
Using gretl for Principles of Econometrics, 3rd Edition

Version 1.3131

Lee C. Adkins
Professor of Economics

Oklahoma State University

May 8, 2010

1Visit http://www.LearnEconometrics.com/gretl.html for the latest version of this book. Also, check
the errata (page 286) for changes since the last update.

http://www.LearnEconometrics.com/gretl.html

License

Using gretl for Principles of Econometrics, 3rd edition. Copyright c© 2007 Lee C. Adkins.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see Appendix F for details).

i

Preface

This manual is about using the software package called gretl to do various econometric tasks
required in a typical two course undergraduate or masters level econometrics sequence. It is written
specifically to be used with Principles of Econometrics, 3rd edition by Hill, Griffiths, and Lim,
although it could be used with many other introductory texts. The data for all of the examples
used herein are available as a package from my website at http://www.learneconometrics.com/
gretl.html. If you are unfamiliar with gretl and are interested in using it in class, Mixon Jr.
and Smith (2006) have written a brief review of gretl and how it can be used in an undergraduate
course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of Econometrics. Each
chapter contains a brief description of the basic models to be estimated and then gives you the
specific instructions or gretl code to reproduce all of the examples in the book. Where appropriate,
I’ve added a bit of pedagogical material that complements what you’ll find in the text. I’ve tried
to keep this to a minimum since this is not supposed to serve as a substitute for your text book.
The best part about this manual is that it, like gretl, is free. It is being distributed in Adobe’s
pdf format and I will make corrections to the text as I find errors.

To estimate a few of the models in POE I’ve had to resort to another free software called R. As
gretl develops I suspect that this small reliance on R will diminish. In any event, gretl contains
a utility that makes using R quite easy. You’ll find an appendix in this book that will get you
started.

Gretl also gives users an ability to write his or her own functions, which greatly expands the
usefulness of the application. In Chapters 14 and 16 functions are used to estimate a few of the
models contained in POE. What’s more, functions can be shared and imported easily through
gretl, especially if you are connected to the internet. If gretl doesn’t do what you want it to now,
stay tuned. It soon may. If recent activity is any indication, I am confident that the the gretl team
will continue to improve this already very useful application. I hope that this manual is similarly
useful to those using Principles of Econometrics.

I want to thank the gretl team of Allin Cottrell and Riccardo “Jack” Lucchetti for putting so

ii

http://www.learneconometrics.com/gretl.html
http://www.learneconometrics.com/gretl.html

much effort into gretl. It is a wonderful program for teaching and doing econometrics. It has
many capabilities beyond the ones I discuss in this book and other functions are added regularly.
Also, Jack has kindly provided me with suggestions and programs that have made this much better
than it would have been otherwise. Any remaining errors are mine alone.

Finally, I want to thank my good friend and colleague Carter Hill for suggesting I write this
and Oklahoma State University for continuing to pay me while I work on it.

Copyright c© 2007, 2008, 2009 Lee C. Adkins.

iii

Contents

1 Introduction 1

1.1 What is Gretl? . 1

1.1.1 Installing Gretl . 2

1.1.2 Gretl Basics . 2

1.1.3 Common Conventions . 5

1.2 Importing Data . 5

1.3 Using the gretl Language . 8

1.3.1 Console . 8

1.3.2 Scripts . 10

1.3.3 Sessions . 12

2 Simple Linear Regression 15

2.1 Simple Linear Regression Model . 15

2.2 Retrieve the Data . 15

2.3 Graph the Data . 18

2.4 Estimate the Food Expenditure Relationship . 19

iv

2.4.1 Elasticity . 23

2.4.2 Prediction . 23

2.4.3 Estimating Variance . 25

2.5 Repeated Sampling . 26

2.6 Script . 29

3 Interval Estimation and Hypothesis Testing 34

3.1 Confidence Intervals . 34

3.2 Monte Carlo Experiment . 37

3.3 Hypothesis Tests . 38

3.4 Script for t-values and p-values . 42

3.5 Script . 44

4 Prediction, Goodness-of-Fit, and Modeling Issues 46

4.1 Prediction in the Food Expenditure Model . 46

4.2 Coefficient of Determination . 48

4.3 Reporting Results . 51

4.4 Functional Forms . 53

4.5 Testing for Normality . 55

4.6 Examples . 56

4.6.1 Wheat Yield Example . 56

4.6.2 Growth Model Example . 58

4.6.3 Wage Equation . 58

4.6.4 Predictions in the Log-linear Model . 60

v

4.6.5 Generalized R2 . 60

4.6.6 Prediction Interval . 61

4.7 Script . 61

5 Multiple Regression Model 64

5.1 Linear Regression . 65

5.2 Big Andy’s Burger Barn . 67

5.2.1 SSE, R2 and Other Statistics . 68

5.2.2 Covariance Matrix and Confidence Intervals 68

5.2.3 t-Tests, Critical Values, and P-values . 69

5.3 Script . 71

6 Further Inference in the Multiple Regression Model 72

6.1 F-test . 72

6.2 Regression Significance . 78

6.3 Extended Model . 79

6.3.1 Is Advertising Significant? . 79

6.3.2 Optimal Level of Advertising . 80

6.4 Nonsample Information . 83

6.5 Model Specification . 84

6.6 RESET . 87

6.7 Cars Example . 88

6.8 Script . 89

7 Nonlinear Relationships 91

vi

7.1 Polynomials . 91

7.2 Interaction Terms . 93

7.3 Examples . 94

7.3.1 Housing Price Example . 94

7.3.2 CPS Example . 95

7.3.3 Chow Test . 97

7.3.4 Pizza Example . 98

7.3.5 Log-Linear Wages Example . 100

7.4 Script . 100

8 Heteroskedasticity 104

8.1 Food Expenditure Example . 104

8.2 Weighted Least Squares . 107

8.3 Skedasticity Function . 109

8.4 Grouped Heteroskedasticity . 111

8.4.1 Wage Example . 111

8.4.2 Food Expenditure Example . 113

8.5 Other Tests for Heteroskedasticity . 114

8.6 Script . 117

9 Dynamic Models and Autocorrelation 120

9.1 Area Response Model for Sugar Cane . 120

9.1.1 Bandwidth and Kernel . 121

9.1.2 Dataset Structure . 122

vii

9.1.3 HAC Standard Errors . 124

9.2 Nonlinear Least Squares . 125

9.3 Testing for Autocorrelation . 127

9.4 Autoregressive Models and Forecasting . 131

9.4.1 Using the Dialogs . 132

9.4.2 Using a Script . 136

9.5 Autoregressive Distributed Lag Model . 137

9.6 Script . 138

10 Random Regressors and Moment Based Estimation 141

10.1 Basic Model . 141

10.2 IV Estimation . 142

10.3 Specification Tests . 145

10.3.1 Hausman Test . 145

10.3.2 Testing for Weak Instruments . 145

10.3.3 Sargan Test . 146

10.4 Wages Example . 148

10.5 Script . 152

11 Simultaneous Equations Models 154

11.1 Truffle Example . 154

11.2 The Reduced Form Equations . 155

11.3 The Structural Equations . 155

11.4 Fulton Fish Example . 156

viii

11.5 Script . 160

12 Analyzing Time Series Data and Cointegration 161

12.1 Series Plots . 161

12.2 Tests for Stationarity . 163

12.3 Spurious Regressions . 169

12.4 Cointegration . 172

12.5 The Analysis Using a Gretl Script . 174

12.6 Script . 176

13 Vector Error Correction and Vector Autoregressive Models: Introduction to
Macroeconometrics 178

13.1 Vector Error Correction . 178

13.1.1 Series Plots–constant and trends . 179

13.1.2 Selecting Lag Length . 179

13.1.3 Cointegration Test . 182

13.1.4 VECM . 184

13.2 Vector Autoregression . 184

13.3 Script . 191

14 Time-Varying Volatility and ARCH Models: Introduction to Financial Econo-
metrics 195

14.1 ARCH and GARCH . 195

14.2 Testing for ARCH . 198

14.3 Simple Graphs . 200

14.4 Threshold ARCH . 200

ix

14.5 Garch-in-Mean . 204

14.6 Script . 208

15 Pooling Time-Series and Cross-Sectional Data 211

15.1 A Basic Model . 212

15.2 Estimation . 213

15.2.1 Pooled Least Squares . 214

15.2.2 Fixed Effects . 215

15.2.3 Random Effects . 216

15.2.4 SUR . 218

15.3 NLS Example . 222

15.4 Script . 226

16 Qualitative and Limited Dependent Variable Models 227

16.1 Probit . 227

16.2 Multinomial Logit . 230

16.2.1 Using a script for MNL . 234

16.3 Conditional Logit . 236

16.4 Ordered Probit . 236

16.5 Poisson Regression . 238

16.6 Tobit . 240

16.7 Simulation . 241

16.8 Selection Bias . 243

16.9 Using R for Qualitative Choice Models . 247

x

16.9.1 Multinomial Logit . 249

16.9.2 Conditional Logit . 252

16.9.3 Ordered Probit . 254

16.10Script . 256

A gretl commands 261

A.1 Estimation . 261

A.2 Tests . 262

A.3 Transformation . 263

A.4 Statistics . 263

A.5 Dataset . 264

A.6 Graphs . 265

A.7 Printing . 265

A.8 Programming . 265

A.9 Utilities . 266

B Some Basic Probability Concepts 267

C Some Statistical Concepts 273

C.1 Summary Statistics . 273

C.2 Interval Estimation . 275

C.3 Hypothesis Tests . 276

C.4 Testing for Normality . 277

D Using R with gretl 279

xi

D.1 Packages . 283

D.2 Stata Datasets . 284

D.3 Final Thoughts . 285

E Errata and Updates 286

F GNU Free Documentation License 288

GNU Free Documentation License 288

1. APPLICABILITY AND DEFINITIONS . 289

2. VERBATIM COPYING . 290

3. COPYING IN QUANTITY . 290

4. MODIFICATIONS . 291

5. COMBINING DOCUMENTS . 293

6. COLLECTIONS OF DOCUMENTS . 293

7. AGGREGATION WITH INDEPENDENT WORKS 293

8. TRANSLATION . 294

9. TERMINATION . 294

10. FUTURE REVISIONS OF THIS LICENSE . 294

xii

List of Figures

1.1 Opening the command line interface version of gretl using Start>Run 3

1.2 The command line version of gretl . 3

1.3 The main window for gretl’s GUI . 4

1.4 Opening sample data files from gretl’s main window 6

1.5 Data file window . 6

1.6 Listing variables in your data set . 7

1.7 The command reference window . 9

1.8 The command reference window . 10

1.9 Command script editor . 11

1.10 The session window . 12

1.11 Saving a session . 13

2.1 Loading gretl data . 16

2.2 Editing data attributes . 17

2.3 Variable edit dialog box . 17

2.4 Plotting dialog box . 18

xiii

2.5 XY plot of the Food Expenditure data . 19

2.6 Opening the OLS dialog box . 20

2.7 OLS dialog box . 21

2.8 Gretl console . 21

2.9 Model Window: Least Squares Results . 22

2.10 Obtaining Summary Statistics . 24

2.11 Summary Statistics . 24

2.12 Elasticity calculation . 25

2.13 OLS covariance matrix . 31

2.14 Monte Carlo experiments . 31

2.15 Monte Carlo results . 32

2.16 More Monte Carlo results . 33

3.1 Critical values utility . 35

3.2 Critical Values . 35

3.3 Confidence intervals . 37

3.4 Confidence intervals from the dialog . 37

3.5 P-value utility . 40

3.6 Results from the critical value utility . 41

4.1 Selecting ANOVA . 48

4.2 ANOVA table . 48

4.3 Summary statistics: R̄2 . 49

4.4 Adding fitted values to the data . 50

xiv

4.5 Highlight variables . 50

4.6 Correlation matrix . 51

4.7 Plotting predicted vs actual . 52

4.8 LaTeX options . 52

4.9 Adding new variables to the data . 54

4.10 The summary statistics for the least squares residuals. 55

4.11 Wheat yield XY plot . 57

4.12 Wheat yield XY time series plot . 58

4.13 Graph dialog . 59

4.14 Wheat yield XY plot with cubic term . 60

5.1 OLS dialog from the pull-down menu . 65

5.2 OLS specify model dialog . 66

5.3 The OLS shortcut . 66

6.1 Least Squares model results . 74

6.2 Tests pull-down menu . 75

6.3 Omit variable dialog box . 75

6.4 Results from omit variable dialog . 76

6.5 Linear restriction dialog box . 76

6.6 Restrict results . 77

6.7 Overall F-statistic . 79

6.8 Big Andy from the console . 80

6.9 Does Advertising matter? . 81

xv

6.10 Using Restrict to test hypotheses . 82

6.11 Adding logarithms of your variables . 83

6.12 gretl output for the beer demand . 84

6.13 Model table . 86

7.1 Using genr and scalar . 92

7.2 Data>Dataset Structure pull-down menu . 93

7.3 Dataset Structure dialog box . 94

8.1 Robust standard errors check box . 106

8.2 Options dialog box . 107

9.1 Dataset structure wizard . 123

9.2 Nonlinear least squares results . 126

9.3 Correlogram . 128

9.4 Correlogram using the GUI . 129

9.5 Correlogram lags dialog box . 129

9.6 Correlogram produced by gnuplot . 130

9.7 LM autocorrelation test results . 131

9.8 Add lags to regressors . 133

9.9 Lag order dialog box . 134

9.10 Forecast model result . 134

9.11 Add observations to your sample . 135

9.12 Forecast dialog box . 135

9.13 Forecast graph . 136

xvi

9.14 ARDL(3,2) results . 138

10.1 Two-Stage Least Squares estimator from the pull-down menus 142

10.2 Two-Stage Least Squares dialog box . 143

10.3 Results from using the omit statement after least squares 147

12.1 Select all of the series. 162

12.2 Add first differences to the data . 162

12.3 Graphing multiple time series using the selection box. 163

12.4 Multiple time series graphs. 164

12.5 Multiple time series graphs for Fed Funds rate and 3 year bonds. 164

12.6 Choose the ADF test from the pull-down menu. 165

12.7 The ADF test dialog box. 166

12.8 The ADF test results. 166

12.9 Set sample box . 168

12.10Sample information in the main window . 168

12.11Two random walk series . 170

12.12Scatter plot of two random walk series . 171

12.13View the least squares results from a graph . 171

12.14The dialog box for the cointegration test. 173

12.15The pull-down menu for choosing whether to include constant or trends in the ADF
regression. 174

13.1 Plots of US and AU GDP and their differences . 180

13.2 ADF levels results U.S. and AUS . 181

xvii

13.3 Testing up in ADF regression . 183

13.4 The VAR dialog box . 188

13.5 VAR results . 189

13.6 Impulse Response Functions . 190

13.7 Graphing the Impulse Responses . 191

13.8 Impulse Responses . 192

13.9 Forecast Error Variance Decompositions . 193

14.1 Choose GARCH from the main gretl window . 196

14.2 Estimating ARCH from the dialog box . 197

14.3 Test for ARCH using the pull-down menu . 199

14.4 Testing ARCH box . 199

14.5 ARCH test results . 199

14.6 Histograms from the pull-down menu . 201

14.7 Frequency plot setup box . 201

14.8 Histogram with Normal curve . 202

14.9 Plotting GARCH variances . 202

14.10Plotting GARCH variances . 203

14.11Threshold GARCH script . 204

14.12TGARCH results . 205

14.13MGARCH script . 207

14.14MGARCH results . 208

15.1 Database Server . 211

xviii

15.2 Databases on the server . 212

15.3 SUR output . 220

16.1 Probit model dialog box . 229

16.2 MNL estimates from Gretl . 233

16.3 MNL estimates from Gretl . 236

16.4 Ordered probit results from gretl . 238

16.5 Heckit dialog box . 248

16.6 Multinomial logit results from R . 250

16.7 Conditional Logit from R . 254

16.8 Ordered probit results from R . 255

B.1 Obtaining summary statistics . 269

B.2 Results for summary statistics . 270

B.3 P-value finder dialog utility . 271

B.4 P-value results . 271

C.1 Critical values from the Console . 276

D.1 The R console when called from Gretl . 280

D.2 Gretl options . 281

D.3 Least squares using R . 281

D.4 ANOVA results from R . 282

xix

Chapter 1
Introduction

In this chapter you will be introduced to some of the basic features of gretl. You’ll learn how
to install it, how to get around the various windows in gretl, and how to import data. At the end
of the chapter, you’ll be introduced to gretl’s powerful language.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a software
package for doing econometrics that is easy to use and reasonably powerful. Gretl is distributed as
free software that can be downloaded from http://gretl.sourceforge.net and installed on your
personal computer. Unlike software sold by commercial vendors (SAS, Eviews, Shazam to name a
few) you can redistribute and/or modify gretl under the terms of the GNU General Public License
(GPL) as published by the Free Software Foundation.

Gretl comes with many sample data files and a database of US macroeconomic time series.
From the gretl web site, you have access to more sample data sets from many of the leading
textbooks in econometrics, including ours Principles of Econometrics by Hill et al. (2007). Gretl
can be used to compute least-squares, weighted least squares, nonlinear least squares, instrumental
variables least squares, logit, probit, tobit and a number of time series estimators. Gretl uses a
separate Gnu program called gnuplot to generate graphs and is capable of generating output in
LaTeX format. As of this writing gretl is under development so you can probably expect some
bugs, but in my experience it is pretty stable to use with my Windows XP systems.

1

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropriate executable file
for the computer platform you are using. For Microsoft Windows users the appropriate site is
http://gretl.sourceforge.net/win32/. One of the nice things about gretl is that Macintosh
and Linux versions are also available. If you are using some other computer system, you can obtain
the source code and compile it on whatever platform you’d like. This is not something you can do
with any commercial software package that I’ve seen.

Gretl depends on some other (free) programs to perform some of its magic. If you install
gretl on your Mac or Windows based machine using the appropriate executable file provided on
gretl’s download page then everything you need to make gretl work should be installed as part of
the package. If, on the other hand, you are going to build your own gretl using the source files,
you may need to install some of the supporting packages yourself. I assume that if you are savvy
enough to compile your own version of gretl then you probably know what to do. For most, just
install the self-extracting executable, gretl install.exe, available at the download site. Gretl
comes with an Adobe pdf manual that will guide you through installation and introduce you to the
interface. I suggest that you start with it, paying particular attention to Chapters 1 and 2 which
discuss installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econometrics, 3rd edition (POE
) by Hill et al. (2007), you should also download and install the accompanying data files that go
with this book. The file is available at

http://www.learneconometrics.com/gretl/poesetup.exe.

This is a self-extracting windows file that will install the POE data sets onto the c:\Program
Files\gretl\data directory of your computer’s harddrive. If you have installed gretl in any place
other than c:\Program Files\gretl then you are given the opportunity to specify a new location
in which to install the program during setup.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to use gretl’s rather simple
and intuitive language syntax, the easiest way to use the program is through its built in graphical
user interface (GUI). The graphical interface should be familiar to most of you. Basically, you use
your computer’s mouse to open dialog boxes. Fill in the desired options and execute the commands
by clicking on the OK button. Those of you who grew up using MS Windows or the Macintosh
will find this way of working quite easy. Gretl is using your input from the dialogs, delivered by
mouse clicks and a few keystrokes, to generate computer code that is executed in the background.

Gretl offers a command line interface as well. In this mode you type in valid gretl commands
either singly from the console or in batches using scripts. Once you learn the commands, this is

2

http://gretl.sourceforge.net/win32/
http://www.learneconometrics.com/gretl/poesetup.exe

surely the easiest way to work. If you forget the commands, then return to the dialogs and let the
graphical interface generate them for you.

There is a command line version of gretl that skips the dialogs altogether. The command
line version is launched by executing gretlcli in a dos command window. In Windows choose
Start>Run to open the dialog shown in figure 1.1. In the box, use Browse button to locate the

Figure 1.1: Opening the command line interface version of gretl using Start>Run

directory in which gretl is installed. On my machine it is installed on the I:\ drive. Click OK
and the command line version shown in figure 1.2 opens. There are a couple of messages that the

Figure 1.2: The command line version of gretl

Windows registry couldn’t be opened: this is a good thing so don’t be alarmed. If you are in fact
using the Windows operating system, then you probably won’t be using gretl from the command
line anyway. This version of the program is probably the most useful for Linux users wishing to
run gretl from a terminal window. We won’t be using it in this manual.

A better way to execute single gretl commands is through the gretl console. In normal
practice, the console is a lot easier to use than the gretlcli. It offers some editing features and

3

immediate access to other ways of using gretl that aren’t available in the straight command line
version of the program. The console and its use is discussed in section 1.3.1.

If you want to execute a series of commands, you do this using scripts. One of the great things
about gretl is that it accumulates commands executed singly from the console into a command
log that can be run in its entirety at another time. This topic can be found in section 1.3.2. So,
if you have completed an analysis that involves many sequential steps, the script can be open and
run in one step to get the desired result.

You can use the script environment to conduct Monte Carlo studies in econometrics. Monte
Carlo studies use computer simulation (sometimes referred to as experiments) to study the prop-
erties of a particular technique. This is especially useful when the mathematical properties of your
technique are particularly difficult to ascertain. In the exercises below, you will learn a little about
doing these kinds of experiments in econometrics.

In Figure 1.3 below is the main window in gretl.

Figure 1.3: The main window for gretl’s GUI

Across the top of the window you find the menu bar. From here you import and manipulate
data, analyze data, and manage output. At the bottom of the window is the gretl toolbar. This
contains a number of useful utilities that can be launched from within gretl. Among other things,
you can get to the gretl web site from here, open the pdf version of the manual, or open the MS
Windows calculator (very handy!). More will be said about these functions later.

4

1.1.3 Common Conventions

In the beginning, I will illustrate the examples using a number of figures (an excessive number
to be sure). These figures are screen captures of gretl’s windows as they appear when summoned
from the pull-down menus. As you become familiar with gretl the frequency of these figures will
diminish and I will direct you to the proper commands that can be executed in the console or as a
script using words only. More complex series of commands may require you to use the gretl script
facilities which basically allow you to write simple programs in their entirety, store them in a file,
and then execute all of the commands in a single batch. The convention used will be to refer to
menu items as A>B>C which indicates that you are to click on option A on the menu bar, then select
B from the pull-down menu and further select option C from B’s pull-down menu. All of this is
fairly standard practice, but if you don’t know what this means, ask your instructor now.

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be used by your software
can be challenging. There are dozens of different pieces of software and many use proprietary data
formats that make transferring data between applications difficult. You’ll notice that the authors
of your book have provided data in several formats for your convenience. In this chapter, we will
explore some of the data handling features of gretl and show you (1) how to access the data sets
that accompany your textbook (2) how to bring one of those data sets into gretl (3) how to list the
variables in the data set and (4) how to modify and save your data. Gretl offers great functionality
in this regard. Through gretl you have access to a very large number of high quality data sets from
other textbooks as well as from sources in industry and government. Furthermore, once opened in
gretl these data sets can be exported to a number of other software formats.

First, we will load the food expenditure data used in Chapter 2 of POE. The data set contains
two variables named x and y. The variable y is weekly expenditures on food in a household and x
is weekly income measured in $100 increments.

Open the main gretl window and click on File>Open data>sample file as shown in Figure
1.4.

Alternately, you could click on the open dataset button on the toolbar. The button looks like
a folder and is on the far right-hand side of the toolbar. This will open another window (Figure
1.5) that contains tabs for each of the data compilations that you have installed in the gretl/data

directory of your program. If you installed the data sets that accompany this book using the self
extracting windows program then a tab will appear like the one shown in Figure 1.5.

Click on the POE tab and scroll down to find the data set called ‘food’, highlight it using the

cursor, and open it using the ‘open’ button at the top of the window. This will bring the
variables of the food expenditure dataset into gretl. At this point, select Data on the menu bar

5

Figure 1.4: Opening sample data files from gretl’s main window

Figure 1.5: This is gretl’s data files window. Notice that in addition to POE, data sets from
Ramanathan (2002), Greene (2003), Stock and Watson (2006) are installed on my system.

6

and then Display values as shown in Figure 1.6.

Figure 1.6: Use the cursor to highlight all of the variables. Then click Data>Display values to
list the data set.

From the this pull-down menu a lot can be accomplished. You can edit, add observations, and
impose a structure of your dataset. The structure of your dataset is important. You can choose
between time series, cross sections, or panel data structures. The options Gretl gives you depend
on this structure. For instance, if your data are structured as a time series, gretl will allow you
to take lags and differences of the variables. Certain procedures that can be used for time series
analysis will only be available to you if your dataset has been structured structured for it. If a
gretl command is not available from the defined dataset structure, then it will be greyed out in
the pull-down menus.

Notice in Figure 1.4 that gretl gives you the opportunity to import data. Expanding this
(File>Open data>Import) gives you access to several other formats, including ASCII, CSV, EX-
CEL and others. Also, from the File pull-down menu you can export a data set to another format.
If you click on File>Databases>On database server (Figure 1.4) you will be taken to a web site
(provided your computer is connected to the internet) that contains a number of high quality data
sets. You can pull any of these data sets into gretl in the same manner as that described above
for the POE data sets. If you are required to write a term paper in one of your classes, these data
sets may provide you with all the data that you need.

7

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results even faster by using gretl’s
language. The language can be used from the console or by collecting several lines of programming
code into a file and executing them all at once in a script.

An important fact to keep in mind when using gretl is that its language is case sensitive. This
means that lower case and capital letters have different meanings in gretl. The practical implication
of this is that you need to be very careful when using the language. Since gretl considers x to be
different from X, it is easy to make programming errors. If gretl gives you a programming error
statement that you can’t quite decipher, make sure that the variable or command you are using is
in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively. A console window opens
and from the prompt (?) you can execute gretl commands one line at a time. You can open the
gretl console from the Tools pull-down menu or by a left mouse click on the “Gretl console”

button on the toolbar. This button is the third one on the left side of the toolbar in Figure
1.3. From the console you execute commands, one by one by typing gretl code after the command
prompt. Each command that you type in is held in memory so that you can accumulate what
amounts to a “command history.” To reuse a command, simply use the up arrow key to scroll
through the commands you’ve typed in until you get to the one you want. You can edit the
command to fix any syntax errors or to make any changes you desire before hitting the enter key
to execute the statement.

From the command prompt, ‘?’ you can type in commands from the gretl language. For
instance, to estimate the food expenditure model in section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s scroll bar on the right
hand side to scroll up if you need to.

Remember, (almost) anything that can be done with the pull-down menus can also be done
through the console. Of course, using the console requires you to use the correct language syntax,
which can be found in the gretl command reference. The command reference can be accessed from
the toolbar by clicking the button that looks like a lifesaver. It’s the fourth one from the right hand
side of the toolbar:

8

. It is also accessible from the menu bar through
Help. The option marked plain text F1 actually brings up all of the commands in a hypertext
format. Clicking on anything in blue will take you to the desired information for that command.
Obviously, the keyboard shortcut F1 will also bring up the command reference (Figure 1.7). Notice

Figure 1.7: The command reference can be accessed in a number of ways: The ‘life-saver’ icon on the
toolbar, Help>Command reference>plain text from the pull-down menu, or keyboard shortcut
F1.

that you can also search for commands by topic from the command syntax window. Select Topics
and choose the desired category from the list. This can be helpful because it narrows the list to
those things that you actually want (e.g., Topics>Estimation>ols).

9

The function reference is a relatively new addition to gretl that will help you to locate the
names gretl uses to save results, transform variables, and that you will find helpful in writing
your own programs. To access the function reference, click Help>Function reference from the
pull-down menu as shown in Figure 1.8.

Figure 1.8: The function reference can be accessed by Help>Function reference from the pull-
down menu.

1.3.2 Scripts

Gretl commands can be collected and put into a file that can be executed at once and saved to be
used again. This is accomplished by opening a new command script from the file menu. The com-
mand File>Script files>New script from the pull-down menu opens the command script editor

10

shown in Figure 1.9. Type the commands you want to execute in the box using one line for each com-

Figure 1.9: The Command Script editor is used to collect a series of commands into what gretl
calls a script. The script can be executed as a block, saved, and rerun at a later time.

mand. Notice that in the first line of the script, "I:\Program Files\gretl\data\poe\food.gdt",
the complete file and path name are enclosed in double quotes, " ". This is necessary because the
Program Files directory in the pathname includes a space. If you have gretl installed in a location
that does not include a space, then these can be omitted.

If you have a very long command that exceeds one line, use the backslash (\) as a continuation
command. Then, to save the file, use the “save” button at the top of the box (first one from the
left). If this is a new file, you’ll be prompted to provide a name for it.

To run the program, click your mouse on the “gear” button. In the figure shown, the food.gdt

gretl data file is opened. The genr commands are used to take the logarithm of y and x, and
the ols command discussed in section 2.4 is used to estimate a simple linear regression model that
has ln(y) as its dependent variable and ln(x) as the independent variable. Note, the model also
includes constant.

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button or by using the keyboard command, Ctrl+N.1

One of the handy features of the command script window is how the help function operates.

At the top of the window there is an icon that looks like a lifesaver . Click on the help button
and the cursor changes into a question mark. Move the question mark over the command you want
help with and click. Voila! You either get an error message or you are taken to the topic from the
command reference. Slick!

1“Ctrl+N” means press the “Ctrl” key and, while holding it down, press “N”.

11

1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models, graphs, and data files into a
common “iconic” space. The session window appears below in Figure 1.10. Objects are represented

Figure 1.10: The session window

as icons and these objects can be saved for later use. When you save your session, the objects you
have added should be available again when you re-open the session. To add a model to your
session, use the File>Save to session as icon option from the model’s pull-down menu. To
add a graph, right click on the graph and choose the option save to session as icon. If you
want to save the results in your session, don’t forget to do so; right click on the session window and
choose Save session or from the main gretl window, select File>Session files>Save session

as shown below in Figure 1.11.

Gretl also collects all of the commands you’ve executed via the GUI in the icon labeled ‘session.’
This makes it very easy to use the GUI to execute unfamiliar commands and then use the code
generated by gretl to put into a script.

Once a model or graph is added, its icon will appear in the session icon view window. Double-
clicking on the icon displays the object, while right-clicking brings up a menu which lets you display
or delete the object. You can browse the dataset, look at summary statistics and correlations, and
save and revisit estimation results (Models) and graphs.

The model table is a way of combining several estimated models into a single table. This is very

12

Figure 1.11: Saving a session

useful for model comparison. From page 16 of the gretl manual ((Cottrell and Lucchetti, 2007)):

In econometric research it is common to estimate several models with a common depen-
dent variable the models contain different independent variables or are estimated using
different estimators. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates
and standard errors) for a given model, and each row contains the estimates for a given
variable across the models.

In the Icon view window gretl provides a means of constructing such a table (and
copying it in plain text, LaTeX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display
window, under the File menu, select Save to session as icon or Save as icon

and close.

2. Repeat step 1 for the other models to be included in the table (up to a total of six
models).

3. When you are done estimating the models, open the icon view of your gretl session,
by selecting Icon view under the View menu in the main gretl window, or by
clicking the session icon view icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled Model table. Decide which model you
wish to appear in the left-most column of the model table and add it to the table,
either by dragging its icon onto the Model table icon, or by right-clicking on the
model icon and selecting Add to model table from the pop-up menu.

13

5. Repeat step 4 for the other models you wish to include in the table. The second
model selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on
its icon. Under the Edit menu in the window which appears, you have the option
of copying the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on
the model table icon and select Clear table. Then go back to step 4 above and
try again.

In section 6.5 you’ll find an example that uses the model table and a Figure (6.13) that illustrates
the result.

14

Chapter 2
Simple Linear Regression

In this chapter you are introduced to the simple linear regression model, which is estimated
using the principle of least squares.

2.1 Simple Linear Regression Model

The simple linear regression model is

yt = β1 + β2xt + et t = 1, 2, . . . , T (2.1)

where yt is your dependent variable, xt is the independent variable, et is random error, and β1 and
β2 are the parameters you want to estimate. The errors of the model, et, have an average value of
zero for each value of xt; each has the same variance, σ2, and are uncorrelated with one another.
The independent variable, xt, has to take on at least two different values in your dataset. If not, you
won’t be able to estimate a slope! The error assumptions can be summarized as et|xt iid N(0, σ2).
The expression iid stands for independently and identically distributed and means that the errors
are statistically independent from one another (and therefor uncorrelated) and that each has the
same probability distribution. Taking a random sample from a single population accomplishes this.

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl. The data file is
included in your gretl sample files–provided that you have installed the Principles of Econometrics
data supplement that is available from our website. See section 1.1.1 for details.

15

Figure 2.1: Food Expenditure data is loaded from food.gdt using File>Open data>sample file

and choosing the food dataset from the sample files that accompany POE.

Load the data from the data file food.gdt. Recall, this is accomplished by the commands
File>Open data>sample file from the menu bar.1 Choose food from the list. When you bring
the file containing the data into gretl your window will look like the one in Figure 2.1. Notice that
in the Descriptive label column contains some information about the variables in the program’s
memory. For some of the datasets included with this book, it may be blank. These descriptions,
when they exist, are used by the graphing program to label your output and to help you keep track
of variables that are available for use. Before you graph your output or generate results for a report
or paper you may want to label your variables to make the output easier to understand. This can
be accomplished by editing the attributes of the variables.

To do this, first highlight the variable whose attributes you want to edit, right-click and the
menu shown in (see Figure 2.2) appears. Select Edit attributes to open a dialog box (Figure 2.3)
where you can change the variable’s name, assign variable descriptions and display names. Describe
and label the variable y as ‘Food Expenditure’ and x as ‘Weekly Income ($100).’

You can also bring up the edit attributes dialog from the main window by selecting Variable>Edit

attributes. Finally, the setinfo command can be used to set the Description and the label used
in graphs.

In the following example a script is generated that opens the andy.gdt dataset, and adds variable
descriptions, and assigns a label to be used in subsequent graphs.

open "c:\Program Files\gretl\data\poe\andy.gdt"

setinfo S -d "Monthly Sales revenue ($1000)" \

1Alternately, you could click on the open data button on the toolbar. It’s the one that looks like a folder on the
far right-hand side.

16

Figure 2.2: Highlight the desired variable and right-click to bring up the pull-down menu shown
here.

