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REPRESENTATIONS OF COINTEGRATED SYSTEMS

Cointegrated Vector Autoregressive Systems

A closed cointegrated system of N linear dynamic equations is one in which
the individual variables follow nonstationary random walks, some of which are
subject to linear combinations that result in stationary stochastic processes.

The cointegrating system may be represented as a vector autoregressive
system in the form of

(1) A(L)y(t) = ε(t),

where A(z) = A0 +A1z+ · · ·+Apz
p is a matrix polynomial, which has its roots

on or outside the unit circle and L is the lag operator such that Lx(t) = x(t−1)
when x(t) is a time series or a vector of time series.

We may assume that ε(t) is a vector of mutually correlated white-noise
processes with E(εt) = 0 and D(εt) = Σ. Under the additional assumption
that the processes are normal, we have εt ∼ N(0,Σ) for all t.

We may chose, without loss of generality, to set A0 = I and Ai = −Φi to
give A(L) = I − Φ1Lz − · · · − ΦpLp. Then

(2) y(t) = Φ1y(t− 1) + · · ·+ Φpy(t− p) + ε(t),

which is a usual way of representing a vector autoregressive process.
The matrix polynomial A(z) of equation (1) can be factored as

(3)
A(z) = U(z)Λ(z)V (z) = [U1(z) U2(z) ]

[
∇(z)IN−r 0

0 Ir

] [
V1(z)
V2(z)

]
= U1(z){∇(z)IN−r}V1(z) + U2(z)V2(z),

where U(z) and V (z) are full-rank matrix polynomials with all of their roots
outside the unit circle, and Λ(z) is a diagonal matrix polynomial with its roots
on the circle or at the origin. (Here, we should observe that ∇ = 1−L and that
∇(z) = 1−z.) In a more general case of a vector autoregressive moving-average
system, the operator A(z) constitutes a matrix of rational polynomials.

Since y(t) is a nonstationary process if r < N , whereas the forcing function
ε(t) is stationary, the operator A(L) must be effective in reducing y(t) to sta-
tionarity. The simplest case is where A(z) has all of its roots on the unit circle,
which is to say that r = 0 and Λ(L) has the difference operator ∇ = 1− L for
each of its diagonal elements. In that case, A(L) = ∇U(L)V (L) = A∗(L)(1−L)
and equation (1) can be written as A∗(L)∇y(t) = ε(t). Then, none of the el-
ements of y(t) are cointegrated and each must be reduced to stationarity by
differencing.
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Now consider the more general case, represented by (3), where A(z) has
N − r of its roots on the unit circle and r stable roots outside. Then, by
premultiplying the equation A(L)y(t) = U(L)Λ(L)V (L)y(t) = ε(t) by U−1(L),
we get

(4) Λ(L)V (L)y(t) = U−1(L)ε(t).

Letting V (L)y(t) = [v′(t), w′(t)]′, we have

(5)
[
∇IN−r 0

0 Ir

] [
v(t)
w(t)

]
=
[
∇v(t)
w(t)

]
= U−1(L)ε(t).

This shows that y(t) is compounded from N − r nonstationary latent variables
in v(t), which constitute random walks, and r latent variables in w(t), which
constitute stationary stochastic processes.

Given that there are r latent stationary processes underlying y(t), there
are also r independent stationary linear combinations that can be formed from
its elements. These correspond to the so-called cointegrating relationships. To
find these combinations, consider writing the system matrix of equation (1) as

(6) A(L) = A(1)L+D(L)∇.

Here A(1) = U(1)Λ(1)V (1) = −Γ∆′ where Γ = −U2(1) is an N × r matrix of
full column rank ∆′ = V2(1) and r × N matrix of full row rank. (This is the
result of setting z = 1 in A(z) = U1(z){∇(z)IN−r}V1(z) + U2(z)V2(z), since
∇(z) = 1− z and ∇(1) = 0.) It follows that equation (1) can be rewritten as

(7) D(L)∇y(t)− Γ∆′y(t− 1) = ε(t).

The r row vectors of the matrix ∆′ are described as cointegrating vectors and
the corresponding elements of ∆′y(t − 1) constitute stationary processes. By
analogy with the model of factor analysis, Γ may be described as a matrix of
factor loadings.

Equation (7) can be represented in a manner that is compatible with equa-
tion (2). Given that A0 = I, there is also D0 = I. Therefore, on writing
D(L) = I −B1L− · · · −Bp−1L

p−1, we get

(8) ∇y(t) = Γ∆′y(t− 1) +B1∇y(t− 1) + · · ·+Bp−1∇y(t− p+ 1)ε(t).

Example. To demonstrate more explicitly how equation (2) can be converted
to the form of (8), we may consider the case where p = 3. Then, subtracting
y(t− 1) from both sides of

(9) y(t) = Φ1y(t− 1) + Φ2y(t− 2) + Φ3y(t− 3) + ε(t)
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gives

(10) ∇y(t) = (Φ1 − I)y(t− 1) + Φ2y(t− 2) + Φ3y(t− 3) + ε(t).

By virtue of a simple reparametrisation, this becomes

(11)
∇y(t) = [ Φ1 − I Φ2 Φ3 ]

 1 0 0
1 1 0
1 1 1

 1 0 0
−1 1 0
0 −1 1

 y(t− 1)
y(t− 2)
y(t− 3)


= Πy(t− 1) +B1∇y(t− 1) +B2∇y(t− 2) + ε(t),

where

(12) Π = Γ∆′ = (Φ1 − I) + Φ2 + Φ3, B1 = −(Φ2 + Φ3) and B2 = −Φ3.

The matrices of zeros and units that are found in midst equation (11) have the
identity matrix for their product, which show that (11) and (10) are equivalent.

The N − r unit roots within the diagonal matrix Λ(L) of the factorisation
of A(L) = U(L)Λ(L)V (L) of (3) give rise to the same number of latent or
“common” tends that combine to form the trajectories of the elements of y(t).

The trends are revealed in the moving-average representation of the vector
process. The inverse of the matrix of (3) is given by

(13) A−1(L) = V −1(L)Λ−1(L)U−1(L) = ∇−1C(L),

where

(14) C(L) = V −1(L)
[
IN−r 0

0 ∇Ir

]
U−1(L).

The moving-average representation of the system can now be given as

(15) ∇y(t) = C(L)ε(t).

The matrix of equation (15) can be written as C(L) = C(1) + F (L)∇; and,
therefore, the system can be represented by

(16) y(t) = ∇−1C(1)ε(t) + F (L)ε(t).

This is analogous to the so-called Beveridge–Nelson decomposition of a univari-
ate ARIMA process. The process ∇−1C(1)ε(t) is the nonstationary component
of y(t), whereas F (L)ε(t) is its stationary component.

Setting z = 1 in the matrix polynomial C(z) gives C(1) = QR′, where Q
is an N × (N − r) matrix comprising the leading N − r columns of V −1(1) and
R′ is an (N − r) × N matrix comprising the leading rows of U−1(1). Setting
C(1) = QR′ in (16) and defining τ(t) = ∇−1R′ε(t) gives

(17) y(t) = Qτ(t) + F (L)ε(t),

where τ(t) represents the set of N − r “common” or latent tends that are
combined in the variables of y(t).
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