β̂xt represent estimates
of the corresponding values of εt, the method suggests the following estimator:

(46) σ̃2 =
1
T

∑
e2
t .

In fact, this is a biased estimator with

(47) E

(
σ̃2

T

)
=

(
T − 2

T

)
σ2;

so it is common to adopt the unbiased estimator

(48) σ̂2 =
∑

e2
t

T − 2
.

There will be an occasion, later, to demonstrate the unbiasedness of this
estimator. To understand the result at an intuitive level, one may recall that
the unbiased estimator of the variance of a distribution, which is constructed
from a random sample, is σ̂2 = (T − 1)−1

∑
(xt − x̂)2. If the mean of the

distribution µ were known and were used in place x̄, then one should divide by
T instead of T −1 to form σ̂2 = T−1

∑
(xt−µ)2. The effect of using the datum

x̄ in place of the unknown mean µ would to reduce the measure of dispersion.
To compensate, the measure is scaled by the factor T/(T −1). In the context of
the regression equation, where two parameters are estimated, the scale factor
T/(T − 2) is used.

Properties of the Least-Squares Estimator

Some of the properties of the least-squares estimators that follow from
the assumptions that have been made already can be revealed now. We shall
consider the likelihood that these assumptions will be fulfilled in practice, as
well as some consequences of their violation.

It has been assumed that the disturbance term ε is a random variable with

(49) E(εt) = 0, and V (εt) = σ2 for all t.

We have avoided making statistical assumptions about x since we are un-
willing to assume that its assembled values will manifest the sort of the regular-
ities which are inherent in a statistical distribution. Therefore, the assumption
that ε is independent of x cannot be expressed in terms of a joint distribution
of these quantities; and, in particular, it cannot be asserted that C(x, ε) = 0.
However, if the regressor xt has a predetermined value that has no effect on
the disturbance εt, then it can be stated that

(50) E(xtεt) = xtE(εt) = 0, for all t.
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In place of an assumption attributing a finite variance to x, it can be
assumed that

(51) lim(T → ∞)
1
T

T∑
t=1

x2
t = mxx < ∞.

For the random sequence {xtεt}, it can also be assumed that

(52) plim(T → ∞)
1
T

T∑
t=1

xtεt = 0.

To see the effect of these assumptions, the expression

(53) yt − ȳ = β(xt − x̄) + εt − ε̄

may be substituted into the expression for β̂ of(45). By rearranging the result,
it is found that

(54) β̂ = β +
∑

(xt − x̄)εt∑
(xt − x̄)2

.

The numerator of the second term on the RHS is obtained with the help of the
identity

(55)

∑
(xt − x̄)(εt − ε̄) =

∑
(xtεt − x̄εt − xtε̄ + x̄ε̄)

=
∑

(xt − x̄)εt.

From the assumption under (50), it follows that

(56) E
{
(xt − x̄)εt

}
= (xt − x̄)E(εt) = 0 for all t.

Therefore

(57)
E(β̂) = β +

∑
(xt − x̄)E(εt)∑

(xt − x̄)2

= β;

and β̂ is seen to be an unbiased estimator of β.
The consistency of the estimator follows, likewise, from the assumptions

under (51) and (52). Thus

(58)
plim(β̂) = β +

plim
{

T−1
∑

(xt − x̄)εt

}
plim

{
T−1

∑
(xt − x̄)2

}
= β;
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and β̂ is seen to be a consistent estimator of β.
The consistency of β̂ depends crucially upon the assumption that the dis-

turbance term is independent of, or uncorrelated with, the explanatory variable
or regressor x. In many econometric contexts, one should be particularly wary
of this assumption. For, as we have suggested earlier, the disturbance term is
liable to be compounded from the variables that have been omitted from the
equation that explains y in terms of x. In a time-dependent context, these vari-
ables are liable to be correlated amongst themselves; and there may be little
justification for assuming that they are not likewise correlated with x.

There are other reasons of a more subtle nature for why the assumption of
the independence of ε and x may be violated. The following example illustrates
one of the classical problems of econometrics.

Example. In elementary macroeconomic theory, a simple model of the econ-
omy is postulated that comprises two equations:

y = c + i,(59)

c = α + βy + ε.(60)

Here, y stands for the gross product of the economy, which is also the income of
consumers, i stands for investment and c stands for consumption. An additional
identity s = y− c or s = i, where s is savings, is also entailed. The disturbance
term ε, which is omitted from the usual presentation in economics textbooks,
is assumed to be independent of the variable i.

On substituting the consumption function of (60) into the income identity
of (59) and rearranging the result, we find that

(61) y =
1

1 − β

(
α + i + ε

)
,

from which

(62) yt − ȳ =
1

1 − β

(
it − ī + εt − ε̄

)
.

The ordinary least-squares estimator of the parameter β, which is called
the marginal propensity to consume, gives rise to the following equation:

(63) β̂ = β +
∑

(yt − ȳ)εt∑
(yt − ȳ)2

.

Equation (61), which shows that y is dependent on ε, suggests that β̂ cannot
be a consistent estimator of β.
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45o
α

i1

i2

y1 y2

c, y

y

y = c + i

c = α  + βy

c  + i1

c  + i2

Figure 2. If the only source of variation in y is the variation in i, then

the observations on y and c will delineate the consumption function.