Figure 2.3: Variable edit dialog box

17

Figure 2.4: Use the dialog to plot of the Food Expenditure (y) against Weekly Income (x)

-n "Monthly Sales ($1000)"

setinfo P -d "$ Price" -n "Price"

setinfo A -d "Monthy Advertising Expenditure ($1000)" \

-n "Monthly Advertising ($1000)"

labels

The -d flag is given followed by a string in double quotes. It is used to set the descriptive label.
The -n flag is used similarly to set the variable’s name in graphs. Notice that in the first and
last uses of setinfo in the example that I have issued the continuation command (\) since these
commands are too long to fit on a single line. If you issue the labels command, gretl will respond
by printing the descriptions to the screen.

2.3 Graph the Data

To generate a graph of the Food Expenditure data that resembles the one in Figure 2.6 of POE,

you can use the button on the gretl toolbar (third button from the right). Clicking this button
brings up a dialog to plot the two variables against one another. Figure 2.4 shows this dialog where
x is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5. Notice that the
labels applied above now appear on the axes of the graph.

Figure 2.5 plots Food Expenditures on the y axis and Weekly Income on the x. Gretl, by

18

Figure 2.5: XY plot of the Food Expenditure data

default, also plots the fitted regression line. The benefits of assigning labels to the variables becomes
more obvious. Both X- and Y-axes are informatively labeled and the graph title is changed as well.
More on this later.

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the Food Expenditure equation.

yt = β1 + β2xt + et (2.2)

From the menu bar, select Model>Ordinary Least Squares from the pull-down menu (see Figure
2.6) to open the dialog box shown in Figure 2.7. From this dialog you’ll need to tell gretl which
variable to use as the dependent variable and which is the independent variable. Notice that by
default, gretl assumes that you want to estimate an intercept (β1) and includes a constant as
an independent variable by placing the variable const in the list by default. To include x as an
independent variable, highlight it with the cursor and click the ‘Add->’ button.

The gretl console (see section 1.3.1) provides an easy way to run a regression. The gretl

console is opened by clicking the console button on the toolbar, . The resulting console window
is shown in Figure 2.8.

At the question mark in the console simply type

19

Figure 2.6: From the menu bar, select Model>Ordinary Least Squares to open the least

squares dialog box

ols y const x

to estimate your regression function. The syntax is very simple, ols tells gretl that you want
to estimate a linear function using ordinary least squares. The first variable listed will be your
dependent variable and any that follow, the independent variables. These names must match the
ones used in your data set. Since ours in the food expenditure example are named, y and x,
respectively, these are the names used here. Don’t forget to estimate an intercept by adding a
constant (const) to the list of regressors. Also, don’t forget that gretl is case sensitive so that x

and X are different entities.

This yields window shown in Figure 2.9 below. The results are summarized in Table 2.1.

An equivalent way to present results, especially in very small models like the simple linear
regression, is to use equation form. In this format, the gretl results are:

ŷ = 83.4160
(1.922)

+ 10.2096
(4.877)

x

T = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(t-statistics in parentheses)

Finally, notice in the main gretl window (Figure 2.1) that the first column has a heading called
ID #. An ID # is assigned to each variable in memory and you can use these ID #s instead of
variable names in your programs. For instance, the following two lines yield identical results:

ols y const x

20

Figure 2.7: The Specify Model dialog box opens when you select Model>Ordinary least squares

Figure 2.8: The Gretl console window. From this window you can type in gretl commands directly
and perform analyses very quickly–if you know the proper gretl commands.

21

Figure 2.9: The model window appears with the regression results. From here you can conduct
subsequent operations (graphs, tests, analysis, etc.) on the estimated model.

Table 2.1: OLS estimates using the 40 observations 1–40.

Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value

const 83.4160 43.4102 1.9216 0.0622
x 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574
S.D. of dependent variable 112.675
Sum of squared residuals 304505.
Standard error of residuals (σ̂) 89.5170
Unadjusted R2 0.385002
Adjusted R̄2 0.368818
Degrees of freedom 38
Akaike information criterion 475.018
Schwarz Bayesian criterion 478.395

22

ols 1 0 2

One (1) is the ID number for y and two (2) is the ID number of x. The constant has ID zero (0).
If you tend to use long and descriptive variable names (recommended, by the way), using the ID
number can save you a lot of typing (and some mistakes).

2.4.1 Elasticity

Elasticity is an important concept in economics. It measures how responsiveness one variable
is to changes in another. Mathematically, the concept of elasticity is fairly simple:

ε =
percentage change in y

percentage change in x
=

∆y/y

∆x/x
(2.3)

In terms of the regression function, we are interested in the elasticity of average food expenditures
with respect to changes in income:

ε =
∆E(y)/E(y)

∆x/x
= β2

x

E(y)
. (2.4)

E(y) and x are usually replaced by their sample means and β2 by its estimate. The mean of
x and y can be obtained by using the cursor to highlight both variables, use the View>Summary

statistics from the menu bar as shown in Figure 2.10, and the computation can be done by hand.
However, you can make this even easier by using the gretl language to do all of the computations–no
calculator needed! Simply open up a new script and type in:

ols y const x --quiet

genr elast=$coeff(x)*mean(x)/mean(y)

This yields the output shown in the next figure 2.11:

Following a least squares regression, Gretl stores the least squares estimates of the constant
and the slope in variables called $coeff(const) and $coeff(x), respectively. In addition, it uses
mean(x) and mean(y)to compute the mean of the variables x and y. The –quiet option is convenient
when you don’t want or need the output from the regression printed to the screen. The result from
this computation appears below in Figure 2.12.

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food expenditure of an
average household having weekly income of $2000 is:

ŷt = 83.42 + 10.21xt = 83.42 + 10.21(20) = 287.61 (2.5)

23

Figure 2.10: Using the pull-down menus to obtain summary statistics. Highlight the desired vari-
ables and use View>Summary statistics from the pull-down menu.

Figure 2.11: Summary statistics

24

Figure 2.12: Results from the script to compute an elasticity based on a linear regression.

Remember, income is measured in $100, so 20 in the above expression represents 20*$100=$2,000.
The gretl script is:

genr yhat = $coeff(const) + $coeff(x)*20

which yields the desired result.

2.4.3 Estimating Variance

In section 2.7 of your textbook, you are given expressions for the variances of the least squares
estimators of the intercept and slope as well as their covariance. These estimators require that
you estimate the overall variance of the model’s errors, σ2. Gretl does not explicitly report the
estimator, σ̂2, but rather, its square root, σ̂. Gretl calls this “Standard error of residuals” which
you can see from the output is 89.517. Thus, 89.5172 = 8013.29. Gretl also reports the sum of
squared residuals, equal to 304505, from which you can calculate the estimate. Dividing the sum
of squared residuals by the estimator’s degrees of freedom yields σ̂2 = 304505/38 = 8013.29.

The estimated variances and covariance of the least squares estimator can be obtained once the
model is estimated by least squares by selecting the Analysis>Coefficient covariance matrix

command from the pull-down menu of the model window as shown in Figure 2.13. The result is:

Covariance matrix of regression coefficients

const x

1884.44 -85.9032 const

4.38175 x

So, estimated variances of the least squares estimator of the intercept and slope are 1884.44
and 4.38175, respectively. The least squares standard errors are simply the square roots of these
numbers. The estimated covariance between the slope and intercept -85.9032.

You can also obtain the variance-covariance matrix by specifying the --vcv option when esti-
mating a regression model. For the food expenditure example use:

25

ols y const x --vcv

to estimate the model using least squares and to print the variance covariance matrix to the results
window.

2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares is through an exper-
iment. In section 2.4.3 of your book you are presented with results from 10 different regressions
(POE Table 2.2). These were obtained using the dataset table2-2.gdt which is included in the gretl
datasets that accompany this manual. To reproduce the results in this table estimate 10 separate
regressions

ols y1 const x

ols y2 const x

.

.

.

ols y10 const x

You can also generate your own random samples and conduct a Monte Carlo experiment using
gretl. In this exercise you will generate 100 samples of data from the food expenditure data,
estimate the slope and intercept parameters with each data set, and then study how the least
squares estimator performed over those 100 different samples. What will become clear is this, the
outcome from any single sample is a poor indicator of the true value of the parameters. Keep this
humbling thought in mind whenever you estimate a model with what is invariably only 1 sample
or instance of the true (but always unknown) data generation process.

We start with the food expenditure model:

yt = β1 + β2xt + et (2.6)

where yt is total food expenditure for the given time period and xt is income. Suppose further that
we know how much income each of 40 households earns in a week. Additionally, we know that on
average a household spends at least $80 on food whether it has income or not and that an average
household will spend ten cents of each new dollar of income on additional food. In terms of the
regression this translates into parameter values of β1 = 80 and β2 = 10.

Our knowledge of any particular household is considerably less. We don’t know how much
it actually spends on food in any given week and, other than differences based on income, we
don’t know how its food expenditures might otherwise differ. Food expenditures are sure to vary
for reasons other than differences in family income. Some families are larger than others, tastes

26

and preferences differ, and some may travel more often or farther making food consumption more
costly. For whatever reasons, it is impossible for us to know beforehand exactly how much any
household will spend on food, even if we know how much income it earns. All of this uncertainty
is captured by the error term in the model. For the sake of experimentation, suppose we also know
that et ∼ N(0, 882).

With this knowledge, we can study the properties of the least squares estimator by generating
samples of size 40 using the known data generation mechanism. We generate 100 samples using the
known parameter values, estimate the model for each using least squares, and then use summary
statistics to determine whether least squares, on average anyway, is either very accurate or precise.
So in this instance, we know how much each household earns, how much the average household
spends on food that is not related to income (β1 = 80), and how much that expenditure rises on
average as income rises. What we do not know is how any particular household’s expenditures
responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic component of food
expenditure for the tth household is 80 + 10 ∗ xt. This differs from its actual food expenditure by
a random amount that varies according to a normal distribution having zero mean and standard
deviation equal to 88. So, we use computer generated random numbers to generate a random
error, ut, from that particular distribution. We repeat this for the remaining 39 individuals. The
generates one Monte Carlo sample and it is then used to estimate the parameters of the model.
The results are saved and then another Monte Carlo sample is generated and used to estimate the
model and so on.

In this way, we can generate as many different samples of size 40 as we desire. Furthermore,
since we know what the underlying parameters are for these samples, we can later see how close
our estimators get to revealing these true values.

Now, computer generated sequences of random numbers are not actually random in the true
sense of the word; they can be replicated exactly if you know the mathematical formula used to
generate them and the ‘key’ that initiates the sequence. In most cases, these numbers behave as if
they randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script found in Figure 2.14.

Let’s look at what each line accomplishes. The first line

open "c:\Program Files\gretl\data\poe\food.gdt"

opens the food expenditure data set that resides in the poe folder of the data directory. The next
line, which is actually not necessary to do the experiments, estimates the model using the original
data using ols. It is included here so that you can see how the results from the actual sample
compare to those generated from the simulated samples. All of the remaining lines are used for the
Monte Carlo.

27

In Monte Carlo experiments loops are used to estimate a model using many different samples
that the experimenter generates and to collect the results. The loop construct in gretl begins with
the command loop NMC --progressive and ends with endloop. NMC in this case is the number of
Monte Carlo samples you want to use and the option --progressive is a command that suppresses
the individual output at each iteration from being printed and allows you to store the results in
a file. So that you can reproduce the results below, I have also initiated the sequence of random
numbers using a key, called the seed, with the command set seed 3213798. Basically, this ensures
that the stream of pseudo random numbers will start at the same place each time you run your
program. Try changing the value of the seed (3213798) or the number of Monte Carlo iterations
(100) to see how your results are affected.

Within this loop construct, you tell gretl how to generate each sample and state how you want
that sample to be used. The data generation is accomplished here as

genr u = 88*normal()

genr y1 = 80 + 10*x + u

The genr command is used to generate new variables. In the first line u is generated by multiplying
a normal random variable by the desired standard deviation. Recall, that for any constant, c and
random variable, X, V ar(cX) = c2V ar(X). The gretl command normal() produces a computer
generated standard normal random variable. The next line adds this random element to the
systematic portion of the model to generate a new sample for food expenditures (using the known
values of income in x).

Next, the model is estimated using least squares. Then, the coefficients are stored internally
in variables you create b1 and b2 (I called them b1 and b2, but you can name them as you like).
These are then stored to a data set coeff.gdt.

After executing the script, gretl prints out some summary statistics to the screen. These
appear below in Figure 2.15. Note that the average value of the intercept is about 76.5950. This is
getting close to the truth. The average value of the slope is 10.1474, also reasonably close to the
true value. If you were to repeat the experiments with larger numbers of Monte Carlo iterations,
you will find that these averages get closer to the values of the parameters used to generate the
data. This is what it means to be unbiased. Unbiasedness only has meaning within the context of
repeated sampling. In your experiments, you generated many samples and averaged results over
those samples to get closer to the truth. In actual practice, you do not have this luxury; you have
one sample and the proximity of your estimates to the true values of the parameters is always
unknown.

After executing the script, open the coeff.gdt data file that gretl has created and view the
data. From the menu bar this is done using File>Open data>user file and selecting coeff.gdt

from the list of available data sets. From the example this yields the output in Figure 2.16. Notice
that even though the actual value of β1 = 80 there is considerable variation in the estimates. In
sample 21 it was estimated to be 170.8196 and in sample 19 it was 1.3003 . Likewise, β2 also varies
around its true value of 10. Notice that for any given sample, an estimate is never equal to the

28

true value of the parameter!

2.6 Script

The script for Chapter 2 is found below. These scripts can also be found at my website http:

//www.learneconometrics.com/gretl.

open "c:\Program Files\gretl\data\poe\food.gdt"

#Least squares

ols y const x --vcv

#Summary Statistics

summary y x

#Plot the Data

gnuplot y x

#List the Data

print y x --byobs

#Elasticity

genr elast=$coeff(x)*mean(x)/mean(y)

#Prediction

genr yhat = $coeff(const) + $coeff(x)*20

#Table 2.2

open "c:\Program Files\gretl\data\poe\table2-2.gdt"

ols y1 const x

ols y2 const x

ols y3 const x

ols y4 const x

ols y5 const x

ols y6 const x

ols y7 const x

ols y8 const x

ols y9 const x

ols y10 const x

#Monte Carlo

open "c:\Program Files\gretl\data\poe\food.gdt"

29

http://www.learneconometrics.com/gretl
http://www.learneconometrics.com/gretl

set seed 3213789

loop 100 --progressive --quiet

genr u = 88*normal()

genr y1 = 80 + 10*x + u

ols y1 const x

genr b1 = $coeff(const)

genr b2 = $coeff(x)

print b1 b2

store coeff.gdt b1 b2

endloop

30

Figure 2.13: Obtain the matrix that contains the least squares estimates of variance and covariance
from the pull-down menu of your estimated model.

Figure 2.14: In the gretl script window you can type in the following commands to execute a
Monte Carlo study of least squares. Then to execute the program, click on the small gear icon.

31

Figure 2.15: The summary results from 100 random samples of the Monte Carlo experiment.

32

Figure 2.16: The results from the first 23 sets of estimates from the 100 random samples of the
Monte Carlo experiment.

33

Chapter 3
Interval Estimation and Hypothesis Testing

In this chapter, I will discuss how to generate confidence intervals and test hypotheses using
gretl. Gretl includes several handy utilities that will help you obtain critical values and p-values
from several important probability distributions. As usual, you can use the dialog boxes or gretl’s
programming language to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters is. One way of doing
this is to look at the least squares parameter estimate along with a measure of its precision, i.e.,
its estimated standard error.

The confidence interval serves a similar purpose, though it is much more straightforward to
interpret because it gives you upper and lower bounds between which the unknown parameter will
lie with a given probability.1

In gretl you can obtain confidence intervals either through a dialog or by manually building
them using saved regression results. In the ‘manual’ method I will use the genr command to
generate upper and lower bounds based on regression results that are saved in gretl’s memory,
letting gretl do the arithmetic. You can either look up the appropriate critical value from a table
or use the gretl’s critical function. I’ll show you both.

1This is probability in the frequency sense. Some authors fuss over the exact interpretation of a confidence interval
(unnecessarily I think). You are often given stern warnings not to interpret a confidence interval as containing the
unknown parameter with the given probability. However, the frequency definition of probability refers to the long
run relative frequency with which some event occurs. If this is what probability is, then saying that a parameter
falls within an interval with given probability means that intervals so constructed will contain the parameter that
proportion of the time.

34

Here is how it works. Consider equation (3.5) from your text

P [b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2)] = 1− α (3.1)

Recall that b2 is the least squares estimator of β2, and that se(b2) is its estimated standard error.
The constant tc is the α/2 critical value from the t-distribution and α is the total desired probability
associated with the “rejection” area (the area outside of the confidence interval).

You’ll need to know tc, which can be obtained from a statistical table, the Tools>Statistical

tables dialog contained in the program, or using the gretl command critical. First, try using
the dialog box shown in Figure 3.1. Pick the tab for the t distribution and tell gretl how much
weight to put into the right-tail of the probability distribution and how many degrees of freedom
your t-statistic has, in our case, 38. Once you do, click on OK. You’ll get the result shown in Figure
3.2. It shows that for the t(38) with right-tail probability of 0.025 and two-tailed probability of
0.05, the critical value is 2.02439.2 Then generate the lower and upper bounds (using the gretl

Figure 3.1: Obtaining critical values using the Tools>Statistical tables dialog box.

Figure 3.2: The critical value obtained from Tools>Statistical tables dialog box.

console) with the commands:

open "c:\Program Files\gretl\data\poe\food.gdt"

2You can also get the α level critical values from the console by issuing the command genr c= critical(t,38,α).
Here α is the desired area in the right-tail of the t-distribution.

35

ols y const x

genr lb = $coeff(x) - 2.024 * $stderr(x)

genr ub = $coeff(x) + 2.024 * $stderr(x)

print lb ub

The first line opens the data set. The second line (ols) minimizes the sum of squared errors in
a linear model that has y as the dependent variable with a constant and x as independent variables.
The next two lines generate the lower and upper bounds for the 95% confidence interval for the
slope parameter β2. The last line prints the results of the computation.

The gretl language syntax needs a little explanation. When gretl makes a computation, it will
save certain results like coefficient estimates, their standard errors, sum of squared errors and so
on in memory. These results can then be used to compute other statistics, provided you know the
variable name that gretl uses to store the computation. In the above example, gretl uses the least
squares estimates and their estimated standard errors to compute confidence intervals. Following
the ols command, least squares estimates are stored in $coeff(variable name). So, since β2 is
estimated using the variable x, its coefficient estimate is saved in $coeff(x). The corresponding
standard error is saved in $stderr(x). There are many other results saved and stored, each prefixed
with the dollar sign $. Consult the gretl documentation for more examples and specific detail on
what results can be saved and how to access them.

Equivalently, you could use gretl’s built in critical to obtain the desired critical value. The
general syntax for the function depends on the desired probability distribution. This follows since
different distributions contain different numbers of parameters (e.g., the t-distribution has a single
degrees of freedom parameter while the standard normal has none!). This example uses the t-
distribution and the script becomes:

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

print lb ub

The syntax for the t-distribution is critical(t,degrees of freedom,α/2). The degrees of
freedom from the preceding regression are saved as $df and for a 1− α = 95% confidence interval,
α/2 = 0.025.

The example found in section 3.1.3 of POE computes a 95% confidence interval for the income
parameter in the food expenditure example. The gretl commands above were used to produce the
output found in Figure 3.3.

To use the dialogs to get confidence intervals is easy as well. First estimate the model using least
squares in the usual way. Choose Model>Ordinary least squares from the main pull-down menu,
fill in the dependent and independent variables in the ols dialog box and click OK. The results

36

Figure 3.3: Obtaining 95% confidence interval for the food expenditure example.

appear in the model window. Now choose Analysis>Confidence intervals for coefficients

from the model window’s pull-down menu (seen in Figure 4.1). This generates the result shown in
Figure 3.4.

Figure 3.4: Obtaining 95% confidence interval for the food expenditure example from the dialog.

3.2 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using a simple Monte Carlo
study. In this case, we will add the two statements that compute the lower and upper bounds

37

to our previous program listed in Figure 2.14. We’ve also added a parameter, sig2, which is the
estimated variance of the model’s errors.

The new script looks like this:

open "c:\Program Files\gretl\data\poe\food.gdt"

set seed 3213798

loop 100 --progressive --quiet

genr u = 88*normal()

genr y1 = 80 + 10*x + u

ols y1 const x

genr b1 = $coeff(const)

genr b2 = $coeff(x)

genr s1 = $stderr(const)

genr s2 = $stderr(x)

2.024 is the .025 critical value from the t(38) distribution

genr c1L = b1 - critical(t,$df,.025)*s1

genr c1R = b1 + critical(t,$df,.025)*s1

genr c2L = b2 - critical(t,$df,.025)*s2

genr c2R = b2 + critical(t,$df,.025)*s2

Compute the coverage probabilities of the Confidence Intervals

genr p1 = (80>c1L && 80<c1R)

genr p2 = (10>c2L && 10<c2R)

genr sigma = $sigma

genr sig2 = sigma*sigma

print b1 b2 p1 p2

store cicoeff.gdt b1 b2 s1 s2 sig2 c1L c1R c2L c2R

endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data set (open "c:

\ProgramFiles\gretl\user\cicoeff.gdt") and examining the data will reveal interval estimates
that vary much like those in Tables 3.1 and 3.2 of your textbook. Also, notice that the estimated
standard error of the residuals, σ̂, is stored in $sigma and used to estimate the overall model
variance.

3.3 Hypothesis Tests

Hypothesis testing allows us to confront any prior notions we may have about the model with
what we actually observe. Thus, if before drawing a sample, I believe that autonomous weekly food
expenditure is no less than $40, then once the sample is drawn I can determine via a hypothesis
test whether experience is actually consistent with this belief.

38

In section 3.4 of your textbook the authors test several hypotheses about β2. In 3.4.1a the null
hypothesis is that β2 = 0 against the alternative that it is positive (i.e., β2 > 0). The test statistic
is:

t = (b2 − 0)/se(b2) ∼ t38 (3.2)

provided that β2 = 0 (the null hypothesis is true). Select α = 0.05 which makes the critical value
for the one sided alternative (β2 > 0) equal to 1.686. The decision rule is to reject Ho in favor
of the alternative if the computed value of your t statistic falls within the rejection region of your
test; that is if it is larger than 1.686.

The information you need to compute t is contained in the least squares estimation results
produced by gretl:

Model 1: OLS estimates using the 40 observations 1–40
Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value

const 83.4160 43.4102 1.9216 0.0622
x 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574
S.D. of dependent variable 112.675
Sum of squared residuals 304505.
Standard error of residuals (σ̂) 89.5170
Unadjusted R2 0.385002
Adjusted R̄2 0.368818
Degrees of freedom 38
Akaike information criterion 475.018
Schwarz Bayesian criterion 478.395

The computations
t = (b2 − 0)/se(b2) = (10.21− 0)/2.09 = 4.88 (3.3)

Since this value is within the rejection region, then there is enough evidence at the 5% level of
significance to convince us that the null hypothesis is incorrect; the null hypothesis rejected at this
level of significance. We can use gretl to get the p-value for this test using the Tools pull-down
menu. In this dialog, you have to fill in the degrees of freedom for your t-distribution (38), the
value of b2 (10.21), its value under the null hypothesis–something gretl refers to as ‘mean’ (0), and
the estimated standard error from your printout (2.09). This will yield the information:

t(38): area to the right of 10.21 = 9.55024e-013

(two-tailed value = 1.91005e-012; complement = 1)

39

Figure 3.5: The dialog box for obtaining p-values using the built in statistical tables in gretl.

This indicates that the area in one tail is almost zero. The p-value is well below the usual level of
significance, α = .05, and the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values from several distri-
butions. The pvalue function works similarly to the critical function discussed in the preceding
section. The syntax is:

genr p = pvalue(distribution,parameters,xval)

The pvalue function computes the area to the right of xval in the specified distribution. Choices
include z for Gaussian, t for Student’s t, X for chi-square, F for F, G for gamma, B for binomial
or P for Poisson. The argument parameters refers to the distribution’s known parameters, like
its degrees of freedom. So, for this example try

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

genr t2 = ($coeff(x)-0)/$stderr(x)

genr p2 = pvalue(t,$df,t2)

In the next example, the authors of POE test the hypothesis that β2 = 5.5 against the alternative
that β2 > 5.5. The computations

t = (b2 − 5.5)/se(b2) = (10.21− 5.5)/2.09 = 2.25 (3.4)

The significance level in this case is chosen to be 0.01 and the corresponding critical value can be
found using a tool found in Gretl . The Tools>Statistical tables pull-down menu bring up
the dialog found in Figure 3.1.

This result is found in Figure 3.6. The .01 one-sided critical value is 2.429. Since 2.25 is less

40

Figure 3.6: The results from the dialog box for obtaining critical values using the built in statistical
tables in gretl.

than this, we cannot reject the null hypothesis at the .01 level of significance.

In section 3.4.2 of POE, the authors conduct a one-sided test where the rejection region falls
within the left tail of the t-distribution. The null hypothesis is β2 = 15 and the alternative is
β2 < 15. The test statistic and distribution is

t = (b2 − 15)/se(b2) ∼ t38 (3.5)

provided that β2 = 15. The computation is

t = (b2 − 15)/se(b2) = (10.21− 15)/2.09 = −2.29 (3.6)

Based on the desired level of significance, α = .05, we would reject the null in favor of the one-sided
alternative if t < −1.686. It is and therefore we conclude that the coefficient is less than 15 at this
level of significance.

In section 3.4.3 examples of two-tailed tests are found. In the first example the economic
hypothesis that households will spend $7.50 of each additional $100 of income on food. So, H0 :
β2 = 7.50 and the alternative is H1 : β2 6= 7.50. The statistic is t = (b2 − 7.5)/se(b2) ∼ t38 if H0 is
true which is computed t = (b2 − 7.5)/se(b2) = (10.21− 7.5)/2.09 = 1.29. The two-sided, α = .05
critical value is 2.024. This means that you reject H0 if either t < −2.024 or if t > 2.024. The
computed statistic is neither, and hence we do not reject the hypothesis that β2 is $7.50. There
simply isn’t enough information in the sample to convince us otherwise.

You can draw the same conclusions from using a confidence interval that you can from this
two-sided t-test. The 100(1− α)% confidence interval for β2 is

b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2) (3.7)

In terms of the example

10.21− 2.024(2.09) ≤ β2 ≤ 10.21 + 2.024(2.09) (3.8)

41

which as we saw earlier in the manual was 5.97 ≤ β2 ≤ 14.45. Since 7.5 falls within this interval,
you could not reject the hypothesis that β2 is different from 7.5 at the .05% level of significance.

In the next example a test of the overall significance of β2 is conducted. As a matter of routine,
you always want to test to see if your slope parameter is different from zero. If not, then the
variable associated with it may not belong in your model. So, H0 : β2 = 0 and the alternative
is H1 : β2 6= 0. The statistic is t = (b2 − 0)/se(b2) ∼ t38, if H0 is true, and this is computed
t = (b2 − 0)/se(b2) = (10.21− 0)/2.09 = 4.88. Once again, the two-sided, α = .05 critical value is
2.024 and 4.88 falls squarely within the 5% rejection region of this test. These numbers should look
familiar since this is the test that is conducted by default whenever you run a regression in Gretl.

As we saw earlier, gretl also makes obtaining one- or two-sided p-values for the test statistics
you compute very easy. Simply use p-value finder dialog box available from the Tools pull-down
menu (see Figure 3.6) to obtain one or two sided p-values.

3.4 Script for t-values and p-values

One thing we’ve shown in this chapter is that many of the results obtained using the pull-down
menus (often referred to as the GUI) in gretl can be obtained using gretl’s language from the
console or in a script. In fact, the gretl’s GUI is merely a front-end to its programming language.3

In this chapter we used the pvalue and critical functions to get p-values or critical values of
statistics. The following script accumulates what we’ve covered and completes the examples in the
text.

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

genr tratio1 = ($coeff(x) - 0)/ $stderr(x)

#One sided test (Ha: b2 > zero)

genr c2 = critical(t,$df,.05)

genr p2 = pvalue(t,$df,tratio1)

#One sided test (Ha: b2>5.5)

genr tratio2 = ($coeff(x) - 5.5)/ $stderr(x)

genr c2 = critical(t,$df,.05)

genr p2 = pvalue(t,$df,tratio2)

#One sided test (Ha: b2<15)

genr tratio3 = ($coeff(x) - 15)/ $stderr(x)

genr c3 = -1*critical(t,$df,.05)

genr p3 = pvalue(t,$df,abs(tratio3))

3This is true in Stata as well.

42

#Two sided test (Ha: b2 not equal 7.5)

genr tratio4 = ($coeff(x) - 7.5)/ $stderr(x)

genr c4 = critical(t,$df,.025)

genr p4 = 2*pvalue(t,$df,tratio4)

#Confidence interval

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

#Two sided test (Ha: b2 not equal zero)

genr c1 = critical(t,$df,.025)

genr p1 = 2*pvalue(t,$df,tratio5)

The pvalue function in gretl measures the area of the probability distribution that lies to the
right of the computed statistic. If the computed t-ratio is positive and your alternative is two-
sided, multiply the result by 2 to measure the area to the left of its negative.

If your t-ratio is negative, gretl won’t compute the area (and you wouldn’t want it to, anyway).
This is what happened for tratio3 in the script and I used the absolute value function, abs(),
to get its positive value. The area to the right of the positive value is equivalent to the area left of
the negative value. Hence, the computation is correct.

Basically, proper use of the pvalue in tests of a single hypothesis requires a little thought. Too
much thought, in my opinion. I would avoid it unless you are comfortable with its use. In other
hypothesis testing contexts (e.g., χ2 and F-tests) p-values are much easier to use correctly. I use
them freely in those cases. With t-tests or z-tests (normal distribution), it is just easier conduct a
test by comparing the computed value of your statistic to the correct critical value.

43

3.5 Script

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

genr tratio1 = ($coeff(x) - 0)/ $stderr(x)

#One sided test (Ha: b2 > zero)

genr c2 = critical(t,$df,.05)

genr p2 = pvalue(t,$df,tratio1)

#One sided test (Ha: b2>5.5)

genr tratio2 = ($coeff(x) - 5.5)/ $stderr(x)

genr c2 = critical(t,$df,.01)

genr p2 = pvalue(t,$df,tratio2)

#One sided test (Ha: b2<15)

genr tratio3 = ($coeff(x) - 15)/ $stderr(x)

genr c3 = -1*critical(t,$df,.05)

genr p3 = pvalue(t,$df,abs(tratio3))

#Two sided test (Ha: b2 not equal 7.5)

genr tratio4 = ($coeff(x) - 7.5)/ $stderr(x)

genr c4 = critical(t,$df,.025)

genr p4 = 2*pvalue(t,$df,tratio4)

#Confidence interval

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

#Two sided test (Ha: b2 not equal zero)

genr c1 = critical(t,$df,.025)

genr p1 = 2*pvalue(t,$df,tratio1)

And for the Monte Carlo experiment, the script is:

open "c:\Program Files\gretl\data\poe\food.gdt"

set seed 3213798

loop 100 --progressive --quiet

genr u = 88*normal()

genr y1 = 80 + 10*x + u

ols y1 const x

genr b1 = $coeff(const)

genr b2 = $coeff(x)

genr s1 = $stderr(const)

44

genr s2 = $stderr(x)

POE uses 2.024 for the .025 critical value from the t(38) distribution

genr c1L = b1 - critical(t,$df,.025)*s1

genr c1R = b1 + critical(t,$df,.025)*s1

genr c2L = b2 - critical(t,$df,.025)*s2

genr c2R = b2 + critical(t,$df,.025)*s2

Compute the coverage probabilities of the Confidence Intervals

genr p1 = (80>c1L && 80<c1R)

genr p2 = (10>c2L && 10<c2R)

genr sigma = $sigma

genr sig2 = sigma*sigma

print b1 b2 p1 p2

store cicoeff.gdt b1 b2 s1 s2 sig2 c1L c1R c2L c2R

endloop

45

Chapter 4
Prediction, Goodness-of-Fit, and Modeling
Issues

Several extensions of the simple linear regression model are now considered. First, conditional
predictions are generated using results saved by gretl. Then, a commonly used measure of the
quality of the linear fit provided by the regression is discussed. We then take a brief detour to
discuss how gretl can be used to provide professional looking output that can be used in your
research.

The choice of functional form for a linear regression is important and the RESET test of the
adequacy of your choice is examined. Finally, the residuals are tested for normality. Normality of
the model’s errors is a useful property in that, when it exists, it improves the the performance of
least squares and the related tests and confidence intervals we’ve considered when sample sizes are
small (finite).

4.1 Prediction in the Food Expenditure Model

Generating predicted values of food expenditure for a person with a given income is very simple
in gretl. After estimating the model with least squares, you can use the genr to get predicted
values. In the example, a household having xo = $2000 of weekly income is predicted to spend
approximately $287.61 on food. Recalling that income is measured in hundreds of dollars in the
data, the gretl commands to compute this from the console are:

ols y const x

genr yhat0 = $coeff(const) + $coeff(x)*20

46

This yields ŷ0 = 287.609.

Obtaining the 95% confidence interval is slightly harder in that there are no internal commands
in gretl that will do this. The information needed is readily available, however. The formula is:

ˆvar(f) = σ̂2 +
σ̂2

T
+ (xo − x̄)2 ˆvar(b2) (4.1)

In section 2.4 we estimated σ̂2 = 8013.29 and ˆvar(b2) = 4.3818. The mean value of income is
found by highlighting the variable x in the main gretl window and the selecting View>Summary

Statistics from the pull-down menu. This yields x̄ = 19.6047.1 The t38 5% critical value is 2.0244
and the computation2

ˆvar(f) = 8013.2941 +
8013.2941

40
+ (20− 19.6047)2 ∗ 4.3818 = 8214.31 (4.2)

Then, the confidence interval is:

ŷ0 ± tcse(f) = 287.6069± 2.0244
√

8214.31 = [104.132, 471.086] (4.3)

The complete script to produce the computed results in gretl is:

ols y const x

genr yhat0 = $coeff(const) + $coeff(x)*20

genr f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)**2

genr ub=yhat0+2.0244*sqrt(f)

genr lb=yhat0-2.0244*sqrt(f)

At this point, you may be wondering if there is some way to use the internal functions of gretl
to produce the same result? As we’ve seen, gretl saves many of the results we need internally and
these can in turn be called into service in subsequent computations.

For instance, the sum of squared errors from the least squares regression is saved as $ess. The
degrees of freedom and number of observations are saved as $df and $nobs, respectively. Also, you
can use an internal gretl function to compute x̄, mean(x) and the critical function discussed
in the preceding chapter to get the desired critical value. Hence, the prediction interval can be
automated and made more precise by using the following script.

ols y const x

genr yhat0=$coeff(const)+20*$coeff(x)

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((20-mean(x))^2)*($stderr(x)^2)

genr lb = yhat0-critical(t,$df,0.025)*sqrt(f)

genr ub = yhat0+critical(t,$df,0.025)*sqrt(f)

1Your result may vary a little depending on how many digits are carried out to the right of the decimal.
2You can compute this easily using the gretl console by typing in: genr

f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)**2

47

4.2 Coefficient of Determination

One use of regression analysis is to “explain” variation in dependent variable as a function of
the independent variable. A summary statistic that is used for this purpose is the coefficient of
determination, also known as R2.

There are a number of different ways of obtaining R2 in gretl. The simplest way to get R2

is to read it directly off of gretl’s regression output. This is shown in Figure 4.3. Another way,
and probably most difficult, is to compute it manually using the analysis of variance (ANOVA)
table. The ANOVA table can be produced after a regression by choosing Analysis>ANOVA from
the model window’s pull-down menu as shown in Figure 4.1. The result appears in Figure 4.2.

Figure 4.1: After estimating the regression, select Analysis>ANOVA from the model window’s
pull-down menu.

Figure 4.2: The ANOVA table

48

In Figure 4.2 the SSR, SSE, and SST are shown. Gretl also does the R2 computation for you as
shown at the bottom of the output. If you want to verify gretl’s computation, then

SST = SSR+ SSE = 190627 + 304505 = 495132 (4.4)

and
SSR

SST
= 1− SSE

SST
=

190627

495132
= .385 (4.5)

Figure 4.3: In addition to some other summary statistics, Gretl computes the unadjusted R2 from
the linear regression.

Finally, you can think of R2 is as the squared correlation between your observations on your
dependent variable, y, and the predicted values of y based on your estimated model, ŷ. A gretl
script to compute this version of the statistic is found below in section 4.6.5.

To use the GUI you can follow the steps listed here. Estimate the model using least squares
and add the predicted values from the estimated model, ŷ, to your data set. Then use the gretl
correlation matrix to obtain the correlation between y and ŷ. Adding the fitted values to the data
set from the pull-down menu in the model window is illustrated in Figure 4.4 below. Highlight
the variables y, x, and yhat2 by holding the control key down and clicking on each variable in the
main gretl window as seen in Figure 4.5 below. Then, View>Correlation Matrix will produce
all the pairwise correlations between each variable you’ve chosen. These are arranged in a matrix
as shown in Figure 4.6 Notice that the correlation between y and x is the same as that between y
and ŷ (i.e., 0.6205). As shown in your text, this is no coincidence in the simple linear regression
model. Also, squaring this number equals R2 from your regression, 0.62052 = .385.

In Figure 4.4 of POE the authors plot y against ŷ. A positive linear relationship between
the two is expected since the correlation their correlation is 0.62. To produce this plot, estimate
the regression to open the model window. Add the predicted values of from the regression to the
dataset using Save>Fitted values from the model window’s pull-down menu. Name the fitted
value, yhat1 and click OK. Now, return to the main window, use the mouse to highlight the two

49

Figure 4.4: Using the pull-down menu in the Model window to add fitted values to your data set.

Figure 4.5: Hold the control key and click on y, x, and ŷ = yhat2 from the food expenditure
regression to select them.

50

Figure 4.6: The correlation matrix for y, x, and ŷ = yhat2 is produced by selecting
View>Correlation matrix from the pull-down menu.

variables (y and yhat1),3 then select View>Graph specified vars>X-Y scatter from the pull-
down menu. This opens the define graph dialog box. Choose yhat1 as the Y-axis variable and y

as the X-axis variable and click OK. A graph appears that looks similar to the one in POE. This
one actually has a fitted least squares line through the data scatter that, as expected, has a positive
slope. In fact, the slope is estimated to be .385, which is the regression’s R2!

A simpler approach is to open a console window and use the following commands:

ols y const x

genr yhat1 = $yhat

gnuplot yhat1 y

The first line estimates the regression. The predicted values are saved by gretl in $yhat. Use
the genr command to create a new variable, yhat1, that uses these. Then, call gnuplot with the
predicted values, yhat1, as the first variable and the actual values of food expenditure, y, as the
second. The graph is shown below in Figure 4.7. Finally, if you execute these commands using a
script, the graph is written to a file on your computer rather than opened in a window. For this
reason, I recommend executing these commands from the console rather than from the script file
that appears at the end of this chapter.

4.3 Reporting Results

In case you think gretl is just a toy, the program includes a very capable utility that enables
it to produce professional looking output. LaTeX, usually pronounced “Lay-tek”, is a typesetting
program used by mathematicians and scientists to produce professional looking technical docu-
ments. It is widely used by econometricians to prepare manuscripts for wider distribution. In fact,
this book is produced using LaTeX.

3Remember, press and hold Ctrl, then click on each variable

51

Figure 4.7: A plot of predicted vs. actual food expenditures produced using gnuplot .

Although LaTeX is free and produces very professional looking documents, it is not widely used
by undergraduate and masters students because 1) most degree programs don’t require you to write
a lot of technical papers and 2) it’s a computer language and therefore it takes some time to learn
its intricacies and to appreciate its nuances. Heck, I’ve been using it for years and still scratch my
head when I try to put tables and Figures in the places I’d like them to be!

In any event, gretl includes a facility for producing output that can be pasted directly into
LaTeX documents. For users of LaTeX, this makes generating regression output in proper format
a breeze. If you don’t already use LaTeX, then this will not concern you. On the other hand, if
you already use it, gretl can be very handy in this respect.

In Figure 4.3 you will notice that on the far right hand side of the menu bar
is a pull-down menu for LaTeX. From here, you click LaTeX on the menu bar and a number of op-
tions are revealed as shown in Figure 4.8. You can view, copy, or save the regression output in

Figure 4.8: Several options for defining the output of LaTeX are available.

52

Table 4.1: This is an example of LaTeX output in tabular form.

Model 1: OLS estimates using the 40 observations 1–40
Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value

const 83.4160 43.4102 1.9216 0.0622
x 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574
S.D. of dependent variable 112.675
Sum of squared residuals 304505.
Standard error of residuals (σ̂) 89.5170
Unadjusted R2 0.385002
Adjusted R̄2 0.368818
Degrees of freedom 38
Akaike information criterion 475.018
Schwarz Bayesian criterion 478.395

Table 4.2: Example of LaTeX output in equation form

ŷ = 83.4160
(1.922)

+ 10.2096
(4.877)

x

T = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(t-statistics in parentheses)

either tabular form or in equation form. You can tell gretl whether you want standard errors or
t-ratios in parentheses below parameter estimates, and you can define the number of decimal places
to be used of output. Nice indeed. Examples of tabular and equation forms of output are found
below in Tables 4.1 and 4.2, respectively.

4.4 Functional Forms

Linear regression is considerably more flexible than its name implies. There is no reason to be-
lieve that the relationship between any two variables of interest is necessarily linear. In fact there
are many relationships in economics that we know are not linear. The relationship between produc-
tion inputs and output is governed in the short-run by the law of diminishing returns, suggesting
that a convex curve is a more appropriate function to use. Fortunately, a simple transformation of
the variables (x, y, or both) can yield a model that is linear in the parameters (but not necessarily

53

in the variables).

Simple transformation of variables can yield regression functions that are quite flexible. The
important point to remember is, the functional form that you choose should be consistent with how
the data are actually being generated. If you choose an inappropriate form, then your estimated
model may at best not be very useful and at worst be downright misleading.

In gretl you are given some very useful commands for transforming variables. From the main
gretl window the Add pull-down menu gives you access to a number of transformations; selecting
one of these here will automatically add the transformed variable to your data set as well as its
description.

Figure 4.9 shows the available selections from this pull-down menu. In the upper part of the
panel two options appear in black, the others are greyed out because they are only available is you

Figure 4.9: The pull-down menu for adding new variables to gretl

have defined the dataset structure to consist of time series observations. The available options
can be used to add the natural logarithm or the squared values of any highlighted variable to your
data set. If neither of these options suits you, then the next to last option Define new variable

can be selected. This dialog uses the genr command and the large number of built in functions
to transform variables in different ways. Just a few of the possibilities include square roots (sqrt),
sine (sin), cosine (cos), absolute value (abs), exponential (exp), minimum (min), maximum (max),
and so on. Later in the book, we’ll discuss changing the dataset’s structure to enable some of the
other variable transformation options.

54

4.5 Testing for Normality

Your book, Principles of Econometrics, discusses the Jarque-Bera test for normality which is
computed using the skewness and kurtosis of the least squares residuals. To compute the Jarque-
Bera statistic, you’ll first need to estimate your model using least squares and then save the residuals
to the data set.

From the gretl console

ols y const x

genr uhat1 = $uhat

summary uhat1

The first line is the regression. The next saves the least squares redsiduals, identified as $uhat,
into a variable I have called uhat1.4 You could also use the point-and-click method to add the
residuals to the data set. This is accomplished from the regression’s output window. Simply choose
Save>Residuals from the model pull-down menu to add the estimated residuals to the dataset.
The last line of the script produces the summary statistics for the residuals and yields the output
in Figure 4.10. One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess

Figure 4.10: The summary statistics for the least squares residuals.

? summary uhat1

Summary Statistics, using the observations 1 - 40

for the variable ’uhat1’ (40 valid observations)

Mean 0.00000

Median -6.3245

Minimum -223.03

Maximum 212.04

Standard deviation 88.362

C.V. 2.4147E+015

Skewness -0.097319

Ex. kurtosis -0.010966

kurtosis is measured relative to that of the normal distribution which has kurtosis of three. Hence,
your computation is

JB =
T

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(4.6)

4You can’t use uhat instead of uhat1 because that name is reserved by gretl.

55

Which is

JB =
40

6

(
−0.0972 +

−0.0112

4

)
= .063 (4.7)

Gretl also includes a built in test for normality proposed by Doornik and Hansen (1994). Com-
putationally, it is much more complex than the Jarque-Bera test. The Doornik-Hansen test also
has a χ2 distribution if the null hypothesis of normality is true. It can be produced from the gretl
console after running a regression using the command testuhat.5

4.6 Examples

4.6.1 Wheat Yield Example

The results from the example in section 4.3 of your textbook is easily produced in gretl. Start
by loading the data and estimating the effect of time, time on yield green using least squares. The
following script will load the data file, estimate the model using least square, and generate a graph
of the actual and fitted values of yield (green) from the model.

open "c:\Program Files\gretl\data\poe\wa-wheat.gdt"

ols green const time

gnuplot green time

The resulting plot appears below in Figure 4.11. The simple gnuplot command works well enough.
However, you can take advantage of having declared the dataset structure to be time series to
improve the look. In this example we’ll reproduce Figure 4.8 of POE using two options for gnuplot.
Figure 4.8 of POE plots the residuals, the actual yield, and predicted yield from the regression
against time. Estimate the model using least squares and save the predicted values ($yhat) and
residuals ($uhat) to new variables using the genr command. We’ll call these yhat1 and uhat1,
respectively. Then use

gnuplot green yhat1 uhat1 --with-lines --time-series

There are two options listed after the plot. The first (--with-lines) tells gnuplot to connect
the points using lines. The second option (--time-series) tells gnuplot that the graph is of time
series. In this case, the dataset’s defined time variable will be used to locate each point’s position
on the X-axis. The graph in Figure 4.10 can be produced similarly. The complete script for Figure
4.8 of POE is:

5The R software also has a built-in function for performing the Jarque-Bera test. To use it, you have to download
and install the tseries package from CRAN. Once this is done, estimate your model using least squares as discussed
in appendix D and execute jarque.bera.test(fitols$residual).

56

Figure 4.11: The plot of the actual yield and predicted yield from your estimated model

open "c:\Program Files\gretl\data\poe\wa-wheat.gdt"

ols green const time

genr yhat1 = $yhat

genr uhat1 = $uhat

gnuplot green yhat1 uhat1 --with-lines --time-series

The comparable graph in gretl is found in Figure 4.12. Actually, this graph has had a bit of
editing done via gretl’s graph editing dialog shown in Figure 4.13. From Figure 4.13 we have
selected the lines tab and changed a few of the defaults. The legend for each series is changed
from the variable’s name to something more descriptive (e.g., uhat1 is changed to Residual). The
line styles were also changed. Steps were used for the residuals to mimic the output in Figure 4.9
of POE that shows a bar graph of the least squares residuals. From the stepped line, it becomes
more obvious that yield is probably not linear in time. The X-axis and Main tabs were also used
to change the name of the X-axis from time to Year and to add a title for the graph.

To explore the behavior of yield further, create a new variable using the genr command from
t3 = time3/1, 000, 000 as shown below. The new plot appears in Figure 4.14.

genr t3=time^3/1000000

ols green const t3

genr yhat2 = $yhat

genr uhat2 = $uhat

gnuplot green yhat2 uhat2 --with-lines --time-series

57

Figure 4.12: The plot of the actual yield and predicted yield from your estimated model using the
–time-series option

4.6.2 Growth Model Example

Below you will find a script that reproduces the results from the growth model example in
section 4.4.1 of your textbook.

open "c:\Program Files\gretl\data\poe\wa-wheat.gdt"

genr lyield = log(green)

ols lyield const time

4.6.3 Wage Equation

Below you will find a script that reproduces the results from the wage equation example in
section 4.4.2 of your textbook.

open "c:\Program Files\gretl\data\poe\cps1.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lb = $coeff(educ) - 1.96 * $stderr(educ)

genr ub = $coeff(educ) + 1.96 * $stderr(educ)

print lb ub

58

Figure 4.13: The graph dialog box can be used to change characteristics of your graphs. Use the
Main tab to give the graph a new name and colors; use the X- and Y-axes tabs to refine the behavior
of the axes and to provide better descriptions of the variables graphed.

59

Figure 4.14: The plot of the actual yield and predicted yield from the model estimated with the
cubic term

4.6.4 Predictions in the Log-linear Model

In this example, you use your regression to make predictions about the log wage and the level
of the wage for a person having 12 years of schooling.

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff(educ)*12

genr yhat_12 = exp(lyhat_12)

genr corr_yhat_12 = yhat_12*exp($ess/(2*$df))

4.6.5 Generalized R2

A generalized version of the goodness-of-fit statistic R2 can be obtained by taking the squared
correlation between the actual values of the dependent variable and those predicted by the regres-
sion. The following script reproduces the results from section 4.4.4 of your textbook.

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr l_yhat = $yhat

genr y = exp(l_yhat)

genr corr1 = corr(y, wage)

60

genr Rsquare = corr1^2

4.6.6 Prediction Interval

In this script the 95% prediction interval for someone having 12 years of education is estimated.

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff(educ)*12

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((12-mean(educ))^2)*($stderr(educ)^2)

genr sef = sqrt(f)

genr lb = exp(lyhat_12-1.96*sef)

genr ub = exp(lyhat_12+1.96*sef)

print lyhat_12 sig2 f sef lb ub

4.7 Script

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

genr yhat0 = $coeff(const) + $coeff(x)*20

genr f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)**2

genr ub=yhat0+2.0244*sqrt(f)

genr lb=yhat0-2.0244*sqrt(f)

#Prediction Intervals

ols y const x

genr yhat0=$coeff(const)+20*$coeff(x)

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((20-mean(x))^2)*($stderr(x)^2)

genr lb = yhat0-critical(t,$df,0.025)*sqrt(f)

genr ub = yhat0+critical(t,$df,0.025)*sqrt(f)

#Plot predictions vs actual food exp

#note: the plot will be written to a file.

#To see the plot, open a console window and execute the commands

ols y const x

genr yhatime = $yhat

gnuplot yhat1 y

61

#Testing normality of errors

ols y const x

genr uhat1 = $uhat

summary uhat1

#Wheat yield example

open "c:\Program Files\gretl\data\poe\wa-wheat.gdt"

ols green const time

gnuplot green time

ols green const time

genr yhat1 = $yhat

genr uhat1 = $uhat

gnuplot green yhat1 uhat1 --with-lines --time-series

genr t3=time^3/1000000

ols green const t3

genr yhat2 = $yhat

genr uhat2 = $uhat

gnuplot green yhat2 uhat2 --with-lines --time-series

#Growth model example

open "c:\Program Files\gretl\data\poe\wa-wheat.gdt"

genr lyield = log(green)

ols lyield const time

#Wage Equation

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lb = $coeff(educ) - 1.96 * $stderr(educ)

genr ub = $coeff(educ) + 1.96 * $stderr(educ)

print lb ub

#Predictions in the Log-linear model

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff(educ)*12

genr yhat_12 = exp(lyhat_12)

genr corr_yhat_12 = yhat_12*exp($ess/(2*$df))

#Generalized R-Square

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

62

genr l_wage = log(wage)

ols l_wage const educ

genr l_yhat = $yhat

genr y = exp(l_yhat)

genr corr1 = corr(y, wage)

genr Rsquare = corr1^2

#Prediction interval

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff(educ)*12

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((12-mean(educ))^2)*($stderr(educ)^2)

genr sef = sqrt(f)

genr lb = exp(lyhat_12-1.96*sef)

genr ub = exp(lyhat_12+1.96*sef)

print lyhat_12 sig2 f sef lb ub

63

Chapter 5
Multiple Regression Model

The multiple regression model is an extension of the simple model discussed in Chapter 2. The
main difference is that the multiple linear regression model contains more than one explanatory vari-
able. This changes the interpretation of the coefficients slightly and requires another assumption.
The general form of the model is shown in equation (5.1) below.

yi = β1 + β2xi2 + . . .+ βKxiK + ei i = 1, 2, . . . , N (5.1)

where yi is your dependent variable, xik is the ith observation on the kth independent variable,
k = 2, 3, . . . ,K, ei is random error, and β1, β2, . . . , βK are the parameters you want to estimate.
Just as in the simple linear regression model, each error, ei, has an average value of zero for each
value of the independent variables; each has the same variance, σ2, and are uncorrelated with any
of the other errors. In order to be able to estimate each of the βs, none of the independent variables
can be an exact linear combination of the others. This serves the same purpose as the assumption
that each independent variable of the simple linear regression take on at least two different values
in your dataset. The error assumptions can be summarized as ei|xi2, xi3, . . . xiK iid (0, σ2). Recall
from Chapter 2 that expression iid means that the errors are statistically independent from one
another (and therefor uncorrelated) and each has the same probability distribution. Taking a
random sample from a single population accomplishes this.

The parameters β2, β3, . . . , βK are referred to as slopes and each slope measures the effect of a
1 unit change in xik on the average value of yi, holding all other variables in the equation constant.
The conditional interpretation of the coefficient is important to remember when using multiple
linear regression.

The example used in this chapter models the sales for Big Andy’s Burger Barn. The model
includes two explanatory variables and a constant.

Si = β1 + β2Pi + β3Ai + ei i = 1, 2, . . . , N (5.2)

where Si is monthly sales in a given city and is measured in $1,000 increments, Pi is price of a

64

hamburger measured in dollars, and Ai is the advertising expenditure also measured in thousands
of dollars.

5.1 Linear Regression

The parameters of the model are estimated using least squares which can be done using the
pull-down menus and dialog boxes (GUI) or by using gretl language itself. Both of these will be
demonstrated below. The GUI makes it easy to estimate this model using least squares. There
are actually two ways to open the dialog box. The first is to use the pull-down menu. Select
Model>Ordinary Least Squares from the main gretl window as shown below in Figure 5.1. This

Figure 5.1: Using the pull-down menu to open the ordinary least squares dialog box.

brings up the dialog box shown in Figure 5.2. As in Chapter 2 you need to put the dependent
variable (S) and the independent variables (const, P , and A) in the appropriate boxes. Click OK
and the model is estimated.

There is a shortcut to get to the specify model dialog box. On the toolbar located at the bottom
of the main gretl window is a button labeled β̂. Clicking on this button as shown in Figure 5.3
will open the OLS specify model dialog box in Figure 5.2.

65

Figure 5.2: The specify model dialog box for ordinary least squares (OLS)

Figure 5.3: The OLS shortcut

66

Table 5.1: The regression results from Big Andy’s Burger Barn

Model 1: OLS estimates using the 75 observations 1–75
Dependent variable: S

Variable Coefficient Std. Error t-statistic p-value

const 118.914 6.35164 18.7217 0.0000
P −7.9078 1.09599 −7.2152 0.0000
A 1.86258 0.683195 2.7263 0.0080

Mean of dependent variable 77.3747
S.D. of dependent variable 6.48854
Sum of squared residuals 1718.94
Standard error of residuals (σ̂) 4.88612
Unadjusted R2 0.448258
Adjusted R̄2 0.432932
F (2, 72) 29.2479
Log-likelihood −223.87
Akaike information criterion 453.739
Schwarz Bayesian criterion 460.691
Hannan–Quinn criterion 456.515

5.2 Big Andy’s Burger Barn

To estimate the model for Big Andy’s, we’ll use a script file. The following two lines are typed
into a script file which is executed by clicking your mouse on the “gear” button of the script window.

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A

This assumes that the gretl data set andy.gdt is installed at c:\userdata\gretl\data\poe\.
The results, in tabular form, are in Table 5.1 and match those presented in the textbook.

In addition to providing information about how sales change when price or advertising change,
the estimated equation can be used for prediction. To predict sales revenue for a price of $5.50
and an advertising expenditure of $1,200 we can use the genr to do the computations. From the
console,

? genr S_hat = $coeff(const) + $coeff(P)*5.5 + $coeff(A)*1.2

Generated scalar S_hat (ID 4) = 77.6555

which matches the result in your text.

67

5.2.1 SSE, R2 and Other Statistics

Other important output is included in Table 5.1. For instance, you’ll find the sum of squared
errors (SSE) which gretl refers to as “sum of squared residuals.” In this model SSE = 1718.94.
To obtain the estimated variance, σ̂2, divide SSE by the available degrees of freedom to obtain

σ̂2 =
SSE

N −K
=

1718.94

75− 3
= 23.874 (5.3)

The square root of this number is referred to by gretl as the “Standard error of residuals, σ̂”
and is reported to be 4.88612. Gretl also reports R2 in this table. If you want to compute your
own versions of these statistics using the total sum of squares from the model, you’ll have to use
Analysis>ANOVA from the model’s pull-down menu to generate the ANOVA table. Refer to section
4.2 for details.

To compute your own from the standard gretl output recall that

σ̂y =

√
SST

N − 1
(5.4)

The statistic σ̂y is printed by gretl and referred to as “S.D. of dependent variable” which is reported
to be 6.48854. A little algebra reveals

SST = (N − 1)σ̂2y = 74 ∗ 6.48854 = 3115.485 (5.5)

Then,

R2 = 1− SSE

SST
= 1− 1718.94

3115.485
= 0.448 (5.6)

Otherwise, the goodness-of-fit statistics printed in the gretl regression output or the ANOVA table
are perfectly acceptable.

Gretl also reports the adjusted R2 in the standard regression output. The adjusted R2 imposes
a small penalty to the usual R2 when a variable is added to the model. Adding a variable with
any correlation to y always reduces SSE and increases the size of the usual R2. With the adjusted
version, the improvement in fit may be outweighed by the penalty and it could become smaller as
variables are added. The formula is:

R̄2 = 1− SSE/(N −K)

SST/(N − 1)
(5.7)

This sometimes referred to as “R-bar squared,” (i.e., R̄2) although in gretl it is called “adjusted
R-squared.” For Big Andy’s Burger Barn the adjusted R-squared is equal to 0.4329.

5.2.2 Covariance Matrix and Confidence Intervals

Gretl can be used to print the variance-covariance matrix by using the pull-down menu as
shown in Figure 2.13. Or, the --vcv option can be used with the ols command to obtain this
result from the console or using a script. The example code is:

68

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A --vcv

Confidence intervals are obtained using the genr command in the same way as in Chapter 3.
The gretl commands

genr bL = $coeff(P) - critical(t,$df,0.025) * $stderr(P)

genr bU = $coeff(P) + critical(t,$df,0.025) * $stderr(P)

Remember, you can also summon the 95% confidence intervals from the model window using the
pull-down menu by choosing Analysis>Confidence intervals for coefficients.

5.2.3 t-Tests, Critical Values, and P-values

In Section 3.3 we used the GUI to obtain test statustics, critical values and p-values. However,
it is much easier to use the the genr command from either the console or as a script to compute
these. For t-ratios and one- and two-sided hypothesis tests the appropriate commands are:

genr t1 = ($coeff(P)-0)/$stderr(P)

genr t2 = ($coeff(A)-1)/$stderr(A)

The critical values for the t72 and the p-values for the two statistics can be easily obtained using
the command

genr c=critical(t,$df,0.025)

pvalue t $df t1

pvalue t $df t2

These last three commands produce the output shown below:

? genr c=critical(t,$df,.025)

Generated scalar c (ID 8) = 1.99346

? pvalue t $df t1

t(72): area to the right of -7.21524 =~ 1

(to the left: 2.212e-010)

(two-tailed value = 4.424e-010; complement = 1)

? pvalue t $df t2

t(72): area to the right of 1.26257 = 0.105408

(two-tailed value = 0.210817; complement = 0.789183)

69

It is interesting to note that when a negative t-ratio is used in the pvalue function, gretl returns
both the area to its right, the area to its left and the sum of the two areas. So, for the alternative
hypothesis that the coefficient on P is less than zero (against the null that it is zero), the p-value
is the area to the left of the computed statistic is the desired one.

70

5.3 Script

open "c:\Program Files\gretl\data\poe\andy.gdt"

#Change the descriptive labels and graph labels

setinfo S -d "Monthly Sales revenue ($1000)" -n "Monthly Sales ($1000)"

setinfo P -d "$ Price" -n "Price"

setinfo A -d "Monthy Advertising Expenditure ($1000)" -n \

"Monthly Advertising ($1000)

#Print the new labels to the screen

labels

#Summary Statistics

summary S P A

#Regression with covariance matrix printed

ols S const P A --vcv

#Prediction

genr S_hat = $coeff(const) + $coeff(P)*5.5 + $coeff(A)*1.2

#Confidence Intervals

#Price

genr bL = $coeff(P) - critical(t,$df,0.025) * $stderr(P)

genr bU = $coeff(P) + critical(t,$df,0.025) * $stderr(P)

#Advertising

genr bL = $coeff(A) - critical(t,$df,0.025) * $stderr(A)

genr bU = $coeff(A) + critical(t,$df,0.025) * $stderr(A)

#t-ratios

#Two tail tests

genr t1 = ($coeff(P)-0)/$stderr(P)

genr t2 = ($coeff(A)-0)/$stderr(A)

#One tail test

genr t3 = ($coeff(A)-1)/$stderr(A)

#Ctitical value and p-values

genr c=critical(t,$df,.025)

pvalue t $df t1 #used for both 1 and 2 tail tests

pvalue t $df t2

pvalue t $df t3

71

Chapter 6
Further Inference in the Multiple Regression
Model

In this chapter several extensions of the multiple linear regression model are considered. First,
we test joint hypotheses about parameters in a model and then learn how to impose linear restric-
tions on the parameters. A condition called collinearity is also explored.

6.1 F-test

An F-statistic can be used to test multiple hypotheses in a linear regression model. In linear
regression there are several different ways to derive and compute this statistic, but each yields the
same result. The one used here compares the sum of squared errors (SSE) in a regression model
estimated under the null hypothesis (H0) to the SSE of a model under the alternative (H1). If the
sum of squared errors from the two models are similar, then there is not enough evidence to reject
the restrictions. On the other hand, if imposing restrictions implied by H0 alter SSE substantially,
then the restrictions it implies don’t fit the data and we reject them.

In the Big Andy’s Burger Barn example we estimated the model

Si = β1 + β2Pi + β3Ai + ei (6.1)

Suppose we wish to test the hypothesis that price, Pi, has no effect on sales against the alternative
that it does. Thus, H0 : β2 = 0 and H1 : β2 6= 0. Another way to express this is in terms of the
models each hypothesis implies.

H0 : β1 + β3Ai + ei

H1 : β1 + β2Pi + β3Ai + ei

72

The model under H0 is restricted compared to the model under H1 since in it β2 = 0. The
F-statistic used to test H0 versus H1 estimates each model by least squares and compares their
respective sum of squared errors using the statistic:

F =
(SSEr − SSEu)/J

SSEu/(N −K)
∼ FJ,N−K if H0 is true (6.2)

The sum of squared errors from the unrestricted model (H1) is denoted SSEu and that of the
restricted model (H0) is SSEr. The numerator is divided by the number of hypotheses being tested,
J . In this case that is 1 since there is only a single restriction implied by H0. The denominator
is divided by the total number of degrees of freedom in the unrestricted regression, N −K. N is
the sample size and K is the number of parameters in the unrestricted regression. When the errors
of your model are (1) independently and identically distributed (iid) normals with zero mean and
constant variance (et iid N(0, σ2)) and (2) H0 is true, then this statistic has an F distribution with
J numerator and N −K denominator degrees of freedom. Choose a significance level and compute
this statistic. Then compare its value to the appropriate critical value from the F table or compare
its p-value to the chosen significance level.

The script to estimate the models under H0 and H1 and to compute the test statistic is given
below.

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A

genr sseu = $ess

genr unrest_df = $df

ols S const A

genr sser = $ess

genr Fstat=((sser-sseu)/1)/(sseu/(unrest_df))

pvalue F 1 unrest_df Fstat

Gretl refers to the sum of squared residuals (SSE) as the “error sum of squares” and it is retrieved
from the regression results using the syntax genr sseu = $ess. In this case, $ess points to the
error sum of squares computed in the regression that precedes it. You’ll also want to save the degrees
of freedom in the unrestricted model so that you can use it in the computation of the p-value for
the F-statistic. In this case, the F-statistic has 2 known parameters (J=1 and N −K=unrest df)
that are used as arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are available through
scripts, but it may be useful to demonstrate how to access them through the GUI. First, you’ll
want to estimate the model using least squares. From the pull-down menu (see Figure 5.1) se-
lect Model>Ordinary Least Squares, specify the unrestricted model (Figure 5.2), and run the
regression. This yields the result shown in Figure 6.1.

You’ll notice that along the menu bar at the top of this window there are a number of options

73

Figure 6.1: The model results from least squares regression using the pull-down menu

that are available to you. Choose Tests and the pull-down menu shown in Figure 6.2 will be
revealed. The first four options in 6.2 are highlighted and these are the ones that are most pertinent
to the discussion here. This menu provides you an easy way to omit variables in the null, add
variables to the alternative, test a sum of your coefficients, or to test arbitrary linear restrictions
on the parameters of your model.

Since this test involves imposing a zero restriction on the coefficient of the variable P , we can
use the omit option. This brings up the dialog box shown in Figure 6.3. Notice the two radio
buttons at the bottom of the window. The first is labeled Estimate reduced model and this is the
one you want to use to compute equation 6.2. If you select the other, no harm is done. It is
computed in a different way, but produces the same answer in a linear model. The only advantage
of the Wald test (second option) is that the restricted model does not have to be estimated in order
to perform the test. Given gretl’s speed, there is not much to be gained here from using the Wald
form of the test, other than it generates less output to view! Select the variable P and click OK
to reveal the result shown in Figure 6.4. The interesting thing about this option is that it mimics
your manual calculation of the F statistic from the script. It computes the sum of squared errors
in the unrestricted and restricted models and computes equation (6.2) based on those regressions.
Most pieces of software choose the alternative method (Wald) to compute the test, but you get the
same result.

You can also use the linear restrictions option from the pull-down menu shown in Figure
6.2. This produces a large dialog box that requires a bit of explanation. The box appears in Figure
6.5. The restrictions you want to impose (or test) are entered here. Each restriction in the set should
be expressed as an equation, with a linear combination of parameters on the left and a numeric
value to the right of the equals sign. Parameters are referenced in the form b[variable number],
where variable number represents the position of the regressor in the question, which starts with
1. This means that β2 is equivalent to b[2]. Restricting β2 = 0 is done by issuing b[2]=0 in

74

Figure 6.2: Choosing Tests from the pull-down menu of the model window reveals several testing
options

Figure 6.3: The Omit variables dialog box available from the Tests pull-down menu in the model
window.

75

Figure 6.4: The results using the Omit variables dialog box to test zero restrictions on the
parameters of a linear model.

Figure 6.5: The linear restriction dialog box obtained using the Linear restrictions option in
the Tests pull-down menu.

76

this dialog. Sometimes you’ll want to use a restriction that involves a multiple of a parameter e.g.,
3β3 = 2. The basic principle is to place the multiplier first, then the parameter, using * to multiply.
So, in this case the restriction in gretl becomes 3*b[3] = 2.

When you use the console or a script instead of the pull-down menu to impose restrictions, you’ll
have to tell gretl where the restrictions start and end. The restriction(s) starts with a restrict

statement and ends with end restrict. The statement will look like this:

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A

restrict

b[2] = 0

end restrict

When you have more than one restriction to impose or test, put each restriction on its own line.
Here is an example of a set of restrictions from a gretl script:

restrict

b[1] = 0

b[2] - b[3] = 0

b[4] + 2*b[5] = 1

end restrict

Of course, if you use the pull-down menu to impose these you can omit the restrict and end

restrict statements. The results you get from using the restrict statements appear in Figure 6.6.
The test statistic and its p-value are highlighted in red.

Figure 6.6: The results obtained from using the restrict dialog box.

77

6.2 Regression Significance

To statistically determine whether the regression is actually a model of the average behavior
of your dependent variable, you can use the F-statistic. In this case, H0 is the proposition that y
does not depend on your independent variables, and H1 is that it does.