45o
α

ε

i
y1 y2

c

y

c = y  − i

c = α  + βy

c = α  + βy  + ε

Figure 3. If the only source of variation in y are the disturbances

to c, then the observations on y and c will line along a 45◦ line.
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To determine the probability limit of the estimator, the separate proba-
bility limits of the numerator and the denominator of the term on the RHS of
(63) must be determined.

The following results are available:

(64)

lim
1
T

T∑
t=1

(it − ī)2 = mii = V (i),

plim
1
T

T∑
t=1

(yt − ȳ)2 =
mii + σ2

(1 − β)2
= V (y),

plim
1
T

T∑
t=1

(yt − ȳ)εt =
σ2

1 − β
= C(y, ε).

The results indicate that

(65)
plim β̂ = β +

σ2(1 − β)
mii + σ2

=
βmii + σ2

mii + σ2
;

and it can be seen that the limiting value of β̂ has an upward bias which
increases as the ratio σ2/mii increases.

On the assumption that the model is valid, it is easy to understand why
the parameter of the regression of c on y exceeds the value of the marginal
propensity to consume. This can be achieved by considering the extreme cases.

Imagine, first, that σ2 = V (ε) = 0. Then, the only source of variation in y
and c is the variation in i. In that case, the parameter of the regression of c on
y will coincide with β. This is illustrated in Figure 1. Now imagine, instead,
that i is constant and that the only variations in c and y are due ε which is
disturbs consumption. Then, the expected value of consumption is provided
by the equation c = y − i in which the coefficient associated with y is unity.
Figure 2 illustrates this case. Assuming now that both mii > 0 and σ2 > 0,
it follows that the value of the regression parameter must lie somewhere in the
interval [β, 1].

Although it may be inappropriate for estimating the structural parameter
β, the direct regression of c on y does provide the conditional expectation
E(c|y); and this endows it with a validity which it retains even if the Keynesian
model of (59) and (60) is misspecified.

In fact, the simple Keynesian model of (59) and (60) is more an epigram
than a serious scientific theory. Common sense dictates that one should give
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more credence to the estimate of the conditional expectation E(c|y) than to
a putative estimate of the marginal propensity to consume devised within the
context of a doubtful model.

The Method of Maximum Likelihood

The method of maximum-likelihood constitutes a principle of estimation
that may be applied to a wide variety of problems. One of the attractions of
the method is that, granted the fulfilment of the assumptions on which it is
based, it can be shown that the resulting estimates have optimal properties.
In general, it can be shown that, at least in large samples, the variance of the
resulting estimates is the least that can be achieved by any method.

The cost of using the method is the need to make the assumptions which
are necessary to sustain it. It is often difficult to assess, without a great deal of
further analysis, the extent to which the desirable properties of the maximum-
likelihood estimators survive when these assumptions are not fulfilled. In the
case of the regression model, there is considerable knowledge on this account,
some of which will be presented in later chapters.

The method can be applied the regression model with independently and
identically distributed disturbances that follow a normal probability law. The
probability density functions of the individual disturbances εt; t = 1, . . . , T are
given by

(66) N(εt; 0, σ2) =
1√

2πσ2
exp

(
− ε2

t

2σ2

)
.

Since the ε’s are assumed to be independently distributed, their joint probabil-
ity density function (p.d.f.) is

(67)
T∏

t=1

N(εt; 0, σ2) = (2πσ2)−T/2 exp

(
−1
2σ2

T∑
t=1

ε2

)
.

If the elements x1, . . . , xT are regarded as a given set of numbers, then it follows
that the conditional p.d.f. of the sample y1, . . . , yT is

(68) f(y1, . . . , yT |x1, . . . , xT ) = (2πσ2)−T/2 exp

{
−1
2σ2

T∑
t=1

(yt − α − βxt)

}
.

The principle of maximum likelihood suggests that estimate α, β and σ2

should be estimated by finding the values that maximise the probability mea-
sure that is attributed to the sample y1, . . . , yT . That is to say, the events that
have generated the sample are regarded as the most likely of all the events that
could have occurred.
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Notice that, when α, β and σ2 are the arguments of the function f rather
than its parameters, and when y1, . . . , yT are data values rather than random
variables, the function is no longer a probability density function. For this
reason, it is apt to be called a likelihood function instead. The notation by
L(α, β, σ2) signifies that it is a function of the variable parameters.

The log of the likelihood function, which has the same maximising values
as the original function, is

(69) log L = −T

2
log(2π) − T

2
log(σ2) − 1

2σ2

T∑
t=1

(yt − α − βxt)2.

Given the value of σ2, the likelihood is maximised by the values α̂ and β̂ that
minimise the sum of squares; and the expressions for α̂ and β̂ are already
available under (42) and (45) respectively.

The maximum-likelihood estimator for σ2 can be obtained from the fol-
lowing first-order condition:

(70)
∂ log L

∂σ2
= − T

2σ2
+

1
2σ4

T∑
t=1

(yt − α − βxt)2 = 0.

By multiplying throughout by 2σ4/T and rearranging the result, the following
estimating equation is derived:

(71) σ2(α, β) =
1
T

T∑
t=1

(yt − α − βxt)2.

By putting α̂ and β̂ in place, the estimator σ̃2 = σ2(α̂, β̂) = T−1
∑

e2
t is derived,

which has been given already under (46).
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