Ho : β1 + ei

H1 : β1 + β2xi2 + . . .+ βkxik + ei

The null hypothesis can alternately be expressed as β2, β3, . . . , βK = 0, a set of K − 1 linear
restrictions. In Big Andy’s Burger Barn the script is

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A

genr sseu = $ess

genr unrest_df = $df

ols S const

genr sser = $ess

genr rest_df = $df

genr J = rest_df - unrest_df

genr Fstat=((sser-sseu)/J)/(sseu/(unrest_df))

pvalue F J unrest_df Fstat

The only difference is that you now have two hypotheses to test jointly and the numerator degrees
of freedom for the F-statistic is J = K − 1 = 2. The saved residual degrees of freedom from
the restricted model can be used to obtain the number of restrictions imposed. Each unique
restriction in a linear model reduces the number of parameters in the model by one. So, imposing
one restriction on a three parameter unrestricted model (e.g., Big Andy’s), reduces the number of
parameters in the restricted model to two. Let Kr be the number of regressors in the restricted
model and Ku the number in the unrestricted model. Subtracting the degrees of freedom in the
unrestricted model (N −Ku) from those of the restricted model (N −Kr) will yield the number of
restrictions you’ve imposed, i.e., (N −Kr)− (N −Ku) = (Ku −Kr) = J .

The test of regression significance is important enough that it appears on the default output
of every linear regression estimated using gretl. The statistic and its p-value are highlighted in
Figure 6.7. The F-statistic for this test and its p-value are highlighted. Since the p-value is less
than = .05, we reject the null hypothesis that the model is insignificant at the five percent level.

78

Figure 6.7: The overall F-statistic of regression significance is produced by default when you esti-
mate a linear model using least squares.

6.3 Extended Model

In the extended model, we add the squared level of advertising to the model, A2, which permits
the possibility of diminishing returns to advertising. The model to be estimated is

Si = β1 + β2Pi + β3Ai + β4A
2
i + ei (6.3)

This time, open a console window from the toolbar by clicking on the open gretl console button;
then, generate a new variable, A2 using genr A2 = A*A. Then estimate (6.3) using the command:
ols S const P A A2. This yields the output in Figure 6.8:

6.3.1 Is Advertising Significant?

The marginal effect of another unit of advertising on average sales is

∂E[Salesi]

∂Ai
= β3 + 2β4Ai (6.4)

This means that the effect of another unit of advertising depends on the current level of advertising,
Ai. To test for the significance of all levels of advertising requires you to test the joint hypothesis
H0 : β3 = β4 = 0 against the alternative Ha : β3 6= 0 or β4 6= 0. From the console, following
estimation of the full model, type omit A A2 and gretl will execute the omit variables test discussed
in the preceding section. The console window is shown in Figure 6.9 below and the outcome from
the omit test is highlighted.

79

Figure 6.8: The results of the extended model of Big Andy’s Burger Barn obtained from the gretl
console.

6.3.2 Optimal Level of Advertising

The optimal level of advertising is that amount where the last dollar spent on advertising results
in only 1 dollar of additional sales (we are assuming here that the marginal cost of producing and
selling another burger is zero!). Find the level of level of advertising, Ao, that solves:

∂E[Salesi]

∂Ai
= β3 + 2β4Ao = $1 (6.5)

Plugging in the least squares estimates from the model and solving for Ao can be done in gretl. A
little algebra yields

Ao =
$1− β3

2β4
(6.6)

The script in gretl to compute this follows.

open "c:\Program Files\gretl\data\poe\andy.gdt"

genr A2 = A*A

ols S const P A A2

genr Ao =(1-$coeff(A))/(2*$coeff(A2))

which generates the result:

80

Figure 6.9: Testing the significance of Advertising using the omit statement from the console.

81

? genr Ao =(1-$coeff(A))/(2*$coeff(A2))

Generated scalar Ao (ID 7) = 2.01434

This implies that the optimal level of advertising is estimated to be approximately $2014.

To test the hypothesis that $1900 is optimal (remember, A is measured in $1000)

Ho : β3 + 2β41.9 = 1

H1 : β3 + 2β41.9 6= 1

you can use a t-test or an F-test. Following the regression, use

restrict

b[3] + 3.8*b[4]=1

end restrict

Remember that b[3] refers to the coefficient of the third variable in the regression (A) and b[4]

to the fourth. The output from the script is shown in Figure 6.10.

Figure 6.10: Testing whether $1900 in advertising is optimal using the restrict statement.

82

6.4 Nonsample Information

In this section we’ll estimate the beer demand model. The data are in beer.gdt and are in
level form. The model to be estimated is

ln(Qi) = β1 + β2ln(PBi) + β3ln(PLi) + β4ln(PRi) + β5ln(Mi) + ei (6.7)

The first thing to do is to convert each of the variables into natural logs. Gretl has a built in
function for this that is very slick. From the main window, highlight the variables you want to
transform with the cursor. Then go to Add>Logs of selected variables from the pull-down
menu as shown in Figure 6.11. This can also be done is a script or from the console using the

Figure 6.11: Use the pull-down menu to add the natural logs of each variable

command logs Q PB PL PR M. The natural log of each of the variables is obtained and the result
stored in a new variable with the prefix l (“el” underscore).

No money illusion can be parameterized in this model as β2 +β3 +β4 +β5 = 0. This restriction
is easily estimated within gretl using the restrict dialog or a script as shown below.

open "c:\Program Files\gretl\data\poe\beer.gdt"

83

Figure 6.12: gretl output for the beer demand

? restrict

? b2+b3+b4+b5=0

? end restrict

Restriction:

b[l_PB] + b[l_PL] + b[l_PR] + b[l_M] = 0

Test statistic: F(1, 25) = 2.49693, with p-value = 0.126639

Restricted estimates:

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

const -4.79780 3.71390 -1.292 0.20778

l_PB -1.29939 0.165738 -7.840 <0.00001 ***

l_PL 0.186816 0.284383 0.657 0.51701

l_PR 0.166742 0.0770752 2.163 0.03989 **

l_M 0.945829 0.427047 2.215 0.03574 **

Standard error of residuals = 0.0616756

logs Q PB PL PR M

ols l_Q const l_PB l_PL l_PR l_M

restrict

b2+b3+b4+b5=0

end restrict

The syntax for the restrictions is new. Instead of b[2]+b[3]+b[4]+b[5]=0 a simpler form is used.
This is undocumented in the version I am using (1.6.5) and I am uncertain of whether this will
continue to work. It does for now and I’ve shown it here. Apparently gretl is able to correctly
parse the variable number from the variable name without relying on the brackets. The output
from the gretl script output window appears in Figure 6.12.

6.5 Model Specification

There are several issues of model specification explored here. First, it is possible to omit relevant
independent variables from your model. A relevant independent variable is one that affects the
mean of the dependent variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted variable bias.

84

The other possibility is to include irrelevant variables in the model. In this case, you include
extra regressors that either don’t affect y or, if they do, they are not correlated with any of the
other regressors. Including irrelevant variables in the model makes least squares less precise than
it otherwise would be–this increases standard errors, reduces the power of your hypothesis tests,
and increases the size of your confidence intervals.

The example used in the text uses the dataset edu inc.gdt. The first regression

faminci = β1 + β2 ∗ hei + β3wei + β4kl6i + β5xi5 + β6xi6 + ei (6.8)

where faminc is family income, he is husband’s years of schooling, we is woman’s years of schooling,
and kl6 are the number of children in the household under age 6. Several variations of this model are
estimated. The first includes only he, another only he and we, and one includes the two irrelevant
variables, x5 and x6. The gretl script to estimate these models and test the implied hypothesis
restrictions follows. If you type this in yourself, omit the line numbers.

#line code

01 open "c:\Program Files\gretl\data\poe\edu_inc.gdt"

02 ols faminc const he we kl6 x5 x6

03 modeltab add

04 omit x5 x6

05 modeltab add

06 omit kl6

07 modeltab add

08 omit we

09 modeltab add

10 modeltab show

The models can be estimated and saved as icons (File>Save to session as icon) within gretl.
Once they’ve all been estimated and saved as icons, open a session window (Figure 1.10) and drag
each model onto the model table icon. Click on the model table icon to reveal the output shown in
Figure 6.13.

In the above script, we’ve used the modeltab function after each estimated model to add it to
the model table. The final line tells gretl to display (show) the resulting model table.

One word of caution is in order about the given script and its interpretation. The omit statement
tests the implied restriction (the coefficient on the omitted variable is zero) versus the estimated
model that immediately precedes it. Thus, when we test that the coefficient on kl6 is zero in
line 06, the alternative model is the restricted model from line 04, which already excludes x5, and
x6. Thus, only one restriction is being tested. If your intention is to test all of the restrictions
(omit x5, x6 and kl6) versus the the completely unrestricted model in line 02 that includes all of
the variables, you’ll need to modify your code. I’ll leave this an an exercise.

85

Figure 6.13: Save each model as an icon. Open the session window and drag each model to the
model table icon. Click on the model table icon to reveal this output.

86

6.6 RESET

The RESET test is used to assess the adequacy of your functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F-statistic.

Consider the model
yi = β1 + β2xi2 + β3xi3 + ei (6.9)

and the hypothesis

H0 : E[y|xi2, xi3] = β1 + β2xi2 + β3xi3

H1 : not H0

Rejection of H0 implies that the functional form is not supported by the data. To test this, first
estimate (6.9) using least squares and save the predicted values, ŷi. Then square and cube ŷ and
add them back to the model as shown below:

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + ei

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + γ2ŷ

3
i + ei

The null hypotheses to test (against alternative, ‘not H0’) are:

H0 : γ1 = 0

H0 : γ1 = γ2 = 0

Estimate the auxiliary models using least squares and test the significance of the parameters of the
ŷs. This is accomplished through the following script. Note, the reset command issued after the
first regression computes the test associated with H0 : γ1 = γ2 = 0. It is included here so that you
can compare the ‘canned’ result with the one you compute using the two step procedure suggested
above. The two results should match.

open "c:\Program Files\gretl\data\poe\cars.gdt"

ols mpg const cyl eng wgt

reset

ols mpg const cyl eng wgt

genr y = $yhat

genr y2 = y*y

genr y3 = y2*y

ols mpg const cyl eng wgt y2

omit y2

ols mpg const cyl eng wgt y2 y3

omit y2 y3

87

6.7 Cars Example

The data set cars.gdt is included in package of datasets that are distributed with this manual.
The script to reproduce the results from your text is

open "c:\Program Files\gretl\data\poe\cars.gdt"

ols mpg const cyl eng wgt

vif

omit cyl eng

The test of the individual significance of cyl and eng can be read from the table of regression
results. Neither are significant at the 5% level. The joint test of their significance is performed
using the omit statement. The F-statistic is 4.298 and has a p-value of 0.0142. The null hypothesis
is rejected in favor of their joint significance.

The new statement that requires explanation is vif. vif stands for variance inflation factor
and it is used as a collinearity diagnostic by many programs, including gretl. The vif is closely
related to the statistic suggested by Hill et al. (2007) who suggest using the R2 from auxiliary
regressions to determine the extent to which each explanatory variable can be explained as linear
functions of the others. They suggest regressing xj on all of the other independent variables and
comparing the R2

j from this auxiliary regression to 10. If the R2
j exceeds 10, then there is evidence

of a collinearity problem.

The vif j actually reports the same information, but in a less straightforward way. The vif

associated with the jth regressor is computed

vif j =
1

1−R2
j

(6.10)

which is, as you can see, simply a function of the R2
j from the jth regressor. Notice that when

R2
j > .80, the vif j > 10. Thus, the rule of thumb for the two rules is actually the same. A vif j

greater than 10 is equivalent to an R2 greater than .8 from the auxiliary regression.

The output from gretl is shown below:

Variance Inflation Factors

Minimum possible value = 1.0

Values > 10.0 may indicate a collinearity problem

2) cyl 10.516

3) eng 15.786

5) wgt 7.789

88

VIF(j) = 1/(1 - R(j)^2), where R(j) is the multiple

correlation coefficient between variable j and the

other independent variables

Once again, the gretl output is very informative. It gives you the threshold for high collinearity
(vifj) > 10) and the relationship between vifj and R2

j . Clearly, these data are highly collinear.
Two variance inflation factors above the threshold and the one associated with wgt is fairly large
as well.

The variance inflation factors can be produced from the dialogs as well. Estimate your model
then, in the model window, select Tests>Collinearity and the results will appear in gretl’s
output.

6.8 Script

open "c:\Program Files\gretl\data\poe\andy.gdt"

ols S const P A

genr sseu = $ess

genr unrest_df = $df

ols S const A

genr sser = $ess

genr Fstat=((sser-sseu)/1)/(sseu/(unrest_df))

pvalue F 1 unrest_df Fstat

ols S const

genr sser = $ess

genr rest_df = $df

genr J = rest_df-unrest_df

genr Fstat=((sser-sseu)/J)/(sseu/(unrest_df))

pvalue F J unrest_df Fstat

genr A2 = A*A

ols S const P A A2

genr Ao =(1-$coeff(A))/(2*$coeff(A2))

restrict

b3 + 3.8*b4=1

end restrict

89

open "c:\Program Files\gretl\data\poe\beer.gdt"

logs Q PB PL PR M

ols l_Q const l_PB l_PL l_PR l_M

restrict

b2+b3+b4+b5=0

end restrict

open "c:\Program Files\gretl\data\poe\edu_inc.gdt"

ols faminc const he we kl6 x5 x6

modeltab add

omit x5 x6

modeltab add

omit kl6

modeltab add

omit we

modeltab add

modeltab show

open "c:\Program Files\gretl\data\poe\cars.gdt"

ols mpg const cyl eng wgt

reset

ols mpg const cyl eng wgt

genr y = $yhat

genr y2 = y*y

genr y3 = y2*y

ols mpg const cyl eng wgt y2

omit y2

ols mpg const cyl eng wgt y2 y3

omit y2 y3

ols mpg const cyl eng wgt

vif

omit cyl eng

90

Chapter 7
Nonlinear Relationships

In Chapter 7 of Principles of Econometrics, the authors consider several methods for modeling
nonlinear relationships between economic variables. As they point out, if the slope (the effect of
one variable on another) changes for any reason, then the relationship is nonlinear. Specifically, we
examine the use of polynomials, dummy variables, and interaction effects to make the basic linear
regression model much more flexible.

7.1 Polynomials

The first model considered is a basic wage equation, where the worker’s wage depends of his
level of education and experience. We suspect that there are diminishing returns to experience and
hence that the wage benefit of another year of experience will decline as a work gains experience.

waget = β1 + β2educt + β3expert + β4exper
2
t + et (7.1)

The marginal effect of another year of experience on the average wage is

∂E(waget)

∂expert
= β3 + 2β4expert (7.2)

Diminishing returns implies that β3 > 0 and β4 < 0. The maximum is attained when the slope of
the function is zero so setting equation (7.2) equal to zero and solving for exper defines the level
of experience that we expect will maximize wages.

β3 + 2β4expert = 0 and expert = −β3/2β4. (7.3)

Using gretl and the 1000 observations from the 1997 CPS stored in the gretl dataset cps small.gdt
we use the following script:

91

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr exper2 = exper^2

ols wage const educ exper exper2

which yields the result

ŵage = − 9.818
(−9.306)

+ 1.210
(17.228)

educ + 0.341
(6.629)

exper− 0.0051
(−4.252)

exper2

T = 1000 R̄2 = 0.2687 F (3, 996) = 123.38 σ̂ = 5.3417

(t-statistics in parentheses)

The marginal effect for someone with 18 years of experience is obtained by using the statement
scalar me18=$coeff(exper)+2*$coeff(exper2)*18 which yields the desired result. Similarly,
the turning point can be computed using the command scalar turnpt=-$coeff(exper)/(2*$coeff(exper2)).
Notice, the scalar command is used instead of genr here because the result is a single number
rather than a data series. You could use genr and obtain exactly the same result. There is little
reason to prefer scalar over genr for the generation of scalars in gretl, but I’ve developed the
habit of referring to a single number generated by other software as a scalar and I try to follow
this convention in gretl. Actually, for scalars in gretl you could omit the prefix altogether. In
recent versions of gretl it is unnecessary as you can see from Figure 7.1. In this figure, the same
computation is made using genr, scalar, and without either!

Figure 7.1: Using genr and scalar

As noted earlier gretl includes a data utility that makes it very easy to add the square of
experience to your data file. First, select the variable you want to transform by highlighting it with
the cursor. Then from the main gretl window use Add>Squares of selected variables to add
them to the data set.

There are a number of other transformations you can make in this way, including add a time
trend, logs, lags, differences and dummy variables for units or for panels. The pull-down list is
illustrated in Figure 4.9.

As mentioned earlier some of the choices in Figure 4.9 are greyed out, meaning that they can
not be selected at this time. This is because they are time series or panel specific functions and

92

can only be used if you have first designated your data as such. To set your data up as time
series use the Data>Dataset structure pull-down menu which is obtained as shown in Figure 7.2
below. Clicking on Dataset structure reveals the dialog box shown in Figure 7.3. If you select

Figure 7.2: Data>Dataset Structure pull-down menu

time series you will be taken to additional boxes that allow you to define its periodicity (yearly,
quarterly, monthly, etc.) and the dates the time series covers. This is a very nice utility and I have
used it to convert many of the POE datasets to time series for you. We will return to this topic in
later chapters.

7.2 Interaction Terms

Another tool for capturing some types of nonlinearity is the creation of interaction terms. An
interaction term is a variable that is created by multiplying two or more variables together. As
discussed in POE, interaction terms are useful in allowing the marginal effect of a change in an
independent variable on the average value of your dependent variable to be different for different
observations in your sample. For instance, you may decide that the average return to another year
of schooling is higher the younger a person is, other things being equal. To capture this effect in
a model of wages you could create an interaction between years of schooling (Si) and a person’s
age (Ai) by generating a new variable SAi = Si ∗Ai and including it as a regressor in your model.
This is the overall gist of the pizza example from your textbook, where a person’s age and income

93

Figure 7.3: Dataset Structure dialog box

are interacted and included in a basic model of pizza demand.

7.3 Examples

7.3.1 Housing Price Example

The model to be estimated is

pricet = β1 + δ1utownt + β2sqftt + γsqftt ∗ utownt
+ β3aget + δ2poolt + δ3fplacet + et

(7.4)

The script to estimate this model is

open "c:\Program Files\gretl\data\poe\utown.gdt"

genr p = price/1000

genr sqft_ut = sqft*utown

ols price const utown sqft sqft_ut age pool fplace

Notice that the dependent variable, price, has been rescaled to be measured in $1,000 increments.
This basically reduces the sizes of the estimated coefficients and standard errors by a factor of
1,000. It has no effect on t-ratios or their p-values. The results appear below.

p̂ = 24.5
(3.957)

+ 27.453
(3.259)

utown + 0.07612
(31.048)

sqft + 0.01299
(3.913)

sqft ut

− 0.190
(−3.712)

age + 4.377
(3.658)

pool + 1.649
(1.697)

fplace

T = 1000 R̄2 = 0.8698 F (6, 993) = 1113.2 σ̂ = 15.225

(t-statistics in parentheses)

94

7.3.2 CPS Example

In this example, the cps small.dat data are used to estimate wage equations. The basic equation
is

wagei = β1 + β2educi + δ1blacki + δ2femalei + γblacki ∗ femalei + ei (7.5)

In this specification white-males are the reference group. The parameter δ1 measures the effect
of being black, the parameter δ2 measures the effect of being female, and the parameter γ measures
the effect of being black and female, all measured relative to the white-male reference group.

The first part of the script generates the interaction between females and blacks and then
uses least squares to estimate the coefficients. The next line uses the omit statement to omit the
three dummy variables (black, female, b female) from the model to estimate a restricted version.
Further, it performs the F-test of the joint null hypothesis that the three coefficients (δ1, δ2, γ) are
zero against the alternative that at least one of them is not.

The next model adds the three regional dummies and tests the null hypothesis that they are
jointly zero. Then additional interactions are created between south and the other variables.
Finally, gretl’s wls command is used to estimate separate regressions for southerners and non
southerners. Here is the script file to compute all of the results for the the CPS examples.

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr b_female = black*female

ols wage const educ black female b_female

omit black female b_female

ols wage const educ black female b_female south midwest west

omit south midwest west

genr ed_south = educ*south

genr b_south = black*south

genr f_south = female*south

genr b_f_sth = black*female*south

ols wage const educ black female b_female south \

ed_south b_south f_south b_f_sth

omit south ed_south b_south f_south b_f_sth

The results are collected in model table 7.1 using the modeltab function.

95

Table 7.1: CPS results

OLS estimates
Dependent variable: wage

Model 1 Model 2 Model 3 Model 4 Model 5

const −3.230∗∗ −4.912∗∗ −2.456∗∗ −3.230∗∗ −3.578∗∗

(0.9675) (0.9668) (1.051) (0.9675) (1.151)

educ 1.117∗∗ 1.139∗∗ 1.102∗∗ 1.117∗∗ 1.166∗∗

(0.06971) (0.07155) (0.06999) (0.06971) (0.08241)

black −1.831∗∗ −1.608∗ −1.831∗∗ −0.4312
(0.8957) (0.9034) (0.8957) (1.348)

female −2.552∗∗ −2.501∗∗ −2.552∗∗ −2.754∗∗

(0.3597) (0.3600) (0.3597) (0.4257)

b female 0.5879 0.6465 0.5879 0.06732
(1.217) (1.215) (1.217) (1.906)

south −1.244∗∗ 1.302
(0.4794) (2.115)

midwest −0.4996
(0.5056)

west −0.5462
(0.5154)

ed south −0.1917
(0.1542)

b south −1.744
(1.827)

f south 0.9119
(0.7960)

b f sth 0.5428
(2.511)

n 1000 1000 1000 1000 1000
R̄2 0.2451 0.2016 0.2482 0.2451 0.2490
` −3107.86 −3137.43 −3104.33 −3107.86 −3102.81

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

96

7.3.3 Chow Test

The Chow test is an easy way to test the equivalency of two regressions estimated using different
subsets of the sample. In this section I’ll show you a trick that you can use for estimating subset
regressions and then how to perform the Chow test.

Suppose you wanted to estimate separate wage equations based on the model in equation (7.5):
one regression for southerners and another for everyone else. Gretl can accomplish this using the
weighted least squares, wls, estimator. The weighted least squares estimator takes the model

yi = β1 + β2xi2 + β3xi3 + . . .+ βkxik + ei (7.6)

and reweighs it using weights, wi according to

wi ∗ yi = β1wi + β2wi ∗ xi2 + β3wi ∗ xi3 + . . .+ βkwi ∗ xik + wi ∗ ei (7.7)

and estimates the coefficients using least squares. This estimator is used later in the book for
different purposes, but here it can be used to omit desired observations from your model. Basically,
what you want to do is to let wi = 1 for all observations you want to include and wi = 0 for those
you want to exclude.

The syntax for the wls command is simple.

wls w y const x2 x3 x4

First call for the weighted least squares estimator with wls; next specify the weights to be used
(w); then, state the regression to be estimated y const x2 x3 x4.

In the context of equation (7.5) generate a new dummy variable that takes the value 1 for
nonsoutherners and zero for southerners; then, use weighted least squares. The following script
uses this approach to estimate the two sample subsets. The sum of squared errors are saved for
later use.

wls nonsouth wage const educ black female b_female

scalar sse_ns = $ess

wls south wage const educ black female b_female

scalar sse_s = $ess

If the coefficients for southerners are equal to those for nonsoutherners, then you would pool
the two subsamples together and estimate the model using the command ols wage const educ

black female b female. Otherwise, separate regressions are required. The Chow test is used to
determine whether the subsamples are really necessary in light of the data you have. To determine
whether the regressions were actually equal to one another compute

Chow =
SSEfull − (SSEsouth + SSEnonsouth)/5

(SSEsouth + SSEnonsouth)/(n− 10)
∼ F5,n−10 (7.8)

97

if the two subset regressions are equivalent. You will reject the null hypothesis that the coefficients
of the two subsamples are equal if the p-value is less than the desired significance level of the test,
α.

The script to compute the Chow test is:

ols wage const educ black female b_female

scalar sse_r = $ess

scalar sse_u = sse_ns+sse_s

scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)

pvalue F 5 $nobs-10 chowtest

As you can see, this is just an application of the F-statistic of equation (6.2) discussed in Chapter
6. The unrestricted sum of squares is obtained by adding the sum of squared errors of the two
subset regressions. The restricted sum of square errors is from the pooled regression.

7.3.4 Pizza Example

The pizza examples considers the model

pizi = β1 + β2agei + β3yi + β4agei ∗ yi + ei (7.9)

where i = 1, 2, . . . , T . The marginal effects of age on pizza demand are computed for families having
$25,000 and $90,000 in income. The gretl code to estimate this model using least squares and to
obtain the marginal effects is:

open "c:\Program Files\gretl\data\poe\pizza.gdt"

ols piz const age y

genr age_inc = age*y

ols piz const age y age_inc

scalar p25 = $coeff(age)+$coeff(age_inc)*25000

scalar p90 = $coeff(age)+$coeff(age_inc)*90000

The estimates from the first equation are:

p̂iz = 342.885
(4.740)

+ 0.00238222
(3.947)

y− 7.57556
(−3.270)

age

T = 40 R̄2 = 0.2930 F (2, 37) = 9.0811 σ̂ = 131.07

(t-statistics in parentheses)

98

Table 7.3: Regression results for the Chow test.

Dependent variable: wage

Model 7 Model 8 Model 9
Non-South South All

const −3.578∗∗ −2.275 −3.230∗∗

(1.211) (1.555) (0.9675)

educ 1.166∗∗ 0.9741∗∗ 1.117∗∗

(0.08665) (0.1143) (0.06971)

black −0.4312 −2.176∗∗ −1.831∗∗

(1.418) (1.080) (0.8957)

female −2.754∗∗ −1.842∗∗ −2.552∗∗

(0.4476) (0.5896) (0.3597)

b female 0.06732 0.6102 0.5879
(2.004) (1.433) (1.217)

n 685 315 1000
R̄2 0.2486 0.2143 0.2451
SSE 22031.3 6981.39 29307.7

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The results of the test are:

? scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)

Generated scalar chowtest (ID 20) = 2.01321

? pvalue F 5 $nobs-10 chowtest

F(5, 990): area to the right of 2.01321 = 0.074379

(to the left: 0.925621)

99

and those from the second:

p̂iz = 342.885
(4.740)

+ 0.00238222
(3.947)

y− 7.57556
(−3.270)

age

T = 40 R̄2 = 0.2930 F (2, 37) = 9.0811 σ̂ = 131.07

(t-statistics in parentheses)

and the computed predictions are:

p25 = -6.98270

p90 = -17.3964

7.3.5 Log-Linear Wages Example

In the final example a model of log-wages is estimated and the genr command is used to compute
the percentage difference between male and female wages and the marginal effect of another year
of experience on the log-wage.

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ female

scalar pdiff = exp($coeff(female))-1

genr expersq = exper*exper

genr educ_exp = educ*exper

ols l_wage const educ exper educ_exper

scalar me = 100*($coeff(exper)+$coeff(educ_exp)*16)

ols l_wage const educ exper expersq educ_exper

The results from the three regressions appear in Table 7.5.

7.4 Script

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr exper2 = exper^2

ols wage const educ exper exper2

scalar me18 = $coeff(exper)+2*$coeff(exper2)*18

scalar turnpt = -($coeff(exper))/(2*$coeff(exper2))

100

Table 7.5: The regression results from the log-linear wages example.

OLS estimates
Dependent variable: ln(wage)

Model 1 Model 2 Model 3

const 0.9290∗∗ 0.1528 −0.2646
(0.08375) (0.1722) (0.1808)

educ 0.1026∗∗ 0.1341∗∗ 0.1506∗∗

(0.006075) (0.01271) (0.01272)

female −0.2526∗∗

(0.02998)

exper 0.02492∗∗ 0.06706∗∗

(0.007075) (0.009533)

educ exp −0.0009624∗ −0.002019∗∗

(0.0005404) (0.0005545)

expersq −0.0006962∗∗

(0.0001081)

n 1000 1000 1000
R̄2 0.2654 0.2785 0.3067
` −670.50 −660.97 −640.54

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

? scalar pdiff = exp($coeff(female))-1

Generated scalar pdiff (ID 11) = -0.223224

? scalar me = 100*($coeff(exper)+$coeff(educ_exp)*16)

Generated scalar me (ID 14) = 0.951838

101

open "c:\Program Files\gretl\data\poe\utown.gdt"

genr p = price/1000

genr sqft_ut = sqft*utown

ols price const utown sqft sqft_ut age pool fplace

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr b_female = black*female

ols wage const educ black female b_female

omit black female b_female

ols wage const educ black female b_female south midwest west

omit south midwest west

genr ed_south = educ*south

genr b_south = black*south

genr f_south = female*south

genr b_f_sth = black*female*south

#Use omit statement to test joint hypothesis

ols wage const educ black female b_female south \

ed_south b_south f_south b_f_sth

omit south ed_south b_south f_south b_f_sth

#Using wls to omit observations

genr nonsouth = 1-south

wls nonsouth wage const educ black female b_female

scalar sse_ns = $ess

wls south wage const educ black female b_female

scalar sse_s = $ess

#Chow test

#Pooled regression (restricted)

ols wage const educ black female b_female

scalar sse_r = $ess

scalar sse_u = sse_ns+sse_s

scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)

pvalue F 5 $nobs-10 chowtest

#Pizza Example

open "c:\Program Files\gretl\data\poe\pizza.gdt"

ols piz const age y

genr age_inc = age*y

ols piz const age y age_inc

102

scalar p25 = $coeff(age)+$coeff(age_inc)*25000

scalar p90 = $coeff(age)+$coeff(age_inc)*90000

#Log wages example

open "c:\Program Files\gretl\data\poe\cps_small.gdt"

genr l_wage = log(wage)

ols l_wage const educ female

scalar pdiff = exp($coeff(female))-1

genr expersq = exper*exper

genr educ_exp = educ*exper

ols l_wage const educ exper educ_exper

scalar me = 100*($coeff(exper)+$coeff(educ_exp)*16)

103

Chapter 8
Heteroskedasticity

The simple linear regression models of Chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the yi or the ei) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This describes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

yi = β1 + β2xi2 + . . .+ βkxiK + ei i = 1, 2, . . . , T (8.1)

where yi is the dependent variable, xik is the ith observation on the kth independent variable,
k = 2, 3, . . . ,K, ei is random error, and β1, β2, . . . , βK are the parameters you want to estimate.
Just as in the simple linear regression model, ei, have an average value of zero for each value of
the independent variables and are uncorrelated with one another. The difference in this model
is that the variance of ei now depends on i, i.e., the observation to which it belongs. Indexing
the variance with the i subscript is just a way of indicating that observations may have differ-
ent amounts of variability associated with them. The error assumptions can be summarized as
ei|xi2, xi3, . . . xiK iid N(0, σ2i).

The intercept and slopes, β1 and β2 . . . βK , are consistently estimated by least squares even
if the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1
and testing hypotheses about the βs when the data are heteroskedastic are explored.

8.1 Food Expenditure Example

First, a simple model of food expenditures is estimated using least squares. The model is

yi = β1 + β2xi + ei i = 1, 2, . . . , N. (8.2)

104

where yi is food expenditure and xi is income of the ith individual. When the errors of the model
are heteroskedastic, then the least squares estimator of the coefficients is consistent. That means
that the least squares point estimates of the intercept and slope are useful. However, when the
errors are heteroskedastic the usual least squares standard errors are inconsistent and therefor
should not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, you’ll need a
consistent estimator of their standard errors in order to construct valid tests and intervals. A
simple computation proposed by White accomplishes this. Standard errors computed using White’s
technique are loosely referred to as robust, though one has to be careful when using this term;
the standard errors are robust to the presence of heteroskedasticity in the errors of model (but not
necessarily other forms of model misspecification).

Open the food.gdt data in gretl and estimate the model using least squares.

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

This yields the usual least squares estimates of the parameters, but the wrong standard errors
when the data are heteroskedastic. To obtain the robust standard errors, simply add the --robust

option to the regression as shown in the following gretl script. After issuing the --robust option,
the standard errors stored in $stderr(x) are the robust ones.

ols y const x --robust

confidence intervals (Robust)

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

print lb ub

In the script, we’ve used the critical(t,$df,0.025) function to get the desired critical value from
the t-distribution. Remember, the degrees of freedom from the preceding regression are stored in
$df. The first argument in the function indicates the desired distribution, and the last is the desired
right-tail probability (α/2 in this case).

This can also be done from the pull-down menus. Select Model>Ordinary Least Squares (see
Figure 2.6) to generate the dialog to specify the model shown in Figure 8.1 below. Note, the check
box to generate ‘robust standard errors’ is highlighted in yellow. You will also notice that there is
a button labeled ‘configure’ just to the right of the check box. Clicking this button reveals a dialog
from which several options can be selected. In this case, we can select the particular method that
will be used to compute the robust standard errors and even set robust standard errors to be the
default computation for least squares. This dialog box is shown in Figure 8.2 below. To reproduce
the results in Hill et al. (2007), you’ll want to select HC1 from the pull-down list. As you can see,
other gretl options can be selected here that affect the default behavior of the program.

105

Figure 8.1: Check the box for heteroskedasticity robust standard errors.

106

Figure 8.2: Set the method for computing robust standard errors.

The model results for the food expenditure example appears in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
based on the variant of White’s standard errors chosen using the ‘configure’ button. The result is:

t(38, .025) = 2.024

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const 83.4160 (27.8186, 139.013)

x 10.2096 (6.54736, 13.8719)

8.2 Weighted Least Squares

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of
the regression line as those observations having low variance. The basic idea of generalized least
squares in this context is to reweigh the data so that all the observations contain the same level
of information (i.e., same variance) about the location of the regression line. So, observations that
contain more noise are given small weights and those containing more signal a higher weight.
Reweighing the data in this way is known in some statistical disciplines as weighted least squares.

107

Table 8.1: Least squares estimates with the usual and robust standard errors.

OLS estimates
Dependent variable: y

Usual Std errors Robust Std errors

const 83.42∗ 83.42∗∗

(43.41) (27.46)

x 10.21∗∗ 10.21∗∗

(2.093) (1.809)

n 40 40
R2 0.3850 0.3850
` −235.51 −235.51

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

This descriptive term is the one used by gretl as well.

Suppose that the errors vary proportionally with xi according to

V ar(ei) = σ2xi (8.3)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of xi. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

1
√
xi
V ar(ei) = σ2 (8.4)

So, multiply equation (8.1) by 1/
√
xi to complete the transformation. The transformed model is

homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

Gretl makes this easy since it contains a function to reweigh all the observations according to
a weight you specify. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/

√
xi you need to use its square

1/xi as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, x, and the constant and
running the regression. The script file shown below does this.

108

In the example, you first have to create the weight, then call the function wls. The script
appears below.

open "c:\Program Files\gretl\data\poe\food.gdt"

#GLS using built in function

genr w = 1/x

wls w y const x

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

print lb ub

#GLS using OLS on transformed data

genr wi = 1/sqrt(x)

genr ys = wi*y

genr xs = wi*x

genr cs = wi

ols ys cs xs

The first argument after wls is the name of the weight variable. Then, specify the regression to
which it is applied. Gretl multiplies each variable (including the constant) by the square root of
the given weight and estimates the regression using least squares.

In the next block of the program, wi = 1/
√
xi is created and used to transform the dependent

variable, x and the constant. Least squares regression using this manually weighted data yields
the same results as you get with gretl’s wls command. In either case, you interpret the output of
weighted least squares in the usual way.

The weighted least squares estimation yields:

ŷ = 78.6841
(23.789)

+ 10.4510
(1.3859)

x

T = 40 R̄2 = 0.5889 F (1, 38) = 56.867 σ̂ = 18.75

(standard errors in parentheses)

and the 95% confidence interval for the slope β2 is (7.64542, 13.2566).

8.3 Skedasticity Function

A commonly used model for the error variance is the multipicative heteroskedasticity
model. It appears below in equation 8.5.

σ2i = exp (α1 + α2zi) (8.5)

109

The variable zi is an independent explanatory variable that determines how the error variance
changes with each observation. You can add additional zs if you believe that the variance is related
to them (e.g., σ2i = exp (α1 + α2zi2 + α3zi3)). It’s best to keep the number of zs relatively small.
The idea is to estimate the parameters of (8.5) using least squares and then use predictions as
weights to transform the data.

In terms of the food expenditure model, let zi = ln(xi). Then, taking the natural logarithms
of both sides of (8.5) and adding a random error term, vi, yields

ln (σ2i) = α1 + α2zi + vi (8.6)

To estimate the αs, first estimate the linear regression (8.2) (or more generally, 8.1) using least
squares and save the residuals. Square the residuals, then take the natural log; this forms an
estimate of ln (σ2i) to use as the dependent variable in a regression. Now, add a constant and the
zs to the right-hand side of the model and estimate the αs using least squares.

The regression model to estimate is

ln (ê2i) = α1 + α2zi + vi (8.7)

where ê2i are the least squares residuals from the estimation of equation (8.1). The predictions
from this regression can then be transformed using the exponential function to provide weights for
weighted least squares.

For the food expenditure example, the gretl code appears below.

ols y const x

genr lnsighat = log($uhat*$uhat)

genr z = log(x)

ols lnsighat const z

genr predsighat = exp($yhat)

genr w = 1/predsighat

wls w y const x

The first line estimates the linear regression using least squares. Next, a new variable is generated
(lnsighat) that is the natural log of the squared residuals from the preceding regression. Then,
generate z as the natural log of x. Estimate the skedasticity function using least squares, take the
predicted values (yhat) and use these in the exponential function (i.e., exp (ŷi)). The reciprocal
of these serve as weights for generalized least squares. Remember, gretl automatically takes the
square roots of w for you in the wls function.

This results in:

ŷ = 76.0538
(9.7135)

+ 10.6335
(0.97151)

x

T = 40 R̄2 = 0.7529 F (1, 38) = 119.8 σ̂ = 1.5467

(standard errors in parentheses)

110

8.4 Grouped Heteroskedasticity

Using examples from Hill et al. (2007) a model of grouped heteroskedasticity is estimated and
a Goldfeld-Quandt test is performed to determine whether the two sample subsets have the same
error variance.

8.4.1 Wage Example

Below, I have written a gretl program to reproduce the wage example from Hill et al. (2007)
that appears in Chapter 8. The example is relatively straightforward and I’ll not explain the script
in much detail. It is annotated to help you decipher what each section of the program does.

The example consists of estimating wages as a function of education and experience. In addition,
a dummy variable is included that is equal to one if a person lives in a metropolitan area. This is
an “intercept” dummy which means that folks living in the metro areas are expected to respond
similarly to changes in education and experience (same slopes), but that they earn a premium
relative to those in rural areas (different intercept).

Each subset (metro and rural) is estimated separately using least squares and the standard
error of the regression is saved for each ($sigma). To create weights for weighted least squares,
the full sample is restored and the metro and rural dummy variables are each multiplied times
their respective regression’s standard error. The two variables are added together to form a single
variable that is equal to the metro regression standard error for each observation located in a metro
area and equal to the rural regression standard error for each observation located in a rural area.
The weight is created by taking the reciprocal and squaring. Recall, gretl needs the variance rather
than the standard error of each observation to perform weighted least squares.

open "c:\Program Files\gretl\data\poe\cps2.gdt"

ols wage const educ exper metro

Use only metro observations

smpl metro --dummy

ols wage const educ exper

scalar stdm = $sigma

#Restore the full sample

smpl full

#Create a dummy variable for rural

genr rural = 1-metro

#Restrict sample to rural observations

smpl rural --dummy

111

ols wage const educ exper

scalar stdr = $sigma

#Restore the full sample

smpl full

#Generate standard deviations for each metro and rural obs

genr wm = metro*stdm

genr wr = rural*stdr

#Make the weights (reciprocal)

#Remember, Gretl’s wls needs these to be variances

#so you’ll need to square them

genr w = 1/(wm + wr)^2

#Weighted least squares

wls w wage const educ exper metro

Weighted least squares estimation yields:

ŵage = −9.39836
(1.0197)

+ 1.19572
(0.068508)

educ + 0.132209
(0.014549)

exper + 1.53880
(0.34629)

metro

T = 1000 R̄2 = 0.2693 F (3, 996) = 123.75 σ̂ = 1.0012

(standard errors in parentheses)

The Goldfeld-Quandt statistic is the formed as the ratio of the two variances:

F =
σ̂2M
σ̂2R
∼ FNM−KM ,NR−KR

(8.8)

if the null hypothesis of homoskedasticity is true. Rejection of the Ho means that the subsets have
different variances.

#Goldfeld Quandt statistic

?scalar fstatistic = stdm^2/stdr^2

Generated scalar fstatistic (ID 17) = 2.08776

You could simplify the script a bit by using the regression trick explored in Chapter 7. Create a
dummy variable that takes the value of 1 for the desired observations and 0 for the ones you want
to drop. Then, use weighted least squares on the entire sample using the dummy variable as your
weight. This effectively drops all observations in the sample for which the dummy variable is zero.
This trick is useful since it keeps you from having to keep explicit track of which sample is actually
in memory at any point in time. Thus,

smpl metro --dummy

ols wage const educ exper

112

could be replaced by

wls metro wage const educ exper

Then there is no need to restore the full sample in the next block of code!

8.4.2 Food Expenditure Example

In this example, the Goldfeld-Quandt test is applied in a more traditional way. Here, you
suspect that the variance depends on a specific variable. You sort the data based on this variable
and then compare the subset variances to one another using the Goldfeld-Quandt test statistic.

For the food expenditure example, the script follows. Essentially, you want to run two regres-
sions using subsets of the sample. One subset contains observations with low variance, the other
observations with high variance. In most cases this means that you’ll have to sort your data based
on its variability. In our example, one would sort the data based on xi. Gretl gives us another
option and that is to create the subsamples based on some criterion. In this case, we want obser-
vations separated based on high and low values of x so we can use the median function. To pick
all observations for which x is above the median, use smpl x > median(x) --restrict. Recall
that the smpl command allows us to manipulate the sample in memory. In this case we use the
logical statement that we want observations where x is greater than the median of x, followed by
the --restrict option. This should give us half the observations.

open "c:\Program Files\gretl\data\poe\food.gdt"

#Take subsample where x > median(x)

smpl x > median(x) --restrict

ols y const x

scalar stdL = $sigma

scalar df_L = $df

#Restore the full sample

smpl full

#Take subsample where x < median(x)

smpl x < median(x) --restrict

ols y const x

scalar stdS = $sigma

scalar df_S = $df

113

#Goldfeld Quandt statistic

scalar fstatistic = stdL^2/stdS^2

pvalue F df_L df_S fstatistic

The full sample is restored and the variance for the lower half is saved. Then the test statistic is
computed and can be compared to the appropriate critical value. The last statement computes the
p-value from the F-distribution. Recall that the degrees of freedom were saved from each subset
and they can be used here as the arguments for the numerator and denominator degrees of freedom
for F.

The test statistic and p-value are:

? scalar fstatistic = stdL^2/stdS^2

Generated scalar fstatistic (ID 7) = 3.61476

? pvalue F df_L df_S fstatistic

F(18, 18): area to the right of 3.61476 = 0.00459643

(to the left: 0.995404)

8.5 Other Tests for Heteroskedasticity

The Goldfeld-Quandt test of the null hypothesis of homoskedasticity is only useful when the
data can be neatly partitioned into subsamples having different variances. In many circumstances
this will not be the case and other tests of the homoskedasticity null hypothesis are more useful.
Each of these tests share the same null hypothesis as the Goldfeld-Quandt test: homoskedasticity.
They differ in the specification of the alternative hypothesis.

The first test considered is based on the estimated multiplicative heteroskedasticity function of
section 8.3. The null and alternative hypotheses are

Ho : σ2i = σ2 (8.9)

H1 : σ2i = exp (α1 + α2zi) (8.10)

The homoskedastic null hypothesis is tested against a specific functional relationship. In this case,
we know the function (exponential) as well as the variable(s) that causes the variance to vary (zi).
Basically, we want to test whether α2 = 0. If it is, then the errors of the regression model are
homoskedastic.

The test of this hypothesis is based on your regression in equation (8.7). The t-ratio on α2 is
approximately normally distributed under Ho so you could use the t-test to test this proposition.
If you have multiple zs, use the F-test.

114

Other equivalent ways of testing this hypothesis are available. As Hill et al. (2007) point out,
it is common to test the same hypothesis based on a linear regression

ê2i = α1 + α2zi + vi (8.11)

Breusch and Pagan have proposed a couple of tests of the homoskedasticity hypothesis (8.9) against
the alternative

H1 : σ2i = h(α1 + α2zi) (8.12)

where h() is some arbitrary function (e.g., linear or exponential). These tests are carried out based
on equation (8.11). The alternative hypothesis in (8.12) is more general than that in (8.10) and
includes it as a special case. There are two versions of the Breusch-Pagan test. One is used when
the errors of the regression are normally distributed and the other when they are not. I suggest
using the latter since it is seldom if ever known what the error distribution is. I’ll tell you how to
do the preferred version in gretl.

Basically, estimate (8.11) using least squares and take NR2 from this regression, where N is
your sample size. Under the null hypothesis it has a χ2

S−1 distribution, where S is the total number
of parameters (the αs) in the estimated equation.

The alternative hypothesis of White’s test is even more general than the Breusch-Pagan. The
alternative hypothesis is

H1 : σ2i 6= σ2 (8.13)

Thus the alternative is completely general. The test is similar to the Breusch-Pagan test in that
you’ll run a regression with ê2 as a dependent variable and zs as the independent variables. In
White’s test you will include each z, its square, and their (unique) cross products as regressors. In
the food expenditure example that amounts to

yi = α1 + α2zi + α3z
2
i + vi (8.14)

You can do this in one of two ways. You can run the original regression, save the residuals and
square them. Then square zi to use as an independent variable. Run the regression. For the food
expenditure example:

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

#Save the residuals

genr ehat = $uhat

#Square the residuals

genr ehat2 = ehat*ehat

#White’s test

#Generate squares, cross products (if needed)

115

genr x2 = x*x

#Test regression

ols ehat2 const x x2

scalar teststat = $trsq

pvalue X 2 teststat

Gretl computes NR2 in every regression and saves it in $trsq. The statistic NR2 is distributed as
a χ2

S−1 under the null hypothesis of homoskedasticity and we can use the pvalue function to obtain
the p-value for the computed statistic. The syntax is pvalue X df statistic, with X indicating
the χ2, df the degrees of freedom, and statistic the computed value of NR2. The script yields
a computed test statistic of 7.555, and the p-value of 0.0228789. Homoskedasticity is rejected.

Or, you can use the gretl function modtest! In this case, run the original regression and follow
it with modtest --white as shown in the script.

open "c:\Program Files\gretl\data\poe\food.gdt"

#White’s test --built-in

ols y const x

modtest --white

This yields the output:

White’s test for heteroskedasticity

OLS estimates using the 40 observations 1-40

Dependent variable: uhat^2

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

const -2908.78 8100.11 -0.359 0.72156

x 291.746 915.846 0.319 0.75186

sq_x 11.1653 25.3095 0.441 0.66167

Unadjusted R-squared = 0.188877

Test statistic: TR^2 = 7.555079,

with p-value = P(Chi-square(2) > 7.555079) = 0.022879

As you can see, the results from modtest --white and your (labor intensive) script are the same!

116

8.6 Script

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

ols y const x --robust

confidence intervals (Robust)

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

print lb ub

#GLS using built in function

genr w = 1/x

wls w y const x

genr lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

print lb ub

#GLS using OLS on transformed data

genr wi = 1/sqrt(x)

genr ys = wi*y

genr xs = wi*x

genr cs = wi

ols ys cs xs

#Estimating the skedasticity function and GLS

ols y const x

genr lnsighat = log($uhat*$uhat)

genr z = log(x)

ols lnsighat const z

genr predsighat = exp($yhat)

genr w = 1/predsighat

wls w y const x

#--

#Wage Example

open "c:\Program Files\gretl\data\poe\cps2.gdt"

ols wage const educ exper metro

Use only metro observations

smpl metro --dummy

ols wage const educ exper

117

scalar stdm = $sigma

#Restore the full sample

smpl full

#Create a dummy variable for rural

genr rural = 1-metro

#Restrict sample to rural observations

smpl rural --dummy

ols wage const educ exper

scalar stdr = $sigma

#Restore the full sample

smpl full

#Generate standard deviations for each metro and rural obs

genr wm = metro*stdm

genr wr = rural*stdr

#Make the weights (reciprocal)

#Remember, Gretl’s wls needs these to be variances

#so you’ll need to square them

genr w = 1/(wm + wr)^2

#Weighted least squares

wls w wage const educ exper metro

#Goldfeld Quandt statistic

scalar fstatistic = stdm^2/stdr^2

#--

#Food Expenditure Example

open "c:\Program Files\gretl\data\poe\food.gdt"

#Take subsample where x > median(x)

smpl x > median(x) --restrict

ols y const x

scalar stdL = $sigma

scalar df_L = $df

#Restore the full sample

smpl full

118

#Take subsample where x < median(x)

smpl x < median(x) --restrict

ols y const x

scalar stdS = $sigma

scalar df_S = $df

#Goldfeld Quandt statistic

scalar fstatistic = stdL^2/stdS^2

pvalue F df_L df_S fstatistic

#------------------------------------

#LM Test

open "c:\Program Files\gretl\data\poe\food.gdt"

ols y const x

#Save the residuals

genr ehat = $uhat

#Square the residuals

genr ehat2 = ehat*ehat

#White’s test

#Generate squares, cross products (if needed)

genr x2 = x*x

#Test regression

ols ehat2 const x x2

scalar teststat = $trsq

pvalue X 2 teststat

#--

#White’s test

open "c:\Program Files\gretl\data\poe\food.gdt"

#White’s test --built-in

ols y const x

modtest --white

119

Chapter 9
Dynamic Models and Autocorrelation

The multiple linear regression model of equation (5.1) assumes that the observations are not
correlated with one another. While this is certainly believable if one has drawn a random sample,
it’s less likely if one has drawn observations sequentially in time. Time series observations, which
are drawn at regular intervals, usually embody a structure where time is an important component.
If you are unable to completely model this structure in the regression function itself, then the
remainder spills over into the unobserved component of the statistical model (its error) and this
causes the errors be correlated with one another.

One way to think about it is that the errors will be serially correlated when omitted effects
last more than one time period. This means that when the effects of an economic ‘shock’ last more
than a single time period, the unmodelled components (errors) will be correlated with one another.
A natural consequence of this is that the more frequently a process is sampled (other things being
equal), the more likely it is to be autocorrelated. From a practical standpoint, monthly observations
are more likely to be autocorrelated than quarterly observations, and quarterly more likely than
yearly ones. Once again, ignoring this correlation makes least squares inefficient at best and the
usual measures of precision (standard errors) inconsistent.

In this chapter, several ways to detect autocorrelation in the model’s errors are considered.
Also, statistically valid ways of estimating the parameters of 8.1 and testing hypotheses about the
βs in autocorrelated models are explored.

9.1 Area Response Model for Sugar Cane

Hill et al. (2007) considers a simple model of the area devoted to sugar cane production in

120

Bangladesh. The equation to be estimated is

ln (At) = β1 + β2 ln (Pt) + et t = 1, 2, . . . , N (9.1)

The data consist of 34 annual observations on area (A) and price (P). The error term contains
all of the economic factors other than price that affect the area of production. If changes in any
of these other factors (shocks) affect area for more than one year, then the errors of the model
will not be mutually independent of one another. The errors are said to be serially correlated or
autocorrelated. Least square estimates of the βs are consistent, but the usual computation for
the standard errors is not.

If the shock persists for two periods, and the shock is stable in the sense that its influence on
the future diminishes as time passes, then we could use a model such as

et = ρet−1 + vt (9.2)

where ρ is a parameter and vt is random error. This says that today’s shock is in part due to the
shock that happened in the previous period. Thus, there is some persistence in the area under
tillage that is unrelated to price. The model referred to in equation 9.2 is called first order
autocorrelation and is abbreviated AR(1).

Stability means that the parameter ρ must lie in the (-1,1) interval (not including the endpoints).
If |ρ| is one or greater then the errors are not stable and a shock will send your model spiraling out
of control!

As is the case with heteroskedastic errors, there is a way to salvage least squares when your
data are autocorrelated. In this case you can use an estimator of standard errors that is robust
to both heteroskedasticity and autocorrelation proposed by Newey and West. This estimator is
sometimes called HAC, which stands for heteroskedasticity autocorrelated consistent. This
and some issues that surround its use are discussed in the next few sections.

9.1.1 Bandwidth and Kernel

HAC is not quite as automatic as the heteroskedasticity consistent (HC) estimator in Chapter
8. To be robust with respect to autocorrelation you have to specify how far away in time the
autocorrelation is likely to be significant. Essentially, the autocorrelated errors over the chosen
time window are averaged in the computation of the HAC standard errors; you have to specify
how many periods over which to average and how much weight to assign each residual in that
average. The language of time series analysis can often be opaque. This is the case here. The
weighted average is called a kernel and the number of errors to average in this respect is called
bandwidth. Just think of the kernel as another name for weighted average and bandwidth as the
term for number of terms to average.

Now, what this has to do with gretl is fairly simple. You get to pick a method of averaging
(Bartlett kernel or Parzen kernel) and a bandwidth (nw1, nw2 or some integer). Gretl defaults to

121

the Bartlett kernel and the bandwidth nw1 = 0.75xN1/3. As you can see, the bandwidth nw1 is
computed based on the sample size, N . The nw2 bandwidth is nw2 = 4 × (N/100)2/9. This one
appears to be the default in other programs like EViews.

Implicity there is a trade-off to consider. Larger bandwidths reduce bias (good) as well as
precision (bad). Smaller bandwidths exclude more relevant autocorrelations (and hence have more
bias), but use more observations to increase precision (smaller variance). The general principle is
to choose a bandwidth that is large enough to contain the largest autocorrelations. The choice will
ultimately depend on the frequency of observation and the length of time it takes for your system
to adjust to shocks.

The bandwidth or kernel can be changed using the set command from the console or in a script.
The set command is used to change various defaults in gretl and the relevant switches for our use
are hac lag and hac kernel. The use of these is demonstrated below. The following script could
be used to change the kernel to bartlett and the bandwidth to nw2:

open "c:\Program Files\gretl\data\poe\bangla.gdt"

set hac_kernel bartlett

set hac_lag nw2

9.1.2 Dataset Structure

The other key to using HAC is that your data must be structured as a time series. This can be
done through the dialogs or very simply using the console. First let’s look at the Dataset wizard
provided in the system of menus.

Open the bangla.gdt data and choose Data>Data set structure from the main pull-down
menu (refer to Figure 7.2). This brings up the Data structure wizard dialog box (Figure 7.3).
Choose Time series and click Forward. Although the data were collected annually, no actual
dates (years) are provided. So in the next box (top of Figure 9.1) choose other and click Forward.
This leads to the second box in the figure. Start the observations at 1, click Forward again, and
a window confirming your choices (shown at the bottom) will open. If satisfied, click OK to close
the wizard or Back to make changes. If you had chosen annual, quarterly, monthly or other actual
time frame in the first of the wizard’s boxes, then you would be given the opportunity to select
actual dates in the second box. Again, your choices are confirmed in the final box generated by the
wizard.

Gretl includes the setobs command that will do the same thing. For bangla.gdt dataset the
command is

setobs 1 1 --time-series

The first number identifies the periodicity (1=year, 4=quarter, 12=month, and so on). The second

122

Figure 9.1: Choose Data>Dataset structure from the main window. This starts the Dataset
wizard, a series of dialogs that allow you to specify the periodicity and dates associated with your
data.

123

number sets the starting date. Since there is no date for this data we start the time counter at 1.
Finally, the --time-series option is used to declare the data to be time-series. Here are a few
other examples:

setobs 4 1978:3 --time-series

setobs 12 1950:01 --time-series

setobs 1 1949 --time-series

The first statement starts a quarterly series in the third quarter of 1978, the second a monthly
series beginning in January 1950, and the last a yearly series beginning in 1949. See the help on
setobs to declare daily or hourly series, or to setup your data as a cross-section or panel.

9.1.3 HAC Standard Errors

Once gretl recognizes that your data are time series, then the robust command will auto-
matically apply the HAC estimator of standard errors with the default values of the kernel and
bandwidth (or the ones you have set with the set command). Thus, to obtain the HAC standard
errors simply requires

open "c:\Program Files\gretl\data\poe\bangla.gdt"

logs p a

ols l_p const l_a --robust

The statement logs p a creates the natural logarithms of the variables p and a and puts them into
the dataset as l p and l a. These are used in the regression with the --robust option to produce
least squares estimates with HAC standard errors.

The results appear below:

OLS estimates
Dependent variable: l a

OLS (wrong SE) OLS with HAC

const 3.893∗∗ 3.893∗∗

(0.06058) (0.06135)

l p 0.7761∗∗ 0.7761∗∗

(0.3669) (0.2775)

n 34 34
R2 0.1965 0.1965
` −7.15 −7.15

124

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the standard errors computed using HAC are a little different from those in Hill et al.
(2007). No worries, though. They are statistically valid and suggest that EViews and gretl are
doing the computations a bit differently.

9.2 Nonlinear Least Squares

Perhaps the best way to estimate a linear model that is autocorrelated is using nonlinear least
squares. As it turns out, the nonlinear least squares estimator only requires that the errors be
stable (not necessarily stationary). The other methods commonly used make stronger demands on
the data, namely that the errors be covariance stationary. Furthermore, the nonlinear least squares
estimator gives you an unconditional estimate of the autocorrelation parameter, ρ, and yields a
simple t-test of the hypothesis of no serial correlation. Monte Carlo studies show that it performs
well in small samples as well. So with all this going for it, why not use it?

The biggest reason is that nonlinear least squares requires more computational power than
linear estimation, though this is not much of a constraint these days. Also, in gretl it requires an
extra step on your part. You have to type in an equation for gretl to estimate. This is the way
one works in EViews and other software by default, so the burden here is relatively low.

Nonlinear least squares (and other nonlinear estimators) use numerical methods rather than
analytical ones to find the minimum of your sum of squared errors objective function. The routines
that do this are iterative. You give the program a good first guess as to the value of the parameters
and it evaluates the sum of squares function at this guess. The program looks at the slope of
your sum of squares function at the guess and computes a step in the parameter space that takes
you closer to a minimum (further down the hill). If an improvement in the sum of squared errors
function is found, the new parameter values are used as the basis for another step. Iterations
continue until no further significant reduction in the sum of squared errors function can be found.

In the context of the area response equation the AR(1) model is

ln (At) = β1(1− ρ) + β2(ln (Pt)− ρ ln (Pt−1)) + ρ ln (At−1) + vt (9.3)

The errors, vt, are random and the goal is to find β1, β2, and ρ that minimize
∑
v2t . Ordinary least

squares is a good place to start in this case. The OLS estimates are consistent so we’ll start our
numerical routine there, setting ρ equal to zero. The gretl script to do this follows:

open "c:\Program Files\gretl\data\poe\bangla.gdt"

logs p a

ols l_a const l_p --robust

125

genr beta1 = $coeff(const)

genr beta2 = $coeff(l_p)

genr rho = 0

nls l_a = beta1*(1-rho) + rho*l_a(-1) + beta2*(l_p-rho*l_p(-1))

end nls

Magically, this yields the same result from your text!

The nls command is initiated with nls followed by the equation representing the systematic
portion of your model. The command is closed by the statement end nls. In the script, I used
gretl’s built in functions to take lags. Hence, l a(-1) is the variable l a lagged by one period
(-1). In this way you can create lags or leads of various lengths in your gretl programs without
explicitly having to create new variables via the generate command. The results of nonlinear least
squares appear below in Figure 9.2.

Figure 9.2: Nonlinear least squares results for the AR(1) regression model.

Equation 9.3 can be expanded and rewritten in the following way:

ln (At) = β1(1− ρ) + β2 ln (Pt)− β2ρ ln (Pt−1) + ρ ln (At−1) + vt (9.4)

ln (At) = δ + δ0 ln (Pt)− δ1 ln (Pt−1)) + θ1 ln (At−1) + vt (9.5)

Both equations contain the same variables, but Equation (9.3) contains only 3 parameters while
(9.5) has 4. This means that (9.3) is nested within (9.5) and a formal hypothesis test can be

126

performed to determine whether the implied restriction holds. The restriction is δ1 = −θ1δ0.1 To
test this hypothesis using gretl you can use a variant of the statistic (6.2) discussed in section 6.1.
You’ll need the restricted and unrestricted sum of squared errors from the models. The statistic is

J × F =
(SSEr − SSEu)

SSEu/(N −K)
∼̇χ2

J if H0 : δ1 = −θ1δ0 is true (9.6)

Since J = 1 this statistic has an approximate χ2
1 distribution and it is equivalent to an F test.

Note, you will get a slightly different answer that the one listed in your text. However, rest assured
that the statistic is asymptotically valid.

For the example, we’ve generated the output:

Replaced scalar fstat (ID 12) = 1.10547

? pvalue X 1 fstat

Chi-square(1): area to the right of 1.10547 = 0.293069

(to the left: 0.706931)

? pvalue F 1 $df fstat

F(1, 29): area to the right of 1.10547 = 0.301752

(to the left: 0.698248)

Because the sample is so small (only 29 degrees of freedom) the p-values from the F(1,29) and the
χ2
1 are a bit different. Still, neither is significant at the 5% level.

9.3 Testing for Autocorrelation

Two methods are used to determine the presence or extent of autocorrelation. The first is to
take a look at the residual correlogram. A correlogram is a graph that plots series of correlations
between x̂t and x̂t−j against the time interval between the observations, j = 1, 2, . . . ,m. A residual
correlogram uses residuals from an estimated model as the time series, xt. So, the first thing to
do is to estimate the model using least squares and then save the residuals, êt. Once you have the
residuals, then use the corrgm command to get the correlogram. The syntax follows:

open "c:\Program Files\gretl\data\poe\bangla.gdt"

logs p a

ols l_a const l_p --robust

genr ehat = $uhat

corrgm ehat 12

1δ = β1(1 − ρ), δ0 = β2, δ1 = −ρβ2, θ1 = ρ

127

The output is found in Figure 9.3 below. Essentially, the 12 autocorrelations plotted are simple

Figure 9.3: Correlogram of the least squares residuals

correlations between êt and êt−m for m = 1, 2, . . . , 12. Statistical significance at the 5% level is
denoted with two asterisks (**) and at the 10% level with one (*). The correlogram is just a way
of visualizing this, as it plots each of the autocorrelations against its lag number.

The dialogs yields a much prettier and marginally more informative result. Estimate the model
using Model>Ordinary Least Squares as shown in Figures 5.1 and 5.2. Click OK to run the regres-
sion and the results appear in a model window. Then select Graphs>Residual plot>Correlogram

from the pull-down menus as shown in Figure 9.4. Select the number of lags to include using
the dialog box (Figure 9.5). Click OK and gretl opens two windows containing results. The
first contains the table shown at the bottom half of Figure 9.3, which shows the computed sample
autocorrelations (ACF) and partial autocorrelations (PACF). The other is a graph of these along
with 95% confidence bands. This graph is depicted in Figure 9.6 below. You can see that the first
and fifth autocorrelations lie outside of the confidence band, indicating that they are individually

128

Figure 9.4: From the model window you can obtain the correlogram of the least squares residuals
with Graph>Residual plot>Correlogram.

Figure 9.5: Choose the desired number of lags using the dialog box.

129

Figure 9.6: This version of the correlogram is much prettier and includes confidence bands for the
autocorrelations.

significant at the 5% level.

The other way to determine whether or not your residuals are autocorrelated is to use an LM
(Lagrange multiplier) test. For autocorrelation, this test is based on an auxiliary regression where
lagged least squares residuals are added to the original regression equation. If the coefficient on the
lagged residual is significant then you conclude that the model is autocorrelated. So, for a regression
model yt = β1 + β2xt + et the first step is to estimate the parameters using least squares and save
the residuals, êt. An auxiliary regression model is formed using êt as the dependent variable and
original regressors and the lagged value êt−1 as an independent variables. The resulting auxiliary
regression is

êt = β1 + β2xt + ρêt−1 + vt (9.7)

Now, test the hypothesis ρ = 0 against the alternative that ρ 6= 0 and you are done. The test
statistic is NR2 from this regression which will have a χ2

1 if Ho: is true. The script to accomplish
this is:

ols ehat const l_p ehat(-1)

scalar NR2 = $trsq

pvalue X 1 NR2

If you prefer to use the dialogs, then estimate the model using least square in the usual way
(Model>Ordinary least squares) and select Tests>Autocorrelation from the resulting model

130

window (i.e., the one in Figure 9.4). Choose the number of lagged values of êt you want to include
in (9.7) (in our case only 1) and click OK. This will give you the same result as the script. The
result appears in Figure 9.7. Note, the first statistic reported is simply the joint test that all the
lagged values of ê you included in (9.7) are jointly zeros. The second one is the NR2 version of the
test done in the script. Gretl also computes a Ljung-Box Q statistic whose null hypothesis is no
autocorrelation. It is also insignificant at the 5% level.

Figure 9.7: Using Test>Autocorrelation from the model pull-down menu will generate the fol-
lowing output.

9.4 Autoregressive Models and Forecasting

A autoregressive model will include one or more lags of your dependent variable on the right-
hand-side of your regression equation. An AR(p) includes p lags of yt as shown below in equation
(9.8).

yt = δ + θ1yt−1 + θ2yt−2 + . . .+ θpyt−p + vt (9.8)

In general, p should be large enough so that vt is white noise.

The dataset inflation.gdt includes 270 monthly observations on the CPI from which an inflation
variable is computed. To estimate an AR(3) model of inflation, simply use the script

open "c:\Program Files\gretl\data\poe\inflation.gdt"

ols infln const infln(-1 to -3)

131

In this case a bit of shorthand is used to generate the lagged values of inflation to include as
regressors. The syntax infln(-1 to -3) tells gretl to include a range of the variable inflation
from lags from 1 to 3. The minus signs indicate lags. This is equivalent to using a list of variables
as in

ols infln const infln(-1) infln(-2) infln(-3)

Obviously, if p were large then using the range version would save a lot of typing.

Using this model to forecast in gretl is very simple. The main decision you have to make at
this point is how many periods into the future you want to forecast. In gretl you have to extend
the sample to include future periods under study.

9.4.1 Using the Dialogs

Return to the main gretl window and choose Model>Ordinary least squares. This will bring
up the ‘specify model’ dialog box. Choose infln as the dependent variable as shown.

Since your data are defined as time series (recall, you did this through Data>Dataset structure)
an extra button, labeled ‘lags...’, appears at the bottom of the dialog as highlighted in Figure 9.8.
Click the ‘lags...’ button in the specify model dialog box and the ‘lag order’ dialog box shown
in Figure 9.9 opens. Click OK and the the 3 lagged values of inflation are added to the model.
Now, click OK in the specify model dialog as in Figure 9.8. The model is estimated and the model
window shown in Figure 9.10 opens.

Now, we’ll use the dialogs to extend the sample and generate the forecasts. From the model
window choose Analysis>Forecasts. This opens the Add observations dialog box shown in Figure
9.11. To add three observations change the number in the box to 3. Click OK to open the forecast
dialog box shown below in Figure 9.12.

By choosing to add 3 observations to the sample, the forecast range is automatically set to
2006:06 to 2006:08. Notice that we’ve chosen ’automatic forecast (dynamic out of sample).’ Click
OK and the forecast results appear:

For 95% confidence intervals, t(262, .025) = 1.969

Obs infln Forecast SE 95% C.I.

1998:02 0.000000 0.23350

.

.

.

132

Figure 9.8: From the main window select Model>Ordinary least squares. This brings up the
specify model dialog box that includes a button for adding lags of the variables to your model

133

Figure 9.9: Check the box labeled ‘Lags of dependent variable’ and change the second counter to
‘3’ as shown.

Figure 9.10: Choose Analysis>Forecasts from the estimated forecast model to open the forecast
dialog box.

134

Figure 9.11: Using Data>Add observations from the main gretl pull-down menu will extend the
sample period. This is necessary to generate forecasts.

Figure 9.12: Forecast dialog box

135

2006:03 0.350966 0.05914

2006:04 0.598804 0.37476

2006:05 0.446762 0.34046

2006:06 0.26015 0.19724 -0.12823 - 0.64854

2006:07 0.24872 0.21054 -0.16584 - 0.66329

2006:08 0.26972 0.21111 -0.14596 - 0.68541

Miraculously, these match those in POE ! Gretl also uses gnuplot to plot the time series and the
forecasts (with intervals) as shown in Figure 9.13. The last three observations are forecasts (in

Figure 9.13: Gretl calls gnuplot to generate a graph of the time series and the forecast.

blue) and include the 95% confidence intervals shown in green. Actual inflation appears in red.

9.4.2 Using a Script

Doing all of this using a script is easy as well. Simply estimate the model using ols infln

const infln(-1 to -3), use the addobs 3 command to add 3 observations to the end of the
sample, and forecast 3 periods using fcasterr 2006:06 2006:08. The --plot option ensures
that the graph will be produced. The script is:

open "c:\Program Files\gretl\data\poe\inflation.gdt"

ols infln const infln(-1 to -3)

136

addobs 3

fcasterr 2006:06 2006:08 --plot

To estimate the distributed lag model of inflation

inflt = α+ β0xt + β1xt−1 + β2xt−2 + β3xt−3 + et (9.9)

where xt is the percentage change in wages at time t. The script is:

open "c:\Program Files\gretl\data\poe\inflation.gdt"

ols infln const pcwage(0 to -3)

scalar in1 = $coeff(pcwage)+$coeff(pcwage_1)

scalar in2 = in1 + $coeff(pcwage_2)

scalar in3 = in2 + $coeff(pcwage_3)

Here, the independent variable is pcwage, which is already in the dataset. To add the contempo-
raneous (lag=0) and 3 lagged values to the list of independent variables, simply add pcwage(0 to

-3) as shown. The delay multipliers are just the coefficients of the corresponding lagged vari-
ables. The interim multiplier is obtained by cumulatively adding the coefficients together. For
instance the interim multiplier at lag 1 is equal to the sum of the delay multipliers (e.g., interim
multiplier at lag 1 is (β0 + β1). When using the range version (e.g., pcwage(0 to -3)) of the
language to generate lags, gretl appends an underline and the corresponding lag number to the
variable. So, pcwaget−1 is referred to as pcwage 1.

9.5 Autoregressive Distributed Lag Model

This model is just a generalization of the ones previously discussed. In this model you include
lags of the dependent variable (autoregressive) and the contemporaneous and lagged values of
independent variables as regressors (distributed lags). The shorthand notation is ARDL(p,q) where
p is the maximum distributed lag and q is the maximum autoregressive lag. The model is

yt = δ + δ0xt + δ1xt−1 + . . .+ δqxt−q + θ1yt−1 + . . .+ θpyt−p + vt (9.10)

The ARDL(3,2) model of inflation includes the contemporaneous and first 3 lagged values of pcwage
and the first 2 lags of infl as independent variables.2

The script is

open "c:\Program Files\gretl\data\poe\inflation.gdt"

ols infln const pcwage(0 to -3) infln(-1 to -2)

2Technically, lagged values of inflation are predetermined not independent, but we’ll leave this discussion for others.
Their treatment in a regression is the same, though.

137

The result appears in Figure 9.14.

Figure 9.14: Results of the autoregressive distributed lag model produced by the script.

9.6 Script

open "c:\Program Files\gretl\data\poe\bangla.gdt"

#declare the data time-series

setobs 1 1 --time-series

#Least squares with wrong std errors

logs p a

ols l_a const l_p

#Least squares with HAC standard errors

#choose lag

set hac_lag nw2

#choose weights

set hac_kernel bartlett

#run regression with robust std errors

ols l_a const l_p --robust

#Nonlinear least squares

138

#step 1: set the starting values

genr beta1 = $coeff(const)

genr beta2 = $coeff(l_p)

genr rho = 0

#step 2: type in the model

nls l_a = beta1*(1-rho) + rho*l_a(-1) + beta2*(l_p-rho*l_p(-1))

end nls

#save restricted sum of squared errors for the hypothesis test

scalar sser=$ess

#get the unrestricted sse

ols l_a const l_p l_p(-1) l_a(-1)

scalar sseu=$ess

scalar fstat = (sser-sseu)/(sseu/$df)

pvalue X 1 fstat

pvalue F 1 $df fstat

#Correlogram

ols l_a const l_p --robust

genr ehat = $uhat

corrgm ehat 12

#LM test

ols l_a const l_p

genr ehat = $uhat

ols ehat const l_p ehat(-1)

scalar NR2 = $trsq

#Dynamic forecasting in an autoregressive model

open "c:\Program Files\gretl\data\poe\inflation.gdt"

ols infln const infln(-1 to -3)

addobs 3

fcasterr 2006:06 2006:08--plot

#Distributed Lag model and interim multipliers

ols infln const pcwage(0 to -3)

scalar in1 = $coeff(pcwage)+$coeff(pcwage_1)

scalar in2 = in1 + $coeff(pcwage_2)

scalar in3 = in2 + $coeff(pcwage_3)

#ARDL(3,2)

ols infln const pcwage(0 to -3) infln(-1 to -2)

139

#First 5 lag weights for infinite distributed lag

scalar b0 = $coeff(pcwage)

scalar b1 = $coeff(infln_1)*b0+$coeff(pcwage_1)

scalar b2 = $coeff(infln_1)*b1+$coeff(infln_2)*b0+$coeff(pcwage_2)

scalar b3 = $coeff(infln_1)*b2+$coeff(infln_2)*b1+$coeff(pcwage_3)

scalar b4 = $coeff(infln_1)*b3+$coeff(infln_2)*b2

140

Chapter 10
Random Regressors and Moment Based
Estimation

In this chapter you will learn to use instrumental variables to obtain consistent estimates of a
model’s parameters when its independent variables are correlated with the model’s errors.

10.1 Basic Model

Consider the linear regression model

yi = β1 + β2xi + ei i = 1, 2, . . . , N (10.1)

Equation (10.1) suffers from a significant violation of the usual model assumptions when its explana-
tory variable is contemporaneously correlated with the random error, i.e., Cov(ei, xi) = E(eixi) 6= 0.
In this instance, least squares is known to be both biased and inconsistent.

An instrument is a variable, z, that is correlated with x but not with the error, e. In addition,
the instrument does not directly affect y and thus does not belong in the actual model. It is
common to have more than one instrument for x. All that is required is that these instruments,
z1, z2, . . . , zs, be correlated with x, but not with e. Consistent estimation of (10.1) is possible if one
uses the instrumental variables or two-stage least squares estimator, rather than the usual
OLS estimator.

141

10.2 IV Estimation

Gretl handles this estimation problem with ease using what is commonly referred to as two-
stage least squares. In econometrics, the terms two-stage least squares (TSLS) and instrumental
variables (IV) estimation are often used interchangeably. The ‘two-stage’ terminology is a legacy
of the time when the easiest way to estimate the model was to actually use two separate least
squares regressions. With better software, the computation is done in a single step to ensure the
other model statistics are computed correctly. Since the software you use invariably expects you to
specify ‘instruments,’ it is probably better to think about this estimator in those terms from the
beginning. Keep in mind though that gretl uses the old-style term two-stage least squares (tsls)
as it asks you to specify instruments in it dialog boxes and scripts.

To perform TSLS or IV estimation you need instruments that are correlated with your in-
dependent variables, but not correlated with the errors of your model. First, load the ch10.gdt
data into gretl. Then, to open the basic gretl dialog box that computes the IV estimator choose
Model>Instrumental Variables>Two-Stage Least Squares from the pull-down menu as shown
below in Figure 10.1. This opens the dialog box shown in Figure 10.2.

Figure 10.1: Two-Stage Least Squares estimator from the pull-down menus

In this example we choose y as the dependent variable, put all of the desired instruments into
the Instruments box, and put all of the independent variables, including the one(s) measured with
error, into the Independent Variables box. If some of the right-hand side variables for the model
are exogenous, they should be referenced in both lists. That’s why the const variable (for the
constant) appears in both places. Press the OK button and the results are found in Table 10.1.
Notice that gretl ignores the sound advice offered by the authors of your textbook and computes

142

Figure 10.2: Two-Stage Least Squares dialog box

143

Table 10.1: Model 1: TSLS, using observations 1–100
Dependent variable: y

Instrumented: x
Instruments: const z1

Coefficient Std. Error z-stat p-value

const 1.10110 0.109128 10.0900 0.0000
x 1.19245 0.194518 6.1302 0.0000

Mean dependent var 1.386287 S.D. dependent var 1.838819
Sum squared resid 95.49855 S.E. of regression 0.987155
R2 0.785385 Adjusted R2 0.783195
F (1, 98) 37.57988 P-value(F) 1.84e–08
Log-likelihood −507.2124 Akaike criterion 1018.425
Schwarz criterion 1023.635 Hannan–Quinn 1020.534

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 15.0454
with p-value = 0.000104958

Weak instrument test –
First-stage F (1, 98) = 38.9197

an R2. Keep in mind, though, gretl computes this as the squared correlation between observed
and fitted values of the dependent variable, and you should resist the temptation to interpret this
in the usual manner.

If you prefer to use a script, the syntax is very simple. The script for the example above is

open "c:\Program Files\gretl\data\poe\ch10.gdt"

tsls y const x;const z1

The gretl command tsls calls for the IV estimator to be used and it is followed by the linear
model you wish to estimate. List the dependent variable (y) first, followed by the independent
variables (const x). A semicolon separates the model to be estimated from the list of instruments
(const z1). Notice that the constant is listed again as an instrument; once again, this is because
it is exogenous with respect to the errors of the model and all exogenous variables should be listed
in both places.

144

10.3 Specification Tests

There are three specification tests you will find useful with instrumental variables estimation.
By default, Gretl computes each of these whenever you estimate a model using two-stage least
squares. Below I’ll walk you through doing it manually and we’ll compare the manual results to
the automatically generated ones.

10.3.1 Hausman Test

The first test is to determine whether the independent variable(s) in your model is (are) in
fact uncorrelated with the model’s errors. If so, then least squares is more efficient than the IV
estimator. If not, least squares is inconsistent and you should use the less efficient, but consistent,
instrumental variable estimator. The null and alternative hypotheses are Ho : Cov(xi, ei) = 0
against Ha : Cov(xi, ei) 6= 0. The first step is to use least squares to estimate

xi = γ1 + θ1zi1 + θ2zi2 + νi (10.2)

and to save the residuals, ν̂i. Then, add the residuals to the original model

yi = β1 + β2xi + δν̂i + ei (10.3)

Estimate this equation using least squares and use the t-ratio on the coefficient δ to test the
hypothesis. If it is significantly different from zero then the regressor, xi is not exogenous or
predetermined with respect to ei and you should use the IV estimator (TSLS) to estimate β1 and
β2. If it is not significant, then use the more efficient estimator, OLS.

The gretl script for the Hausman test is:

open "c:\Program Files\gretl\data\poe\ch10.gdt"

ols x const z1 z2

genr uhat1 = $uhat

ols y const x uhat1

You may have noticed that whenever you use two-stage least squares in gretl that the program
automatically produces the test statistic for the Hausman test. There are several different ways of
computing this statistic so don’t be surprised if it differs from the one you compute manually using
the above script.

10.3.2 Testing for Weak Instruments

To test for weak instruments, regress each independent variable suspected of being contempo-
raneously correlated with the error (x) onto all of the instruments (z′s). If the overall F statistic

145

in this regression1 is less than 10, then you conclude that the instruments are weak. If it is greater
than 10, you conclude that the instruments are strong enough. The following script uses least
squares to perform three such tests. The first regression assumes there is only one instrument, z1;
the second that the single instrument is z2; the third assumes both are instruments.

open "c:\Program Files\gretl\data\poe\ch10.gdt"

ols x const z1

omit z1 --quiet

ols x const z2 --quiet

omit z2 --quiet

ols x const z1 z2 --quiet

omit z1 z2 --quiet

When omit follows an OLS regression (e.g., ols x const z1 z2), gretl estimates a restricted
model where the variables listed after it are omitted from the model above. It then performs a joint
hypothesis test that the coefficients of the omitted variables are zero against the alternative that one
or more are not zero. The --quiet option reduces the amount of output you have to wade through
by suppressing the regressions; only the test results are printed. The output from gretl appears in
Figure 10.3 below: Notice that the t-ratio on z1 is equal to 0.571088/0.0915416 = 6.23856 and the
F(1,98) statistic associated with the same null hypothesis (i.e., that the coefficient on z1 is zero) is
38.9197. In fact there is an exact relationship between these numbers since t2n−k = F1,n−k. This is
easily verified here by computing 6.2392

.
= 38.9197.2 Since the F value is well beyond 10, we can

reject the hypothesis that the instrument z1 is weak in favor of the alternative that it is strong
enough to be useful.

The second pair of statements in the script assume that z2 is the single available instrument
and the omit statement is again used to elicit the F statistic.

In the last regression, we use both instruments and the omit statement in gretl to perform the
joint test that the instruments are jointly weak.

Gretl proves its worth here. Whenever you estimate a model using two stage least squares,
gretl will compute the test statistic for the weak instruments test.

10.3.3 Sargan Test

The final test is the Sargan test of the overidentifying restrictions implied by an overidentified
model. Recall that to be overidentified just means that you have more instruments than you
have endogenous regressors. In our example we have a single endogenous regressor (x) and three
instruments (z1, z2 and z3). The first step is to estimate the model using TSLS using all the
instruments. Save the residuals and then regress these on the instruments alone. NR2 from this

1Recall that the null hypothesis for the overall F statistic is that all slopes are zero.
2The small discrepancy you will find if you try the calculation occurs because of rounding.

146

Figure 10.3: Results from using the omit statement after least squares

147

regression is approximately χ2 with the number of surplus instruments as your degrees of freedom.
Gretl does this easily since it saves TR2 as a part of the usual regression output, where T is the
sample size (which we are calling N). The script for the Sargan test follows:

open "c:\Program Files\gretl\data\poe\ch10.gdt"

list inst = const z1 z2 z3

tsls y const x; inst

genr uhat2 = $uhat

ols uhat2 inst

genr test = $trsq

pvalue X 3 test

This script uses a convenient way to accumulate variables into a set using the list command. The
command list inst = const z1 z2 z3 puts the variables contained in const, z1, z2, and z3

into a set called inst. Once defined, the set of variables can be referred to as inst rather than
listing them individually as we’ve done up to this point. In the script above, inst is used in the
third line to list the instruments for tsls and again in the fifth line to include these variables in
the ols regression.

Rejection of the null hypothesis implies that one or more of the overidentifying restrictions
are not valid; you’ve chosen an inappropriate instrument. If the test statistic is insignificant,
then your set of instruments passes muster. Whenever you have extra instruments (the model is
overidentified), gretl will compute and print out the results from the Sargan test automatically.
Unlike the Hausman test, these results should match those you compute manually using the script.

Sargan over-identification test -

Null hypothesis: all instruments are valid

Test statistic: LM = 13.1107

with p-value = P(Chi-Square(2) > 13.1107) = 0.00142246

10.4 Wages Example

The following script uses the results above to quickly reproduce the results from the wages
example in your text. Open the data, restrict the sample to those working (wage > 0), and
generate logarithm of wages and square experience.

open "c:\Program Files\gretl\data\poe\mroz.gdt"

restrict your sample to include only positive values for wage

smpl wage > 0 --restrict

148

generate ln(wage) and experience squared

genr lwage = log(wage)

genr expersq = exper*exper

The next thing we’ll do is to create lists that contain regressors and instruments. These will simplify
the program and help us to avoid having to use the continuation command for long lines of code.

create lists of variables to include in each regression

Regressors in x

list x = const educ exper expersq

Instrument sets in z1 and z2

list z1 = const exper expersq mothereduc

list z2 = const exper expersq mothereduc fathereduc

The first list command puts the regressors const, educ, exper, and expersq into a set called x.
The first set of instruments includes all of the exogenous variables in the list of regressors and adds
mothereduc; it is called z1. The second set, called z2, adds fathereduc to the list of instruments.

Now, estimate the model using least squares. Notice that the list of regressors has been replaced
by the list we created above. If education is endogenous in this regression, then least squares is
inconsistent and should not be used.

least squares regression of wage equation

ols lwage x

This produces: ̂lwage = − 0.522
(0.19863)

+ 0.107
(0.0141)

educ + 0.0416
(0.0132)

exper− 0.000811
(0.00039)

expersq

T = 428 R̄2 = 0.1509 F (3, 424) = 26.286 σ̂ = 0.66642

(standard errors in parentheses)

Estimate the reduced form equation that uses mother’s education as the sole instrument along
with the other exogenous variables in the model; all of these were collected into z1.

least squares regression of the reduced form

ols educ z1

This produces:

êduc = 9.775
(0.424)

+ 0.04886
(0.0417)

exper− 0.001281
(0.00124)

expersq + 0.268
(0.031)

mothereduc

T = 428 R̄2 = 0.1467 F (3, 424) = 25.47 σ̂ = 2.1111

(standard errors in parentheses)

149

Estimate the model using the instrumental variable estimator. The instrumental variable esti-
mators will be consistent if education is endogenous or not. It is not efficient. In the first instance
below, only mother’s education is used as an instrument and in the second both mother’s and
father’s education are used.

tsls regression using 1 instrument (mother’s education)

tsls lwage x ; z1

tsls using 2 instruments (mother’s and father’s education)

tsls lwage x ; z2

The TSLS results for the regression with one instrument is:

̂lwage = 0.1982
(0.473)

+ 0.04926
(0.0374)

educ + 0.04486
(0.0136)

exper− 0.0009221
(0.000406)

expersq

T = 428 R̄2 = 0.1293 F (3, 424) = 22.137 σ̂ = 0.6796

(standard errors in parentheses)

and that for the model with two instruments is:

Model 3: TSLS, using observations 1–428
Dependent variable: lwage

Instrumented: educ
Instruments: const exper expersq mothereduc fathereduc

Coefficient Std. Error z-stat p-value

const 0.0481003 0.400328 0.1202 0.9044
educ 0.0613966 0.0314367 1.9530 0.0508
exper 0.0441704 0.0134325 3.2883 0.0010
expersq −0.000898970 0.000401686 −2.2380 0.0252

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 193.0200 S.E. of regression 0.674712
R2 0.145660 Adjusted R2 0.139615
F (3, 424) 8.140709 P-value(F) 0.000028

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 2.8256
with p-value = 0.0927721

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 0.378071

150

with p-value = P (χ2(1) > 0.378071) = 0.538637

Weak instrument test –
First-stage F (2, 423) = 55.4003

A Hausman test statistic is manually computed to test the validity of the instruments. The
least squares residuals from the reduced form equation are regressed on all exogenous and instru-
mental variables. The residuals are saved and added to the original structural equation. Test the
significance of the residuals coefficient using a t-test, or as we’ve done here, the equivalent F(1,N-K)
test using the omit statement.

Hausman test (check the t-ratio on ehat for significance)

ols educ z2 --quiet

genr ehat=$uhat

ols lwage x ehat --quiet

omit ehat --quiet

This produces:

Test statistic: F(1, 423) = 2.7926, with p-value = 0.09544

which is very close the automatic result produced by gretl as part of the tsls output.

To test the strength of the instruments we estimate the reduced form equation for education
and conduct a joint significance test of the two instruments (mothereduc and fathereduc). Once
again, the --quiet option is used to suppress unnecessary output.

test for strength of instruments (coeffs on instruments

are jointly zero)

ols educ z2 --quiet

omit mothereduc fathereduc --quiet

Finally the test of overidentification is done. This requires residuals from the instrumental variable
estimator, TSLS. Estimate the model using TSLS and save the residuals. In the second regression,
which is estimated using least squares, these residuals are regressed on all exogenous and instru-
mental variables. NR2 from this regression is compared to the χ2(2) distribution. If the p-value is
smaller than the desired α then at least one of the instruments is not appropriate. You’ll need to
either drop the offending ones or find others to use.

(Sargan’s test)

requires residuals from tsls to use in this test

151

tsls lwage x; z2

genr vhat=$uhat

ols vhat z2

genr lmstat = $trsq

pvalue X 2 lmstat

The script will produce the same results you get from gretl’s tsls command.

10.5 Script

open "c:\Program Files\gretl\data\poe\ch10.gdt"

tsls y const x; const z1

#Hausman test

ols x const z1 z2

genr uhat1 = $uhat

ols y const x uhat1

#Testing for weak instruments

open "c:\Program Files\gretl\data\poe\ch10.gdt"

ols x const z1

omit z1 --quiet

ols x const z2 --quiet

omit z2 --quiet

ols x const z1 z2 --quiet

omit z1 z2 --quiet

#Sargan Test

open "c:\Program Files\gretl\data\poe\ch10.gdt"

list inst = const z1 z2 z3

tsls y const x; inst

genr uhat2 = $uhat

ols uhat2 inst

genr test = $trsq

pvalue X 3 test

#Wages Example

open "c:\Program Files\gretl\data\poe\mroz.gdt"

restrict your sample to include only positive values for wage

smpl wage > 0 --restrict

152

generate ln(wage) and experience squared

genr lwage = log(wage)

genr expersq = exper*exper

create lists of variables to include in each regression

Regressors in x

list x = const educ exper expersq

Instrument sets in z1 and z2

list z1 = const exper expersq mothereduc

list z2 = const exper expersq mothereduc fathereduc

least squares regression of wage equation

ols lwage x

least squares regression of the reduced form

ols educ z1

tsls regression using 1 instrument (mother’s education)

tsls lwage x; z1

tsls using 2 instruments (mother’s and father’s education)

tsls lwage x ; z2

genr vhat = $uhat

Hausman test (check the t-ratio on ehat for significance)

ols educ z2 --quiet

genr ehat=$uhat

ols lwage x ehat --quiet

omit ehat --quiet

test for strength of instruments (coeffs on instruments

are jointly zero)

ols educ z2 --quiet

omit mothereduc fathereduc --quiet

#Repeat using HCCME

ols educ z2 --robust --quiet

omit mothereduc fathereduc --quiet

test for validity of instruments using residuals from tsls

(Sargan’s test)

ols vhat z2 --quiet

genr lmstat = $trsq

pvalue X 2 lmstat

153

Chapter 11
Simultaneous Equations Models

In Chapter 11 of POE the authors present a model of supply and demand. The econometric
model contains two equations and two dependent variables. The distinguishing factor for models
of this type is that the values of two (or more) of the variables are jointly determined. This means
that a change in one of the variables causes the other to change and vice versa. The model is
demonstrated using the truffle example which is explained below.

11.1 Truffle Example

Consider a supply and demand model for truffles:

Qi =α1 + α2Pi + α3PSi + α4DIi + edi (11.1)

Qi =β1 + β2Pi + β3PFi + esi (11.2)

The first equation (11.1) is demand and Q us the quantity of truffles traded in a particular French
market, P is the market price of truffles, PS is the market price of a substitute good, and DI is per
capita disposable income of the local residents. The supply equation (11.2) contains the variable
PF , which is the price of a factor of production. Each observation is indexed by i, i = 1, 2, . . . N .
As explained in the text, prices and quantities in a market are jointly determined; hence, in this
econometric model P and Q are both endogenous to the system.

154

11.2 The Reduced Form Equations

The reduced form equations express each endogenous variable as a linear function of every
exogenous variable in the entire system. So, for our example

Qi =π11 + π21PSi + π31DIi + π41PFi + νi1 (11.3)

Pi =π12 + π22PSi + π32DIi + π42PFi + νi2 (11.4)

Since each of the independent variables is exogenous with respect to Q and P , the reduced form
equations (11.3) and (11.4) can be estimated using least squares. In gretl the script is

open "c:\Program Files\gretl\data\POE\truffles.gdt"

ols q const ps di pf

ols p const ps di pf

The gretl results appear in Table 11.1

Table 11.1: The least squares estimates of the reduced form equations.

q̂ = 7.89510
(2.434)

+ 0.656402
(4.605)

ps + 2.16716
(3.094)

di− 0.506982
(−4.181)

pf

T = 30 R̄2 = 0.6625 F (3, 26) = 19.973 σ̂ = 2.6801

(t-statistics in parentheses)

p̂ = −32.5124
(−4.072)

+ 1.70815
(4.868)

ps + 7.60249
(4.409)

di + 1.35391
(4.536)

pf

T = 30 R̄2 = 0.8758 F (3, 26) = 69.189 σ̂ = 6.5975

(t-statistics in parentheses)

11.3 The Structural Equations

The structural equations are estimated using two-stage least squares. The basic gretl commands
for this estimator are discussed in Chapter 10. The instruments consist of all exogenous variables,
i.e., the same variables you use to estimate the reduced form equations (11.3) and (11.4).

The gretl commands to open the truffle data and estimate the structural equations using two-
stage least squares are:

155

open "c:\Program Files\gretl\data\poe\truffles.gdt"

tsls q const p ps di; const ps di pf

tsls q const p pf; const ps di pf

The second line of the script estimates the demand equation. The gretl command tsls calls for
the two-stage least squares estimator and it is followed by the structural equation you wish to
estimate. List the dependent variable (q) first, followed by the regressors variables (const p ps

di). A semicolon separates the model to be estimated from the list of instruments (const ps di

pf). Don’t forget to list the constant again as an instrument. The third line uses the same format
to estimate the parameters of the supply equation. Refer to section 10.2, and Figures 10.1 and 10.2
specifically, about using the GUI to estimate the model.

The results from two-stage least squares appear below in Table 11.2

Table 11.2: Two-stage least square estimates of the demand and supply of truffles.

Demand

q̂ = −4.27947
(−0.772)

− 0.374459
(−2.273)

p + 1.29603
(3.649)

ps + 5.01398
(2.196)

di

T = 30 R̄2 = 0.1376 F (3, 26) = 2.5422 σ̂ = 4.93

(t-statistics in parentheses)

Supply

q̂ = 20.0328
(16.379)

+ 0.337982
(13.563)

p− 1.00091
(−12.128)

pf

T = 30 R̄2 = 0.8946 F (2, 27) = 124.08 σ̂ = 1.4976

(t-statistics in parentheses)

11.4 Fulton Fish Example

The following script estimates the reduced form equations using least squares and the demand
equation using two-stage least squares for Graddy’s Fulton Fish example.

In the example, ln(quantity) and ln(price) are endogenously determined. There are several
potential instruments that are available. The variable stormy may be useful in identifying the
demand equation. In order for the demand equation to be identified, there must be at least
one variable available that effectively influences the supply of fish without affecting its demand.
Presumably, stormy weather affects the fishermen’s catch without affecting people’s appetite for
fish! Logically, stormy may be a good instrument.

156

The model of demand includes a set of dummy variables for day of the week. Friday is omitted
to avoid the dummy variable trap. These day of week variables are not expected to affect supply;
fishermen catch the same amount on average on any working day. They may affect demand though,
since people in some cultures buy more fish on some days than others.

In both demand and supply equations, ln(price) is the right-hand side endogenous variable.
Identification of the demand equation requires stormy to be significantly correlated with lprice.
This can be determined by looking at the t-ratio in the lprice reduced form equation.

For supply to be identified, at least one of the day of the week dummy variables (mon tue wed
thu), which are excluded from the supply equation, has to be significantly correlated with lprice in
the reduced form. If not, the supply equation cannot be estimated; it is not identified.

Proceeding with the analysis, open the data and estimate the reduced form equations for lquan
and lprice. Go ahead and conduct the joint test of the day of the week variables using the --quiet

option. The results of this test can help determine whether the supply equation is identified.

open "c:\Program Files\gretl\data\poe\fultonfish.gdt"

#Estimate the reduced form equations

ols lquan const stormy mon tue wed thu

ols lprice const stormy mon tue wed thu

omit mon tue wed thu --quiet

The reduced form results for lquan appear below:

Model 1: OLS estimates using the 111 observations 1–111
Dependent variable: lquan

Variable Coefficient Std. Error t-statistic p-value
const 8.810 0.147 59.922 0.000
stormy −0.388 0.144 −2.698 0.008
mon 0.101 0.207 0.489 0.626
tue −0.485 0.201 −2.410 0.018
wed −0.553 0.206 −2.688 0.008
thu 0.054 0.201 0.267 0.790

Standard error of residuals (σ̂) 0.681790
Unadjusted R2 0.193372
F (5, 105) 5.03429
p-value for F () 0.000356107

and the results for lprice

157

Model 2: OLS estimates using the 111 observations 1–111
Dependent variable: lprice

Variable Coefficient Std. Error t-statistic p-value
const −0.272 0.076 −3.557 0.001
stormy 0.346 0.075 4.639 0.000
mon −0.113 0.107 −1.052 0.295
tue −0.041 0.105 −0.394 0.695
wed −0.012 0.107 −0.111 0.912
thu 0.050 0.104 0.475 0.636

Unadjusted R2 0.178889
F (5, 105) 4.57511
p-value for F () 0.000815589

In this equation, stormy is highly significant with a t-ratio of 4.639, but the daily dummy
variables are not. A joint test of their significance reveals that they are not jointly significant,
either; the F-statistic has a p-value of only .65. Supply is not identified and can’t be estimated
without better instruments.

The two-stage least squares estimates of the demand equation are obtained using:

#TSLS estimates of demand

tsls lquan const lprice mon tue wed thu; \

const stormy mon tue wed thu

to produce the result:

Model 3: TSLS estimates using the 111 observations 1–111
Dependent variable: lquan

Instruments: stormy

Variable Coefficient Std. Error t-statistic p-value
const 8.506 0.166 51.189 0.000
mon −0.025 0.215 −0.118 0.906
tue −0.531 0.208 −2.552 0.011
wed −0.566 0.213 −2.662 0.008
thu 0.109 0.209 0.523 0.601
lprice −1.119 0.429 −2.612 0.009

158

Mean of dependent variable 8.52343
S.D. of dependent variable 0.741672
Sum of squared residuals 52.0903
Standard error of residuals (σ̂) 0.704342
F (5, 105) 5.13561
p-value for F () 0.000296831

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2

1 = 2.4261
with p-value = 0.119329

First-stage F (1, 105) = 21.5174

159

11.5 Script

open "c:\Program Files\gretl\data\PoE\truffles.gdt"

Least Squares

ols q const ps di pf

ols p const ps di pf

#Two Stage Least Squares

open "c:\Program Files\gretl\data\PoE\truffles.gdt"

tsls q const p ps di;const ps di pf

tsls q const p pf;const ps di pf

Fulton Fish example

open "c:\Program Files\gretl\data\PoE\fultonfish.gdt"

#Estimate the reduced form equations

ols lquan const stormy mon tue wed thu

ols lprice const stormy mon tue wed thu

omit mon tue wed thu --quiet

#TSLS estimates of demand

tsls lquan const lprice mon tue wed \

thu;const stormy mon tue wed thu

160

Chapter 12
Analyzing Time Series Data and Cointegration

The main purpose this chapter is to use gretl to explore the time series properties of your
data. One of the basic points we make in econometrics is that the properties of the estimators
and their usefulness for point estimation and hypothesis testing depend on how the data behave.
For instance, in a linear regression model where errors are correlated with regressors, least squares
won’t be consistent and consequently it should not be used for either estimation or subsequent
testing.

In time series regressions the data need to be stationary. Basically this requires that the means,
variances and covariances of the data series cannot depend on the time period in which they are
observed. For instance, the mean and variance of the probability distribution that generated GDP
in the third quarter of 1973 cannot be different from the one that generated the 4th quarter GDP
of 2006. Observations on stationary time series can be correlated with one another, but the nature
of that correlation can’t change over time. U.S. GDP is growing over time (not mean stationary)
and may have become less volatile (not variance stationary). Changes in information technology
and institutions may have shortened the persistence of shocks in the economy (not covariance
stationary). Nonstationary time series have to be used with care in regression analysis. Methods
to effectively deal with this problem have provided a rich field of research for econometricians in
recent years.

12.1 Series Plots

The first thing to do when working with time series is to take a look at the data graphically.
A time series plot will reveal potential problems with your data and suggest ways to proceed
statistically. In gretl time series plots are simple to generate since there is a built in function that
performs this task. Open the data file usa.gdt.

161

open "c:\Program Files\gretl\data\poe\usa.gdt"

Fist, note that I have renamed the variables for this book to be a little more descriptive than
in POE. I assure you that the variables are the same, only the names changed (to protect the
innocent!). Then, use your mouse to select all of the series as shown in Figure 12.1 below. Then,

Figure 12.1: Select all of the series.

select Add>First differences of selected variables from the pull-down menu as shown in
Figure 12.2. The first differences of your time series are added to the data set and each of the

Figure 12.2: Add the first differences of the selected series from the pull-down menu.

differenced series is prefixed with ‘d ’, e.g., gdpt − gdpt−1 = d gdp.

Plotting the series can be done in any number of ways. The easiest is to use view>multiple

graphs>Time series from the pull-down menu. This will allow you to graph the eight series in

162

two batches. Two batches are required since the maximum number of series that can be graphed
simultaneously is currently limited to six.

Select gdp, inflation, d gdp, and d inflation as shown in Figure 12.3. The result appears

Figure 12.3: Graphing multiple time series using the selection box.

in Figure 12.4. Repeat this exercise for the remaining series to get the result shown in Figure 12.5.

12.2 Tests for Stationarity

The (augmented) Dickey-Fuller test can be used to test for the stationarity of your data. To
perform this test, a few decisions have to be made regarding the time series. The decisions are
usually made based on visual inspection of the time series plots. By looking at the plots you can
determine whether the time series have a linear or quadratic trend. If the trend in the series is
quadratic then the differenced version of the series will have a linear trend in them. In Figure 12.5
you can see that the Fed Funds rate appears to be trending downward and its difference appears to
wander around some constant amount. Ditto for bonds. This suggests that the Augmented Dickey
Fuller test regressions for each of the series should contain a constant, but not a time trend.

The GDP series in the upper left side of Figure 12.4 appears to be slightly quadratic in time.
The differenced version of the series that appears below it has a slight upward drift and hence I
would choose an ADF test that included a constant and a time trend. As you may have guessed,
analyzing time series in this way is a bit like reading entrails and there is something of an art to
it. Our goal is to reduce some of the uncertainty using formal tests whenever we can, but realize
that choosing the appropriate test specification requires some judgement by the econometrician.

163

Figure 12.4: Multiple time series graphs.

Figure 12.5: Multiple time series graphs for Fed Funds rate and 3 year bonds.

164

The next decision is to pick the number of lagged terms to include in the ADF regressions.
Again, this is a judgement call, but the residuals from the ADF regression should be void of any
autocorrelation. Gretl is helpful in this respect since it reports the outcome of an autocorrelation
test whenever the built-in ADF routines are used. Below is the example from your text, where the
stationarity of the Fed Funds rate and the three year bond series are explored.

To perform the ADF test on the Fed Funds rate, use the cursor to highlight the series and
click Variable>Augmented Dickey Fuller test from the pull-down menu as shown in Figure
12.6 below. This brings up the dialog box shown in the next Figure, 12.7. Notice that here is where

Figure 12.6: Choose the ADF test from the pull-down menu.

you inform gretl whether you want to include a constant, trend, trend squared, seasonal dummies,
etc. We have chosen to use only 1 lag, and to include a constant in the ADF regression. Also,
we’ve checked the box to have gretl report the results from the regression itself in order to make
the results a bit more transparent.

At the bottom of the dialog you must choose whether you want to use the level or the difference
of the variable. Choosing the level, as shown in the box, puts the difference on the left-hand side
of the regression. This can be a bit confusing, but in reality it should not be. Remember, you are
testing to see whether the levels values of the series are stationary. Choosing this box is telling
gretl that you want to first test levels.

If you want to check to see whether the differences are nonstationary, then click the radio button
below the one indicated. Click OK and the results appear as in Figure 12.8.

The test results are quite informative. First it tells you that you are performing a test based on
a regression with a constant. It provides you with an estimate of γ, which it refers to as a-1, the
t-ratio for γ, and the correct p-value for the statistic as computed by Davidson and MacKinnon.
It also reports an estimated autocorrelation coefficient for the errors (0.061) which should be small
if you have chosen the correct number of lags in the ADF regression.

165

Figure 12.7: The ADF test dialog box.

Figure 12.8: The ADF test results.

166

The null hypothesis of the ADF test is that the time series has a unit root and is not stationary.
If you reject this hypothesis then you conclude that the series is stationary. To not reject the null
means that the level is not stationary. Here, the test statistic for the stationarity of the Fed Funds
rate is -2.090 which has a p-value of 0.24875. Nonstationarity of the Fed Funds rate can not be
rejected in this case at the usual 5 or 10% levels of significance.

One more thing should be said about the ADF test results. Gretl expresses the model in a
slightly different way than your textbook. The model is

(1− L)yt = β0 + (α− 1)yt−1 + α1∆yt−1 + et (12.1)

The coefficient β0 is included because you believe the series has a trend, (α − 1) = γ is the
coefficient of interest in the Dickey-Fuller regression, and α1 is the term that ‘augments’ the Dickey-
Fuller regression. It is included to eliminate autocorrelation in the model’s errors, et, and more
lags can be included if needed to accomplish this. The notation on the left side of the equation
(1−L)yt makes use of the lag operator, L. The lag operator performs the magic Lyt = yt−1. Thus,
(1− L)yt = yt − Lyt = yt − yt−1 = ∆yt!

The next thing to do is to create a set of summary statistics. In this case, the textbook has
you produce summary statistics for subsamples of the data. The first subsample consists of the
40 observations from 1985:1 to 1994:4. The second also contains 40 observations (a decade!) and
continues from 1995:1 to 2004:4. The summary command is used to obtain the summary statistics
on the desired subsample. In the script, open the data file usa.gdt and change the sample to
1985:1-1994:4 using the command smpl 1985:1 1994:4. Issue the summary command to print the
summary statistics of all variables in memory to the screen. Finally, restore the sample to the full
range using smpl full.

Gretl’s smpl functions are cumulative. This means that whatever modifications you make to
the sample are made based on the sample that is already in memory. So, to get summary statistics
on the second subsample (which is not in memory) you have to restore the full sample first using
smpl full. It is a little clumsy, but it makes sense once you know how it works.

open "c:\Program Files\gretl\data\poe\usa.gdt"

smpl 1985:1 1994:4

summary

smpl full

smpl 1995:1 20054:4

summary

smpl full

The sample can be manipulated through the dialogs as well. Open the dataset and select Sample>Set
range from the pull-down menu to reveal the dialog in Figure 12.9. Use the scroll buttons to change
the ending date to 1994:4. The observation counter will change and show that the selected sample

167

Figure 12.9: Choose Sample>Set range to reveal the Set sample dialog box. Use the scroll buttons
to set the desired sample range.

has 40 observations. Click OK and you are returned to the main gretl window. This is shown in
the next Figure, 12.10.

Figure 12.10: Any changes to the sample should be visible in the main window. Here you can see
that the data in memory consist of the 1985:1-1994:4 subsample.

Now, select all of the levels variables either by holding down the Crtl key and clicking on each
of the levels variables or by clicking on the first variable (gdp), holding down the Shift key, and
clicking on the last desired variable in the list (Bonds). This is a Microsoft Windows convention
and may not work the same on other systems.

Once the desired variables are selected, and hence highlighted, choose View>Summary statistics

will reveal the desired information, which is shown below:

168

Summary Statistics, using the observations 1985:1–1994:4

Variable Mean Median Minimum Maximum

gdp 5587.70 5650.35 4119.50 7232.20
inflation 3.55601 3.50904 1.30831 6.03757
FedFunds 6.28808 6.65667 2.99000 9.72667
Bonds 7.22700 7.49000 4.32000 10.6767

Variable Std. Dev. C.V. Skewness Ex. kurtosis

gdp 922.950 0.165175 0.0439792 −1.1688
inflation 1.09067 0.306713 0.0926796 −0.455736
FedFunds 2.08741 0.331963 −0.301024 −1.1781
Bonds 1.62734 0.225175 −0.224819 −0.713900

Now restore the full sample using Sample>Restore full range from the pull-down menu and
repeat, changing the sample range to 1995:1 - 2004:4 using the set sample dialog. The results are

Summary Statistics, using the observations 1985:1–2005:1

Variable Mean Median Minimum Maximum

gdp 7584.25 7298.30 4119.50 12198.8
inflation 2.99005 2.90131 1.24379 6.03757
FedFunds 5.16955 5.50667 0.996667 9.72667
Bonds 5.94741 6.00000 1.77333 10.6767

Variable Std. Dev. C.V. Skewness Ex. kurtosis

gdp 2312.62 0.304924 0.266928 −1.1168
inflation 1.05382 0.352444 0.571135 0.0136503
FedFunds 2.29634 0.444206 −0.199304 −0.760287
Bonds 2.03711 0.342521 −0.109496 −0.553230

12.3 Spurious Regressions

It is possible to estimate a regression and find a statistically significant relationship even if none
exists. In time series analysis this is actually a common occurrence when data are not stationary.
This example uses two data series, rw1 and rw2, that were generated as independent random walks.

rw1 : yt = yt−1 + v1t (12.2)

rw2 : xt = xt−1 + v2t (12.3)

The errors are independent standard normal random deviates generated using a pseudo-random
number generator. As you can see, xt and yt are not related in any way. To explore the empirical
relationship between these unrelated series, load the spurious.dta data, create a time variable, and
declare the data to be time series.

169

open "c:\Program Files\gretl\data\poe\spurious.gdt"

The sample information at the bottom of the main gretl window indicates that the data have
already been declared as time series and that the full range (1-700) is in memory. The first thing
to do is to plot the data using a time series plot. To place both series in the same time series
graph, select View>Graph specified vars.>Time series plots from the pull-down menu. This
will reveal the ‘define graph’ dialog box. Place both series into the ‘Selected vars’ box and click OK.
The result appears in Figure 12.11 below. A scatter plot is revealing as well. Select View>Graph

Figure 12.11: These random walk series appear to be correlated but they are not. It is not
uncommon to observe spurious relationships between nonstationary series.

specified vars.>X-Y scatters and place rw2 on the X-axis, rw1 on the Y-axis to produce the
next graph (Figure 12.12. The linear regression confirms this. Left click on the graph to reveal
the pop-up menu shown in Figure 12.13. Select the OLS estimates option to reveal the regression
results in Table 12.1.

The coefficient on rw2 is positive (.842) and significant (t = 40.84 > 1.96). However, these
variables are not related! The observed relationship is purely spurious. The cause of the spurious
result is the nonstationarity of the two series. This is why you must check your data for stationarity
whenever you use time series in a regression.

The script to produce these graphs is very simple. Use

open "c:\Program Files\gretl\data\poe\spurious.gdt"

gnuplot rw1 rw2 --with-lines --time-series

gnuplot rw1 rw2

170

Figure 12.12: The scatter plot of the random walk series makes them appear to be related, but
they are not. They are nonstationary and the relationship is spurious.

Figure 12.13: Left-click on the graph to reveal this menu. Choose OLS estimates to reveal the
underlying least squares results that produce the regression line in the graph.

171

Table 12.1: OLS estimates of a spurious relationship using the 700 observations of the spurious.gdt
dataset.

Dependent variable: rw1

Variable Coefficient Std. Error t-statistic p-value

const 17.8180 0.620478 28.7167 0.0000
rw2 0.842041 0.0206196 40.8368 0.0000

Unadjusted R2 0.704943
Adjusted R̄2 0.704521

ols rw1 rw2 const

The first plot applies lines and uses the time-series option to use time as the X-axis measurement.
The second plot is a simple scatter with the first variable on the Y-axis and the second on the X-.
The final statement estimates the regression.

12.4 Cointegration

Two nonstationary series are cointegrated if they tend to move together through time. For
instance, we have established that the levels of the Fed Funds rate and the 3-year bond are non-
stationary, whereas their differences are stationary. In the opaque terminology used in time series
literature, each series is said to be “integrated of order 1” or I(1). If the two nonstationary series
move together through time then we say they are “cointegrated.” Economic theory would suggest
that they should be tied together via arbitrage, but that is no guarantee. In this context, testing
for cointegration amounts to a test of the substitutability of these assets.

The basic test is very simple. Regress one I(1) variable on another using least squares. If the
series are cointegrated, the residuals from this regression will be stationary. This is verified using
augmented Dickey-Fuller test.

The null hypothesis is that the residuals are nonstationary, which implies that the series are not
cointegrated. Rejection of this leads to the conclusion that the series are cointegrated. The coint

function in gretl carries out each of the three steps in this test. First, it carries out a Dickey-Fuller
test of the null hypothesis that each of the variables listed has a unit root. Then it estimates the
cointegrating regression using least squares. Finally, it runs a Dickey Fuller test on the residuals
from the cointegrating regression. This procedure, referred to as the Engle-Granger cointegration
test and discussed in chapter 12 of Hill et al. (2007), is the one done in gretl by default. Gretl
can also perform cointegration tests based on maximum likelihood estimation of the cointegrating
relationships proposed by Johansen and summarized in (?, Chapter 20). The Johansen tests use

172

the coint2 command, which is explained in gretl’s documentation.

Figure 12.14 shows the dialog box used to test cointegration in this way. To obtain it use
Model>Time series>Cointegration test>Engle-Granger from the main gretl window. In the
dialog box you have to indicate how many lags you want in the initial Dickey-Fuller regressions
on the the variables, which variables you want to include in the cointegrating relationship, and
whether you want a constant, trend, or quadratic trend in the regressions.

To select these additional modeling options you’ll have to click on the down arrow button
indicated in Figure 12.14. This will reveal the four choices shown in the next figure (Figure 12.15).

Figure 12.14: The dialog box for the cointegration test.

173

Figure 12.15: The pull-down menu for choosing whether to include constant or trends in the ADF
regression.

12.5 The Analysis Using a Gretl Script

Below, you will find a summary of the gretl commands used to produce the results for the
usa.gdt data from Chapter 12.

open "c:\Program Files\gretl\data\poe\usa.gdt"

Difference each variable

diff gdp inflation FedFunds Bonds

Augmented Dickey Fuller regressions

This is the manaul way of doing this regression

ols d_FedFunds const FedFunds(-1) d_FedFunds(-1)

ols d_Bonds const Bonds(-1) d_Bonds(-1)

Augmented Dickey Fuller regressions using the built-in function

Note: 1 lag is called for and a constant is included (--c)

adf 1 FedFunds --c --verbose

adf 1 Bonds --c --verbose

Dickey-Fuller regressions for first differences

Note: adf 0 indicates no lags for the difference version

adf 0 FedFunds --nc --verbose --difference

adf 0 Bonds --nc --verbose --difference

Engle-Granger test of cointegration

Note: one lag is used in the adf portion of the test

coint 1 Bonds FedFunds

174

The diff function takes the first difference of each series. The adf function conducts the
augmented Dickey-Fuller test. The number 1 that follows the adf command is the number of lags
to use in the augmented version, in this case only one. Then, list the series name and any options
you wish to invoke. Here, the --c option is used, indicating that we want a constant term included
in the Dickey-Fuller regression. The --verbose statement is included so that gretl will print the
results from the Dickey-Fuller regression itself. I think this makes interpreting the result much
easier, so I always include it.

Other options in the example include -nc which directs the Dickey-Fuller regression to omit
the constant altogether. The --difference option tells gretl to run the augmented Dickey-Fuller
regressions under the assumption that the first difference of the series is nonstationary.

Finally, the coint command conducts the Engle-Granger test for the cointegration of the two
series that follow. Again, the number 1 that follows coint is actually for the first step of the
procedure, which tells gretl how many lags to include in the initial augmented Dickey-Fuller
regressions.

The output generated from the simple command coint 1 Bonds FedFunds is shown below.

Engle-Granger test of cointegration

? coint 1 Bonds FedFunds

Step 1: testing for a unit root in Bonds

Augmented Dickey-Fuller test, order 1, for Bonds

sample size 79

unit-root null hypothesis: a = 1

test with constant

estimated value of (a - 1): -0.0562195

test statistic: tau_c(1) = -1.97643

asymptotic p-value 0.2975

Step 2: testing for a unit root in FedFunds

Augmented Dickey-Fuller test, order 1, for FedFunds

sample size 79

unit-root null hypothesis: a = 1

test with constant

estimated value of (a - 1): -0.0370668

test statistic: tau_c(1) = -2.0903

asymptotic p-value 0.2487

Step 3: cointegrating regression

175

Cointegrating regression -

OLS estimates using the 81 observations 1985:1-2005:1

Dependent variable: Bonds

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

const 1.64373 0.19482 8.437 <0.00001 ***

FedFunds 0.832505 0.03448 24.147 <0.00001 ***

Unadjusted R-squared = 0.880682

Adjusted R-squared = 0.879172

Durbin-Watson statistic = 0.413856

First-order autocorrelation coeff. = 0.743828

Akaike information criterion (AIC) = 175.927

Schwarz Bayesian criterion (BIC) = 180.716

Hannan-Quinn criterion (HQC) = 177.848

Step 4: Dickey-Fuller test on residuals

lag order 1

sample size 79

unit-root null hypothesis: a = 1

estimated value of (a - 1): -0.31432

test statistic: tau_c(2) = -4.54282

asymptotic p-value 0.0009968

P-values based on MacKinnon (JAE, 1996)

There is evidence for a cointegrating relationship if:

(a) The unit-root hypothesis is not rejected for the individual

variables.

(b) The unit-root hypothesis is rejected for the residuals

(uhat) from the cointegrating regression.

Notice that at the bottom of the output gretl gives you some useful advice on interpreting the out-
come of the test. Cointegration requires both series to be I(1)–not rejecting nonstationarity in the
initial Dickey-Fuller regressions and then rejecting nonstationarity in the Dickey-Fuller regression
using the residuals. Nice!

12.6 Script

open "c:\Program Files\gretl\data\poe\usa.gdt"

176

Difference each variable

diff gdp inflation FedFunds Bonds

Augmented Dickey Fuller regressions

ols d_FedFunds const FedFunds(-1) d_FedFunds(-1)

ols d_Bonds const Bonds(-1) d_Bonds(-1)

Augmented Dickey Fuller regressions using built in functions

adf 1 FedFunds --c --verbose

adf 1 Bonds --c --verbose

Dickey-Fuller regressions for first differences

adf 0 FedFunds --nc --verbose --difference

adf 0 Bonds --nc --verbose --difference

Summary Statistics

smpl 1985:1 1994:4

summary

smpl full

smpl 1995:1 2004:4

summary

smpl full

#Spurious Regressions

open "c:\Program Files\gretl\data\poe\spurious.gdt"

gnuplot rw1 rw2 --with-lines --time-series

gnuplot rw1 rw2

ols rw1 rw2 const

Engle-Granger test of cointegration

open "c:\Program Files\gretl\data\poe\usa.gdt"

coint 1 Bonds FedFunds

177

Chapter 13
Vector Error Correction and Vector
Autoregressive Models: Introduction to
Macroeconometrics

The vector autoregression model is a general framework used to describe the dynamic interre-
lationship between stationary variables. So, the first step in your analysis should be to determine
whether the levels of your data are stationary. If not, take the first differences of your data and try
again. Usually, if the levels (or log-levels) of your time series are not stationary, the first differences
will be.

13.1 Vector Error Correction

If the time series are not stationary then we need to modify the vector autoregressive (VAR)
framework to allow consistent estimation of the relationships between the series. The vector error
correction model (VECM) is just a special case of the VAR for variables that are stationary in their
differences (i.e., I(1)) and cointegrated.

In the first example, we use quarterly data on the Gross Domestic Product of Australia and
the U.S. to estimate a VEC model. We decide to use the vector error correction model because (1)
the time series are not stationary in their levels but are in their differences (2) the variables are
cointegrated.

In an effort to keep the discussion moving, the authors of POE opted to avoid discussing how
they actually determined the series were nonstationary in levels, but stationary in differences. This
is an important step and I will take some time here to explain how one could approach this. There

178

are several ways to do this and I’ll show you two ways to do it in gretl.

13.1.1 Series Plots–constant and trends

Our initial impressions of the data are gained from looking at plots of the two series. The data
plots are obtained in the usual way after importing the dataset. The data on U.S. and Australian
GDP are found in the gdp.gdt file and were collected from 1970:1 - 2004:4.1 Open the data and set
the data structure to quarterly time-series using the setobs 4 command, start the series at 1970:1,
and use the --time-series option.

open "c:\Program Files\gretl\data\poe\gdp.gdt"

setobs 4 1970:1 --time-series

One purpose of the plots is to help you determine whether the Dickey-Fuller regressions should
contain constants, trends or squared trends. The simplest way to do this is from the console using
the scatters command.

scatters usa diff(usa) aus diff(aus)

The scatters command produces multiple graphs, each containing one of the listed series. The
diff() function is used to take the differences of usa and aus, which appear in the graphs featured
in Figure 13.1 below.

This takes two steps from the pull-down menu. First, use the mouse to highlight the two series
and then create the differences using Add>First differences of selected variables. Then,
select View>Multiple graphs>Time series. Add the variables to the selected list box to produce
Figure 13.1.

From the time series plots it appears that the levels are mildly parabolic in time. The differences
have a small trend. This means that the augmented Dickey-Fuller (ADF) regressions need to contain
these elements.

13.1.2 Selecting Lag Length

The second consideration is the specification of lags for the ADF regressions. There are several
ways to select lags and gretl automates one of these. The basic concept is to include enough lags
in the ADF regressions to make the residuals white noise. These will be discussed presently.

1POE refers to these variables as U and A, respectively.

179

Figure 13.1: The levels of Australian and U.S. GDP appear to be nonstationary and cointegrated.
The difference plots have a nonzero mean, indicating a constant in their ADF regressions.

Testing Down

The first strategy is to include just enough lags so that the last one is statistically significant.
Gretl automates this using the --test-down option for the augmented Dickey-Fuller regressions.
Start the ADF regressions with a generous number of lags and gretl automatically reduces that
number until the t-ratio on the longest remaining lag is significant at the 10 percent level. For the
levels series we start with a maximum lag of 6, include a constant, trend, and trend squared (--ctt
option), and use the --test-down option.

adf 6 usa --ctt --test-down

adf 6 aus --ctt --test-down

The result is shown in Figure 13.2. The --test-down option selected two lags for the usa series
and three for aus. Both ADF statistics are insignificant at the 5% or 10% level, indicating they
are nonstationary. This is repeated for the differenced series using the commands:

adf 6 diff(usa) --ct --test-down

adf 6 diff(aus) --ct --test-down

180

Figure 13.2: Based on ADF tests, the levels of Australian and U.S. GDP are nonstationary.

The selected lags for the U.S. and Australia are one and three, respectively. Both ADF statistics
are significant at the 5% level and we conclude that the differences are stationary.

Testing Up

The other strategy is to test the residuals from the augmented Dickey-Fuller regressions for
autocorrelation. In this strategy you can start with a small model, and test the residuals of the
Dickey-Fuller regression for autocorrelation using an LM test. If the residuals are autocorrelated,
add another lagged difference of the series to the ADF regression and test the residuals again. Once
the LM statistic is insignificant, you quit you are done. This is referred to as testing-up.

To employ this strategy in gretl, you’ll have to estimate the ADF equations manually using
the ols command. Since the data series has a constant and quadratic trend, you have to define a
time trend (genr time) and trend squared (genr t2 = time*time) to include in the regressions.
You will also need to generate the differences to use in a new function called lags. The script to
do this follows:

genr time

genr t2 = time*time

genr d_usa = diff(usa)

181

Now, estimate a series of augmented Dickey-Fuller regressions using ols. Follow each regression
with the LM test for autocorrelation of the residuals discussed in Chapter 9.

ols diff(usa) usa(-1) lags(1,d_usa) const time t2 --quiet

modtest 1 --autocorr

ols diff(usa) usa(-1) lags(2,d_usa) const time t2 --quiet

modtest 1 --autocorr

The first ols regression is the ADF(1). It includes 1 lagged value of the d usa as a regres-
sor in addition to the lagged value of usa, a constant, a trend, and a squared trend. Gretl’s
lags(q,variable) function creates a series of lags from 1 through q of variable. So in the first
regression, lags(1,d usa) creates a single lagged value of d usa. After the regression, use the
modtest 1 --autocorr to conduct the LM test of first order autocorrelation discussed in Chapter
9. If the p-value is greater than .10 then this is your model. If not, add another lag of d usa using
lags(2,d usa) and repeat the test. In this example, the ADF(2) produces residuals that are not
autocorrelated and ‘wins’ the derby.

In this code example we chose to suppress the results from the first regression so that the output
from the tests would fit on one page (Figure 13.3). In practice, you could skip this option and read
the Dickey-Fuller t-ratio directly from the output. The only disadvantage of this is that the proper
p-value for it is not computed using the manual approach.

If you repeat this exercise for aus (as we have done in the script at the end of the chapter) you
will find that testing up determines zero lags of d aus are required in the Dickey-Fuller regression;
testing down revealed three lags were needed. The incongruency occurs because we did a poor job
of testing up, failing to include enough autocorrelation terms in in the LM test. This illustrates a
danger of testing up. When we conducted the LM test using only a single autocorrelation term, we
had not searched far enough in the past to detect significant autocorrelations that lie further back
in time. Adding terms to the autocorrelation test using modtest 3 --autocorr resolves this.

So which is better, testing down or testing up? I think the econometric consensus is that testing
down is safer. We’ll leave it for future study!

13.1.3 Cointegration Test

Given that the two series are stationary in their differences (i.e., both are I(1)), the next step
is to test whether they are cointegrated. In the discussion that follows, we return to reproducing
results from POE. To do this, use least squares to estimate the following regression.

aust = βusat + et (13.1)

obtain the residuals, êt, and then estimate

∆êt = γêt−1 + ut (13.2)

182

Figure 13.3: Manually estimate the ADF regressions and use LM tests for autocorrelation to
determine the proper lag length.

183

This is the “case 1 test” from Chapter 12 of Hill et al. (2007) and the 5% critical value for the t-ratio
is -2.76. The following script estimates the model cointegrating regression, saves the residuals, and
estimates the regression required for the unit root test.

ols aus usa

genr uhat = $uhat

ols diff(uhat) uhat(-1)

The result is:
∆êt = −0.127937

(0.044279)
êt−1 (13.3)

T = 123 R̄2 = 0.0640 F (1, 122) = 8.3482 σ̂ = 0.5985

(standard errors in parentheses)

The t-ratio is −0.1279/.0443 = −2.889 which lies in the rejection region for this test. Therefore,
you reject the null hypothesis of no cointegration.

13.1.4 VECM

You have two difference stationary series that are cointegrated. Consequently, an error correc-
tion model of the short-run dynamics can be estimated using least squares. The error correction
model is:

∆aust = β11 + β12êt−1 + v1t (13.4)

∆usat = β21 + β22êt−1 + v2t (13.5)

and the estimates

∆âust = 0.491706
(8.491)

+−0.0987029
(−2.077)

êt−1

∆ûsat = 0.509884
(10.924)

+ +0.0302501
(0.790)

êt−1

(t-statistics in parentheses)
which is produced using

ols diff(aus) const uhat(-1)

ols diff(usa) const uhat(-1)

13.2 Vector Autoregression

The vector autoregression model (VAR) is actually a little simpler to estimate than the VEC
model. It is used when there is no cointegration among the variables and it is estimated using time
series that have been transformed to their stationary values.

184

In the example from POE, we have macroeconomic data on GDP and the CPI for the United
States. The data are found in the growth.gdt dataset and have already been transformed into their
natural logarithms. In the dataset, ln (GDP) is referred to as G and ln (CPI) as P. As in the
previous example, the step is to determine whether the variables are stationary. If they are not,
then you transform them into stationary time series and test for cointegration.

The data need to be analyzed in the same way as the GDP example. Examine the plots
to determine possible trends and use the ADF tests to determine which form of the data are
stationary. These data are nonstationary in levels, but stationary in differences. Then, estimate
the cointegrating vector and test the stationarity of its residuals. If stationary, the series are
cointegrated and you estimate a VECM. If not, then a VAR treatment is sufficient.

Open the data and take a look at the time series plots.

open "c:\Program Files\gretl\data\poe\growth.gdt"

scatters G diff(G) P diff(P)

Next, estimate
ln(GDP)t = β1 + β2ln(CPI) + ut (13.6)

using least squares and obtain the residuals, ût. Then, difference the least squares residuals and
estimate

∆ût = α1 + α2ût−1 + residual, (13.7)

again, using least squares. The t-ratio on α2 is computed and compared to the 5% critical value
tabled in POE (Table 12.3), which is -3.37. The computed value of the statistic is -.97, which is
not in the rejection region of the test; we conclude that the residuals are stationary which means
that G and P are not cointegrated. The script that accomplishes this is

ols G const P

series uhat = $uhat

ols diff(uhat) uhat(-1)

You could use the built-in command for the augmented Dickey-Fuller regressions adf to obtain
the t-ratio on the lagged residual. Unfortunately, the critical values produced by the automatic
routine does not take into account that the regressors are estimated residuals and they are not
valid for the Engle-Granger test of cointegration. If you choose to use the adf command, be sure
to use the the --nc no constant option in this case.

adf 0 uhat --nc --verbose

The --verbose option tells gretl to print the actual regression results from the Dickey-Fuller test.
The regression results will match those you obtained using the manual method above. Ignore the

185

p-value for the Dickey-Fuller since the regressors are residuals. Since G and P are not cointegrated,
a vector autoregression model can be estimated using the differences.

The script to estimate a first order VAR appears below:

var 1 diff(P) diff(G)

The diff() function is used to take the first differences of the time series and can be used in the
var command. The command var 1 tells gretl to estimate a VAR of order 1, which means lag the
right-hand-side variable one period. Then list the variables to include on the right-hand side.

In practice, you might want to explore whether the order of the VAR (number of lags on the
right-hand side) are sufficient. This can be done using the --lagselect option in the var statement.
You start the VAR with a relatively long lag length and gretl estimates each successively smaller
version, computing various goodness-of-fit measures. Gretl then tells you which is the optimal lag
length based on each criterion. For instance, starting the VAR at 8 lags and using --lagselect is
accomplished by:

var 8 diff(G) diff(P) --lagselect

You can also get gretl to generate this command through the dialogs. Select Model>Time series>VAR

lag selection from the pull-down menu. This reveals the VAR lag selection dialog box. You can
choose the maximum lag to consider, the variables to include in the model, and whether the model
should contain constant, trend, or seasonal dummies. The output is:

? var 8 diff(G) diff(P) --lagselect

VAR system, maximum lag order 8

The asterisks below indicate the best (that is, minimized) values

of the respective information criteria, AIC = Akaike criterion,

BIC = Schwartz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags loglik p(LR) AIC BIC HQC

1 1273.78393 -14.827882 -14.717648 -14.783154

2 1277.61696 0.10461 -14.825929 -14.642206 -14.751382

3 1300.25039 0.00000 -15.043864* -14.786652* -14.939498*

4 1303.30981 0.19045 -15.032863 -14.702162 -14.898679

5 1306.32104 0.19748 -15.021299 -14.617108 -14.857295

6 1311.53702 0.03375 -15.035521 -14.557841 -14.841699

7 1313.40649 0.44249 -15.010602 -14.459433 -14.786961

8 1315.11728 0.48990 -14.983828 -14.359170 -14.730368

186

The AIC, BIC, and HQC criteria each select a VAR with 3 lags.

Obtaining the impulse responses is easy in gretl. The first step is to estimate the VAR. From
the main gretl window choose Model>Time series>Vector Autoregression. This brings up the
dialog, shown in Figure 13.4. Set the lag order to 1, and add the differenced variables to the box
labeled Endogenous Variables. Make sure the ‘Include a constant’ box is checked and click OK.

The results are shown in Figure 13.5. You can generate impulse responses by selecting Analysis>Impulse

responses from the results window. This will produce the results shown in Figure 13.6.

These can be graphed for easier interpretation from the results window by selecting Graphs>Impulse

responses (combined) from the pull-down menu. The graph is shown in Figure 13.7. This yields
the graph shown in Figure 13.8.

The forecast error variance decompositions (FEVD) are obtained similarly. Select Analysis>Forecast
variance decomposition from the vector autoregression model window to obtain the result shown
in Figure 13.9.

187

Figure 13.4: From the main gretl window, choose Model>Time series>Vector Autogregression

to bring up this VAR dialog box.

188

Figure 13.5: VAR results

VAR system, lag order 1
OLS estimates, observations 1960:3–2004:4 (T = 178)

Equation 1: d P

Variable Coefficient Std. Error t-statistic p-value

const 0.00143280 0.000710432 2.0168 0.0452
d Pt−1 0.826816 0.0447068 18.4942 0.0000
d Gt−1 0.0464420 0.0398581 1.1652 0.2455

Sum of squared residuals 0.00347709
Standard error of residuals (σ̂) 0.00445747
Unadjusted R2 0.667250
Adjusted R̄2 0.663447
F (2, 175) 175.460

Equation 2: d G

Variable Coefficient Std. Error t-statistic p-value

const 0.00981441 0.00125091 7.8458 0.0000
d Pt−1 −0.326952 0.0787188 −4.1534 0.0001
d Gt−1 0.228505 0.0701813 3.2559 0.0014

Sum of squared residuals 0.0107802
Standard error of residuals (σ̂) 0.00784863
Unadjusted R2 0.168769
Adjusted R̄2 0.159269
F (2, 175) 17.7656

189

Figure 13.6: Impulse Response Functions

Responses to a one-standard error shock in d G

period d G d P
1 0.00778221 0.000358053
2 0.00166121 0.000657465
3 0.000164635 0.000620753
4 −0.000165336 0.000520894
5 −0.000208088 0.000423005
6 −0.000185852 0.000340084
7 −0.000153659 0.000272555
8 −0.000124224 0.000218217
9 −9.97324e-005 0.000174656

10 −7.98936e-005 0.000139777
11 −6.39564e-005 0.000111859
12 −5.11870e-005 8.95168e-005

Responses to a one-standard error shock in d P

period d G d P
1 0.000000 0.00440523
2 −0.00144030 0.00364231
3 −0.00151998 0.00294463
4 −0.00131008 0.00236408
5 −0.00107230 0.00189382
6 −0.000864213 0.00151604
7 −0.000693149 0.00121335
8 −0.000555095 0.000971026
9 −0.000444321 0.000777080

10 −0.000355598 0.000621867
11 −0.000284577 0.000497655
12 −0.000227737 0.000398253

190

Figure 13.7: Select Graphs>Impulse responses (combined) from the VAR results window.

13.3 Script

#VECM example

open "c:\Program Files\gretl\data\poe\gdp.gdt"

#Declare the data to be time series

setobs 4 1970:1 --time-series

#Analyze the plots for constants and trends

scatters usa diff(usa) aus diff(aus)

#Testing down with ADF

adf 6 usa --ctt --test-down

adf 6 aus --ctt --test-down

adf 6 usa --difference --ct --test-down

adf 6 aus --difference --ct --test-down

#Testing up (manually for usa)

genr time

genr t2 = time*time

genr d_usa = diff(usa)

genr d_aus = diff(aus)

ols diff(usa) usa(-1) const time t2

191

Figure 13.8: U.S. ln(GDP) and ln(CPI) impulse responses

modtest 1 --autocorr

ols diff(usa) usa(-1) lags(1,d_usa) const time t2 --quiet

modtest 1 --autocorr

ols diff(usa) usa(-1) lags(2,d_usa) const time t2 --quiet

modtest 1 --autocorr

#This test can be misleading: not enough AR terms in LM test

ols diff(aus) aus(-1) const time t2

modtest 1 --autocorr

#Be sure to test for enough AR terms in the LM test!

ols diff(aus) aus(-1) const time t2

modtest 3 --autocorr

ols diff(aus) aus(-1) lags(1,d_aus) const time t2 --quiet

modtest 3 --autocorr

ols diff(aus) aus(-1) lags(2,d_aus) const time t2 --quiet

modtest 3 --autocorr

ols diff(aus) aus(-1) lags(3,d_aus) const time t2 --quiet

modtest 3 --autocorr

#Cointegration test

ols aus usa

genr uhat = $uhat

ols diff(uhat) uhat(-1)

adf 0 uhat --nc

192

Figure 13.9: Forecast Error Variance Decompositions

Decomposition of variance for d G

period std. error d G d P
1 0.00778221 100.0000 0.0000
2 0.00808683 96.8279 3.1721
3 0.00823008 93.5265 6.4735
4 0.00833534 91.2187 8.7813
5 0.0084066 89.7399 10.2601
6 0.00845295 88.8068 11.1932
7 0.00848272 88.2175 11.7825
8 0.00850177 87.8440 12.1560
9 0.00851395 87.6064 12.3936

10 0.00852175 87.4550 12.5450
11 0.00852674 87.3582 12.6418
12 0.00852994 87.2964 12.7036

Decomposition of variance for d P

period std. error d G d P
1 0.00441975 0.6563 99.3437
2 0.0057648 1.6865 98.3135
3 0.00650301 2.2365 97.7635
4 0.00693897 2.5278 97.4722
5 0.00720519 2.6891 97.3109
6 0.00737081 2.7825 97.2175
7 0.00747498 2.8385 97.1615
8 0.00754094 2.8728 97.1272
9 0.00758289 2.8941 97.1059

10 0.00760963 2.9076 97.0924
11 0.0076267 2.9161 97.0839
12 0.00763762 2.9215 97.0785

193

#VECM

ols diff(aus) const uhat(-1)

ols diff(usa) const uhat(-1)

#Growth example

open "c:\Program Files\gretl\data\poe\growth.gdt"

#Analyze the plots

scatters G diff(G) P diff(P)

#Cointegration test

ols G const P

series uhat = $uhat

ols diff(uhat) uhat(-1)

adf 3 uhat --nc --test-down --verbose

adf 0 uhat --nc --verbose

#VAR

var 1 diff(P) diff(G)

#Using lagselect

var 8 diff(G) diff(P) --lagselect

#Estimate the VAR with IRFs and FEVDs

var 1 diff(P) diff(G) --impulse-responses --variance-decomp

194

Chapter 14
Time-Varying Volatility and ARCH Models:
Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable
changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas-
ticity) models and there are many variations upon the theme.

14.1 ARCH and GARCH

The basic ARCH(1) model can be expressed as:

yt = β + et (14.1)

et|It−1 ∼ N(0, ht) (14.2)

ht = α0 + α1e
2
t−1 α0 > 0, 0 ≤ α1 < 1 (14.3)

The first equation describes the behavior of the mean of your time series. In this case, equation
(14.1) indicates that we expect the time series to vary randomly about its mean, β. If the mean of
your time series drifts over time or is explained by other variables, you’d add them to this equation
just as you would a regular regression model. The second equation indicates that the error of the
regression, et, are normally distributed and heteroskedastic. The variance of the current period’s
error depends on information that is revealed in the preceding period, i.e., It−1. The variance of
et is given the symbol ht. The final equation describes how the variance behaves. Notice that ht
depends on the error in the preceding time period. The parameters in this equation have to be
positive to ensure that the variance, ht, is positive.

The ARCH(1) model can be extended to include more lags of the errors, et−q. In this case,
q refers to the order of the ARCH model. For example, ARCH(2) replaces (14.3) with ht =

195

α0 + α1e
2
t−1 + α2e

2
t−2. When estimating regression models that have ARCH errors in gretl, you’ll

have to specify this order.

ARCH is treated as a special case of a more general model in gretl called GARCH. GARCH
stands for generalized autoregressive conditional heteroskedasticity and it adds lagged values of the
variance itself, ht−p, to (14.3). The GARCH(1,1) model is:

yt = β + et (14.4)

et|It−1 ∼ N(0, ht) (14.5)

ht = δ + α1e
2
t−1 + β1ht−1 (14.6)

The difference between ARCH (14.3) and its generalization (14.6) is a term β1ht−1, a function of
the lagged variance. In higher order GARCH(p,q) model’s, q refers to the number of lags of et and
p refers to the number of lags of ht to include in the model of the regression’s variance.

To open the dialog for estimating ARCH and GARCH in gretl choose Model>Time series>GARCH

from the main gretl window as shown in Figure 14.1 below.1

Figure 14.1: Choose Model>Time series>GARCH from the main gretl window.

To estimate the ARCH(1) model, you’ll place the time series r into the dependent variable box

1In a later version of gretl , an ARCH option has been added. You can use this as well, but the answer you get
will be slightly different due to differences in the method used to estimate the model.

196

and set q=1 and p=0 as shown in Figure (14.2) This yields the results:

Figure 14.2: Estimating ARCH using the dialog box in gretl .

r̂ = 1.06394
(26.886)

ĥt = 0.642139
(9.914)

+ 0.569347
(6.247)

e2t−1

T = 500 lnL = −740.7932 σ̂ = 1.2211

(t-statistics in parentheses)

To estimate the GARCH(1,1) model, set p=1 and q=1 to obtain:

r̂ = 1.04987
(0.040465)

σ̂2t = 0.40105
(0.089941)

+ 0.491028
(0.10157)

ε2t−1 + 0.237999
(0.1115)

σ2t−1

T = 500 lnL = −736.0281 σ̂ = 1.2166

(standard errors in parentheses)

You will notice that the coefficient estimates and standard errors for the ARCH(1) and GARCH(1,1)
models are quite close to those in Chapter 14 of your textbook. To obtain these, you will have to

197

change the default variance-covariance computation using set garch vcv op before running the
script. Although this gets you close the the results in POE, using the garch vcv op is not usually
recommended; just use the gretl default, set garch vcv unset.

The standard errors and t-ratios often vary a bit, depending on which software and numerical
techniques are used. This is the nature of maximum likelihood estimation of the model’s parame-
ters. With maximum likelihood estimation the model’s parameters are estimated using numerical
optimization techniques. All of the techniques usually get you to the same parameter estimates,
i.e., those that maximize the likelihood function; but, they do so in different ways. Each numerical
algorithm arrives at the solution iteratively based on reasonable starting values and the method
used to measure the curvature of the likelihood function at each round of estimates. Once the
algorithm finds the maximum of the function, the curvature measure is reused as an estimate of the
variance covariance matrix. Since curvature can be measured in slightly different ways, the routine
will produce slightly different estimates of standard errors.

Gretl gives you a way to choose which method you like use for estimating the variance-
covariance matrix. And, as expected, this choice will produce different standard errors and t-ratios.
The set garch vcv command allows you to choose among five alternatives: unset–which restores
the default, hessian, im (information matrix) , op (outer product matrix), qml (QML estimator),
or bw (Bollerslev-Wooldridge). If unset is given the default is restored, which in this case is the
Hessian; if the ”robust” option is given for the garch command, QML is used.

14.2 Testing for ARCH

Testing for the presence of ARCH in the errors of your model is straightforward. In fact, there
are at least two ways to proceed. The first is to estimate the regression portion of your model using
least squares. Then choose the Tests>ARCH from the model’s pull-down menu. This is illustrated
in Figure 14.3 below.

This brings up the box where you tell gretl what order of ARCH(q) you want as your alternative
hypothesis. In the example, q = 1 which leads to the result obtained in the text. The output is
shown below in Figure 14.5. Gretl produces the LM statistic discussed in your text; the relevant
part is highlighted in red.

The other way to conduct this test is manually. The first step is to estimate the regression
(14.1) using gretl . Save the squared residuals and then regress these on their lagged value. Take
TR2 from this regression as your test statistic. The script for this appears below:

open "c:\Program Files\gretl\data\poe\BYD.gdt"

ols r const

series ehat = $uhat

series ehat2 = ehat*ehat

198

Figure 14.3: Choose Tests>ARCH from the model’s pull-down menu.

Figure 14.4: Testing ARCH dialog box

Figure 14.5: ARCH test results

199

ols ehat2 const ehat2(-1)

scalar tr2 = $trsq

The first line estimates the regression
rt = β + et (14.7)

The residuals are saved in ehat and then squared as ehat2. The next line estimates the regression

êt = α1 + α2êt−1 + ut (14.8)

The notation ehat2(-1) takes the variable ehat2 and offsets it in the dataset by the amount in
parentheses. In this case, ehat2(-1) puts a minus one period lag of ehat2 into your regression.
The final line computes TR2 from the regression.

14.3 Simple Graphs

There are several figures that you can produce with gretl and gnuplot . One useful graph is a
histogram of the time series you are studying. The easiest way to get this is through the pull-down
menus. In Figure 14.6 you’ll find a histogram of the Brighten Your Day returns. A normal density
is superimposed on the series. Selecting Variable>Frequency plot>against Normal from the
pull-down menu opens a small dialog box that allows you to control how the histogram looks. You
can choose the number of bins, which in this case has been set to 23 (Figure 14.7). Click OK and
the result appears in Figure 14.8.

Once you’ve estimated your ARCH or GARCH model, you can graph the behavior of the
variance as done in the textbook. After estimating ARCH or GARCH, you can save the predicted
variances using the command genr ht = $h. Then plot them using gnuplot ht time. The result
is shown in Figure 14.9. A prettier plot can be obtained using the pull-down menus or by editing
the plot yourself. To modify the graph, right click on the graph and choose edit. From here you
can add labels, titles or replace the crosses with lines. That’s what I have done to produce the
result in Figure 14.10.

14.4 Threshold ARCH

Threshold ARCH (TARCH) can also be estimated in gretl, though it requires a little pro-
gramming; there aren’t any pull-down menus for this estimator. Instead, we’ll introduce gretl’s
powerful mle command that allows user defined (log) likelihood functions to be maximized.

The threshold ARCH model replaces the variance equation (14.3) with

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.9)

200

Figure 14.6: Highlight the desired series using your cursor, then choose Variable>Frequency

plot>against Normal from the pull-down menu

Figure 14.7: Choosing Variable>Frequency plot>against Normal from the pull-down menu re-
veals this dialog box.

201

Figure 14.8: The histogram produced using the dialogs from the pull-down menu in gretl.

Figure 14.9: Plot of the variances after estimating the GARCH(1,1) using the BrightenYourDay
returns. Right click on the graph to bring up the menu shown. Then choose edit to modify your
graph.

202

Figure 14.10: Plot of the variances after estimating the GARCH(1,1) using Brighten Your Day’s
returns

dt =

{
1 if et < 0
0 otherwise

(14.10)

The model’s parameters are estimated by finding the values that maximize its likelihood. Maximum
likelihood estimators are discussed in appendix C of Hill et al. (2007).

Gretl provides a fairly easy way to estimate via maximum likelihood that can be used for a wide
range of estimation problems (see Chapter 16 for other examples). To use gretl’s mle command,
you must specify the log-likelihood function that is to be maximized. Any parameters contained in
the function must be given reasonable starting values for the routine to work properly. Parameters
can be declared and given starting values (using the genr command).

Numerical optimization routines use the partial derivatives of the objective function to itera-
tively find the minimum or maximum of the function. If you want, you can specify the analytical
derivatives of the log-likelihood function with respect to each of the parameters in gretl; if ana-
lytical derivatives are not supplied, gretl tries to compute a numerical approximation. The actual
results you obtain will depend on many things, including whether analytical derivatives are used
and the starting values.

For the threshold GARCH model, open a new script file and type in the program that appears
in Figure 14.11.

203

Figure 14.11: Threshold GARCH script

open "c:\Program Files\gretl\data\poe\BYD.gdt"

scalar mu = 0.5

scalar omega = .5

scalar alpha = 0.4

scalar delta = 0.1

scalar beta = 0

mle ll = -0.5*(log(h) + (e^2)/h)

series h = var(r)

series e = r - mu

series e2 = e^2

series e2m = e2 * (e<0)

series h = omega + alpha*e2(-1) + delta*e2m(-1) + beta*h(-1)

params mu omega alpha delta beta

end mle

The first few lines of the script gives starting values for the parameters. The second part of
the script contains the the algebraic expression of the likelihood function. The first line ll =

-0.5*(log(h) + (ê 2)/h) is what is called the kernel of the normal probability density function.
Recall that the errors of the ARCH model are assumed to be normally distributed and this is
reflected in the kernel. Next, we have to specify an initial guess for the variances of the model,
and these are set using var(r). Then, the errors are generated, squared, and the threshold term
is created using series e2m = e2 * (e<0); the expression (e<0) takes the value of 1 for negative
errors, e, and is zero otherwise. Then, the heteroskedastic function ht is specified. The parameters
of the model are given at the end, which also tells gretl to print the estimates out once it has
finished the numerical optimization. The mle loop is ended with end mle. The output appears in
Figure 14.12. The coefficient estimates are very close to those printed in your text, but the standard
errors and corresponding t-ratios are quite a bit different. This is not that unusual since different
pieces of software that no doubt use different algorithms were used to numerically maximize the
log-likelihood function.

14.5 Garch-in-Mean

The Garch-in-mean (MGARCH) model adds the equation’s variance to the regression function.
This allows the average value of the dependent variable to depend on volatility of the underlying
asset. In this way, more risk (volatility) can lead to higher average return. The equations are listed

204

Figure 14.12: Threshold ARCH results

below:

yt = β0 + θht + et (14.11)

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.12)

Notice that in this formulation we left the threshold term in the model. The errors are normally
distributed with zero mean and variance ht.

The parameters of this model can be estimated using gretl, though the recursive nature of the
likelihood function makes it a bit more difficult. In the script below (Figure 14.13) you will notice
that we’ve defined a function to compute the log-likelihood.2 The function is called gim filter and
it contains eight arguments. The first argument is the time series, y. Then, each of the parameters
is listed (mu, theta, delta, alpha, gam, and beta) as scalars. The final argument is a placeholder
for the variance, h, that is computed within the function.

Once the function is named and its arguments defined, you need to initiate series for the
variances and the errors; these have been called lh and le, respectively. The log-likelihood function
is computed using a loop that runs from the second observation through the last. The length of
the series can be obtained using the saved result $nobs, which is assigned to the variable T.

Gretl’s loop syntax is fairly simple, though there are several variations. In this example the
loop is controlled using the special index variable, i. In this case you specify starting and ending
values for i, which is incremented by one each time round the loop. In the TGARCH example the
loop syntax looks like this:

2Actually, gretl genius Professor ‘Jack’ Lucchetti wrote the function and I’m very grateful!

205

loop for i=2..T --quiet

.

.

.

end loop

The first line start the loop using an index variable named i. The first value of i is set to 2. The
index i will increment by 1 until it reaches T, which has already been defined as being equal to
$nobs. The end loop statement tells gretl the point at which to return to the top of the loop and
advance the increment i. The --quiet option just reduces the amount of output that is written to
the screen.

Within the loop itself, you’ll want to lag the index and create an indicator variable that will
take the value of 1 when the news is bad (et−1 < 0). The next line squares the residual. lh[i] uses
the loop index to place the variance computation from the iteration into the ith row of lh. The
line that begins le[i]= works similarly for the errors of the mean equation.

The variances are collected in h and the residuals in le, the latter of which is returned when
the function is called. The function is closed using end function.

If this looks too complicated, you can simply highlight the code with your cursor, copy it using
Ctrl-C, and paste it into a gretl script file (or use the scripts provided with this book).

Once the function is defined, you need to initialize each parameter just as you did in TGARCH.
The series that will eventually hold the variances also must be initialized. The latter is done using
series h = NA, which creates the series h and fills it with missing values (NA). The missing values
for observations 2 through T are replaced as the function loops.

Next, the built-in mle command is issued and the normal density kernel is specified just as it
was in the TGARCH example. Then, use the predefined e=gim filter() function, putting in the
variable r for the time series, the initialized parameters, and &h as a pointer to the variances that
will be computed within the function. Issue the params statement to identify the parameters and
have them print to the screen. Close the loop and run the script. The results appear in Figure
14.14 below. This is a difficult likelihood to maximize and gretl may take some time to compute
the estimates. Still, it is quite remarkable that we get so close using a free piece of software and
the numerical derivatives that it computes for us. I’m impressed!

206

Figure 14.13: The MGARCH script includes a function to compute the log-likelihood.

function gim_filter(series y, \

scalar mu, scalar theta, scalar delta, scalar alpha, \

scalar gam, scalar beta, series *h)

series lh = var(y)

series le = y - mu

scalar T = $nobs

loop for i=2..T --quiet

scalar ilag = $i - 1

scalar d = (le[ilag]<0)

scalar e2lag = le[ilag]^2

lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag]

le[i] = le[i] - theta*lh[i]

end loop

series h = lh

return series le

end function

open "c:\Program Files\gretl\data\poe\BYD.gdt"

scalar mu = 0.8

scalar gam = .1

scalar alpha = 0.4

scalar beta = 0

scalar delta = .5

scalar theta = 0.1

series h = NA

mle ll = -0.5*(log(2*pi) + log(h) + (e^2)/h)

e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)

params mu theta delta alpha gam beta

end mle --robust

207

Figure 14.14: Garch-in-mean results

14.6 Script

open "c:\Program Files\gretl\data\poe\BYD.gdt"

ARCH(1) Using built in command for ARCH

arch 1 r const

GARCH(0,1)=ARCH(1)

garch 0 1 ; r const

GARCH(1,1)

garch 1 1 ; r const

#LM test for ARCH

ols r const

modtest 1 --arch

#LM test manually

ols r const

series ehat = $uhat

series ehat2 = ehat*ehat

ols ehat2 const ehat2(-1)

scalar tr2 = $trsq

#Plotting

208

garch 1 1 ; r const

genr ht = $h

gnuplot ht time

#Threshold Garch

open "c:\Program Files\gretl\data\poe\BYD.gdt"

scalar mu = 0.5

scalar omega = .5

scalar alpha = 0.4

scalar delta = 0.1

scalar beta = 0

mle ll = -0.5*(log(h) + (e^2)/h)

series h = var(r)

series e = r - mu

series e2 = e^2

series e2m = e2 * (e<0)

series h = omega + alpha*e2(-1) + delta*e2m(-1) + beta*h(-1)

params mu omega alpha delta beta

end mle

#Garch in Mean

function gim_filter(series y, \

scalar mu, scalar theta, scalar delta, scalar alpha, \

scalar gam, scalar beta, series *h)

series lh = var(y)

series le = y - mu

scalar T = $nobs

loop for i=2..T --quiet

scalar ilag = $i - 1

scalar d = (le[ilag]<0)

scalar e2lag = le[ilag]^2

lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag]

le[i] = le[i] - theta*lh[i]

end loop

series h = lh

return series le

end function

open "c:\Program Files\gretl\data\poe\BYD.gdt"

209

scalar mu = 0.8

scalar gam = .1

scalar alpha = 0.4

scalar beta = 0

scalar delta = .5

scalar theta = 0.1

series h = NA

mle ll = -0.5*(log(2*pi) + log(h) + (e^2)/h)

e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)

params mu theta delta alpha gam beta

end mle --robust

210

Chapter 15
Pooling Time-Series and Cross-Sectional Data

A panel of data consists of a group of cross-sectional units (people, firms, states or countries)
that are observed over time. Following Hill et al. (2007) we will denote the number of cross-sectional
units by N and the number of time periods we observe them as T.

Gretl gives you easy access to a number of useful panel data sets via its database server.1 These
include the Penn World Table and the Barro and Lee (1996) data on international educational
attainment. These data can be installed using File>Databases>On database server from the
menu bar as shown in Figure 15.1 below. From here, select a database you want. In Figure 15.2

Figure 15.1: Accessing data from the database server via the pull-down menus

1Your computer must have access to the internet to use this.

211

the entry for the Penn World Table is highlighted. To its right, you are given information about
whether that dataset is installed on your computer. Double click on pwtna and a listing of the series
in this database will appear in a new window. From that window you can search for a particular
series, display observations, graph a series, or import it. This is a VERY useful utility, both for
teaching and research and I encourage you to explore what is available on the gretl server.

Figure 15.2: Installing a data from the database server via the pull-down menus

15.1 A Basic Model

The most general expression of linear regression models that have both time and unit dimensions
is seen in equation 15.1 below.

yit = β1it + β2itx2it + β3itx3it + eit (15.1)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T . If we have a full set of time observations for every
individual then there will be NT total observations in the sample. The panel is said to be balanced
in this case. It is not unusual to have some missing time observations for one or more individuals.
When this happens, the total number of observation is less than NT and the panel is unbalanced.

The biggest problem with equation (15.1) is that even if the panel is complete (balanced), the
model contains 3 times as many parameters as observations (NT)! To be able to estimate the model,
some assumptions have to be made in order to reduce the number of parameters. One of the most

212

common assumptions is that the slopes are constant for each individual and every time period;
also, the intercepts vary only by individual. This model is shown in equation (15.2).

yit = β1i + β2x2it + β3x3it + eit (15.2)

This specification, which includes N + 2 parameters, includes dummy variables that allow the
intercept to shift for each individual. By using such a model you are saying that over short time
periods there are no substantive changes in the regression function. Obviously, the longer your
time dimension, the more likely this assumption will be false.

In equation (15.2) the parameters that vary by individual are called individual fixed effects
and the model is referred to as one-way fixed effects. The model is suitable when the individuals
in the sample differ from one another in a way that does not vary over time. It is a useful way to
avoid unobserved differences among the individuals in your sample that would otherwise have to
be omitted from consideration. Remember, omitting relevant variables may cause least squares to
be biased and inconsistent; a one-way fixed effects model, which requires the use of panel data, can
be very useful in mitigating the bias associated with time invariant, unobservable effects.

If you have a longer panel and are concerned that the regression function is shifting over time,
you can add T − 1 time dummy variables to the model. The model becomes

yit = β1i + β1t + β2x2it + β3x3it + eit (15.3)

where either β1i or β1t have to be omitted in order to avoid perfect collinearity. This model contains
N + (T − 1) + 2 parameters which is generally fewer than the NT observations in the sample.
Equation (15.3) is called the two-way fixed effects model because it contains parameters that
will be estimated for each individual and each time period.

15.2 Estimation

Estimating models using panel data is straightforward in gretl . There are several built in
functions to estimate fixed effects, random effects, and seemingly related regression models. In this
section the gretl commands for each will be discussed using the examples in Hill et al. (2007).

In order to use the predefined procedures for estimating models using panel data in gretl you
have to first make sure that your data have been properly structured in the program. The dialog
boxes for assigning dataset structure in gretl are shown in Figures 7.2 and 7.3. The data have to
include variables that identify each individual and time period. Select the Panel option using the
radio button and gretl will then be able to work behind the scenes to accurately account for the
time and individual dimensions. The datasets that come with this manual have already been setup
this way, but if you are using your own data you’ll want to to assign the proper dataset structure
to it so that all of the appropriate panel data procedures are available for use.

Now consider the investment model suggested by Grunfeld (1958). Considering investment

213

decisions of only two firms, General Electric (GE) and Westinghouse (W), we have

INVGE,t = β1,GE + β2,GEVGE,t + β3,GEKGE,t + eGE,t (15.4)

INVW,t = β1,W + β2,WVW,t + β3,WKW,t + eW,t (15.5)

where t = 1, 2, . . . , 20.

How one proceeds at this point depends on the nature of the two firms and the behavior of
all the omitted factors affecting investment. There are a number of modeling options and POE
suggests several tests to explore whether the modeling decision we make is an appropriate one.
These are considered in the following sections.

15.2.1 Pooled Least Squares

Suppose that that the two firms behave identically and that the other factors influencing in-
vestment also have similar effects. In this case, you could simply pool the observations together
and estimate a single equation via least squares. This simple model implies that the intercepts
and each of the slopes for the two equations are the same and that the omitted factors are not
correlated with one another and that they have the same variability. In other words, there is no
autocorrelation and the variances are homoscedastic; when the data are actually generated in this
way, least squares is efficient.

In terms of the parameters of the model, βi,GE = βi,W for i = 1, 2, 3; E[eGE,t] = E[eW,t] = 0;
V ar[eGE,t] = V ar[eW,t] = σ2; Cov(eGE,t, eW,t) = 0 for all time periods; and Cov(ei,t, ei,s) = 0 for
t 6= s for each firm, i = GE,W . It should be clear that in this case,

INVi,t = β1 + β1 + β2Vi,t + β3Ki,t + ei,t (15.6)

for observations i = GE,W and t = 1, 2, . . . , 10. The gretl script for estimating this model using
grunfeld.gdt is

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl firm = 3 || firm = 8 --restrict

ols Inv const V K

modtest --panel

The sample is restricted to firms 3 and 8 in the first line. Note the double vertical lines (||) is the
new symbol used to designate ‘and’. The results are

Înv = 17.87
(7.02)

+ 0.015
(0.0062)

V + 0.144
(0.0186)

K

T = 40 R̄2 = 0.7995 F (2, 37) = 78.752 σ̂ = 21.158

(standard errors in parentheses)

214

Using the robust option would yield consistent standard errors even if the two firms have different
variances. The final line in the script performs a test of the equal variance null hypothesis against
the alternative that the variances of the two firms differ σ2GE,t = σ2GE 6= σ2W = σ2W,t. Note, in this
test the errors within each group are homoscedastic. The output from this test is

Likelihood ratio test for groupwise heteroskedasticity -

Null hypothesis: the units have a common error variance

Test statistic: Chi-square(1) = 13.1346

with p-value = 0.000289899

which allows us to reject homoscedasticity in favor of groupwise heteroskedasticity at any reasonable
level of significance.

The scenario that leads us to use this model seems unlikely, though. At a minimum the variances
of the two conglomerate firms will differ due to their differences in size or diversity. Further, since
the two firms share output in at least one industry, omitted factors like macroeconomic or market
conditions, might reasonably affect the firms similarly. Finally, there is no reason to believe that
the coefficients of the two firms will be similar.

15.2.2 Fixed Effects

In the fixed effects model, the intercepts for each firm (or individual) are allowed to vary, but the
slopes for each firm are equal. It is particularly useful when each individual has unique characteris-
tics that are both unmeasurable and constant over time (also known by the fancy sounding phrase,
‘unobserved time-invariant heterogeneity’). The general form of this model is found in equation
(15.2). The gretl command to estimate this model is extremely simple. Once your data set is
structured within gretl as a panel, the fixed effect model is estimated using the panel command
as shown below in the script.

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl full

panel Inv const V K

The results are:

Model 2: Fixed-effects estimates using 200 observations
Dependent variable: Inv

Variable Coefficient Std. Error t-statistic p-value

V 0.109771 0.0118549 9.2596 0.0000
K 0.310644 0.0173704 17.8835 0.0000

215

Sum of squared residuals 522855.
Standard error of residuals (σ̂) 52.7366
Unadjusted R2 0.944144
Adjusted R̄2 0.940876
F (11, 188) 288.893
Durbin–Watson statistic 0.667695
Log-likelihood −1070.6

Test for differing group intercepts –
Null hypothesis: The groups have a common intercept
Test statistic: F (9, 188) = 48.9915
with p-value = P (F (9, 188) > 48.9915) = 1.11131e-044

By default, gretl will test the hypothesis that the fixed effects are the same for each individual.
If you do not reject this hypothesis, then you can estimate the model using pooled least squares
as discussed in the previous section. The test statistic has an F(9,188) sampling distribution if the
pooled least squares model is the correct one. The computed value is 48.99 and the p-value is less
than 5%, therefore we would reject the pooled least squares formulation in favor of the fixed effect
model in this example.

In this formulation you are assuming that the errors of your model are homoscedastic within
each firm and across firms, and that there is no contemporaneous correlation across firms. Gretl
allows you to compute standard errors that are robust to the homoscedasticity assumption. Simply
use the --robust option in the panel regression. i.e., panel Inv const V K --robust. This
option computes the cluster standard errors that are discussed in Chapter 15 of Hill et al. (2007).

15.2.3 Random Effects

Gretl also estimates random effects models using the panel command. In the random effects
model, the individual firm differences are thought to represent random variation about some average
intercept for the individual in the sample. Rather than estimate a separate fixed effect for each firm,
you estimate an overall intercept that represents this average. Implicitly, the regression function
for the sample firms vary randomly around this average. The variability of the individual effects is
captured by a new parameter, σ2u. The larger this parameter is, the more variation you find in the
implicit regression functions for the firms.

Once again, the model is based on equation (15.2). The difference is that β1i = β̄1 + ui where
ui represents random variation. The model becomes:

yit = β̄1 + ui + β2x2it + β3x3it + eit (15.7)

The new parameter, σ2u, is just the variance of the random effect, ui. If σ2u = 0 then the effects are
“fixed” and you can use the fixed effects estimator if the effects are indeed different across firms or
the pooled estimator if they are not.

216

To estimate the model, using the Grunfeld data use the script

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl full

panel Inv const V K --random-effects

This yields

Model 3: Random-effects (GLS) estimates using 200 observations
Dependent variable: Inv

Variable Coefficient Std. Error t-statistic p-value

const −57.872 28.8747 −2.0043 0.0464
V 0.109478 0.0104895 10.4369 0.0000
K 0.308694 0.0171938 17.9538 0.0000

Mean of dependent variable 145.907
S.D. of dependent variable 216.886
Sum of squared residuals 4.28309e+08
Standard error of residuals (σ̂) 1470.77
σ̂2ε 2781.14
σ̂2u 7218.23
θ 0.861203
Akaike information criterion 3488.98
Schwarz Bayesian criterion 3498.88
Hannan–Quinn criterion 3492.99

Breusch-Pagan test –
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: χ2

1 = 797.781
with p-value = 1.63899e-175

Hausman test –
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: χ2

2 = 2.2155
with p-value = 0.330301

Gretl tests the null hypothesis σ2u = 0 against the alternative σ2u > 0 by default and is referred
to as the Breusch-Pagan test.

The Hausman test is a test of the null hypothesis that the random effects are indeed random.
If they are random then they should not be correlated with any of your other regressors. If they are

217

correlated with other regressors, then you should use the fixed effects estimator to obtain consistent
parameter estimates of your slopes.

In the Grunfeld data, a p-value less than 5% indicates that the Breusch-Pagan test rejects
the hypothesis that the effects are not random (in other words, the effects are random). For the
Hausman test, the p-value is greater than 5%. The random effects do not appear to be correlated
with the regressors and random effects can be used.

15.2.4 SUR

The acronym SUR stands for seemingly unrelated regression equations. SUR is another
way of estimating panel data models that are long (large T) but not wide (small N). More generally
though, it is used to estimate systems of equations that do not necessarily have any parameters in
common and are hence unrelated. In the SUR framework, each firm in your sample is parametrically
different; each firm has its own regression function, i.e., different intercept and slopes. Firms are
not totally unrelated, however. In this model the firms are linked by what is not included in the
regression rather than by what is. The firms are thus related by unobserved factors and SUR
requires us to specify how these omitted factors are linked in the system’s error structure.

In the basic SUR model, the errors are assumed to be homoscedastic and linearly independent
within each equation, or in our case, each firm. The error of each equation may have its own
variance. Most importantly, each equation (firm) is correlated with the others in the same time
period. The latter assumption is called contemporaneous correlation, and it is this property
that sets SUR apart from other models.

In the context of the two firm Grunfeld model in (15.4) this would mean that V ar[eGE,t] =
σ2GE ;V ar[eW,t] = σ2W ; Cov(eGE,t, eW,t) = σGE,W for all time periods; and Cov(ei,t, ei,s) = 0 for
t 6= s for each firm, i = GE,W . So in the SUR model you essentially have to estimate a variance
for each individual and a covariance between each pair of individuals. These are then used to
construct a generalized least squares estimator of the equations parameters.

Even though SUR requires a T and an N dimemsion, it is not specifically a panel technique.
This is because the equations in an SUR system may be modeling different behaviors for a single
individual rather than the same behavior for several individuals. As mentioned before, it is best used
when panels are long and narrow since this gives you more observations to estimate the equations
variances and the cross equation covariances. More time observations reduces the sampling variation
associated with these estimates, which in turn improves the performance of the feasible generalized
least squares estimator. If your panel dataset has a very large number of individuals and only a
few years, then FGLS may not perform very well in a statistical sense. In the two firm Grunfeld
example, N=2 and T=20 so we needn’t worry about this warning too much, although the asymptotic
inferences are based on T (and not N) being infinite.

When estimating an SUR model, the data have to be arranged in a slightly different way than
in the preceding panel examples. Basically, they need to be arranged as a time series (not a

218

panel) with different firms variables listed separately. Hill et al. (2007) have done this for us in the
grunfeld2.gdt data set. The gretl script to estimate the two firm SUR model using this data is

open "c:\Program Files\gretl\data\poe\grunfeld2.gdt"

system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=sur

Since SUR is a method of estimating a system of equations (just like you did in chapter 11), the same
syntax is used here. It consists of a block of code that starts with the system name="Grunfeld"

line. One advantage naming your system is that results are attached to it and you can perform
subsequent computations based on them. For instance, with a saved set of equations you can
impose restrictions on a single equation in the model or impose restrictions across equations. This
is accomplished using the restrict statement.

Following the system name, each equation is put on a separate line. Notice that each equation
is identified using equation which is followed by the dependent variable and then the independent
variables which include a constant. Close the system block using the end system command. The
system is then estimated using the line estimate "Grunfeld" method=sur. Executing this script
yields Figure 15.3 below.

The test to determine whether there is sufficient contemporaneous correlation is simple to do
from the standard output. Recall from POE that the test is based on the squared correlation

r2GE,W =
σ̂2GE,W

σ̂2GE σ̂2W
(15.8)

A little caution is required here. The squared correlations are supposed to be computed based on
the residuals from the least squares estimator, not SUR. The “Cross-equation VCV for residuals”
in the output in Figure 15.3 is computed based on SUR residuals. So, you’ll need to change the
estimation method to ols and rerun the script to get the right inputs for this statistic. The new
script is:

open "c:\Program Files\gretl\data\poe\grunfeld2.gdt"

system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=ols

219

Figure 15.3: The results from the two firm model estimated as seemingly unrelated regression
equations

220

and the resulting cross-equation variance covariance for the residuals is

Cross-equation VCV for residuals

(correlations above the diagonal)

777.45 (0.729)

207.59 104.31

Then you compute

r2GE,W =
207.592

(777.45)(104.31)
= 0.729 (15.9)

Notice that gretl produces this number for you in the upper diagonal of the matrix and places it
in parentheses. Using the given computation the test statistic is

LM = Tr2GE,W d−→χ
2
(1) (15.10)

provided the null hypothesis of no correlation is true. The arithmetic is (20 ∗ 0.729) = 14.58

The restrict command can be used to impose the cross-equation restrictions on a system of
equations that has been previously defined and named. The set of restrictions is started with the
keyword restrict and terminated with end restrict. Some additional details and examples of
how to use the restrict command are given in section 6.1. Each restriction in the set is expressed
as an equation. Put the linear combination of parameters to be tested on the left-hand-side of the
equality and a numeric value on the right. Parameters are referenced using b[i,j] where i refers
to the equation number in the system, and j the parameter number. So, to equate the intercepts
in equations one and two use the statement

b[1, 1]− b[2, 1] = 0 (15.11)

The full syntax for testing the full set of cross-equation restrictions

β1,GE = β1,W , β2,GE = β2,W , β3,GE = β3,W (15.12)

on equation 15.4 is shown in Table 15.1: Gretl estimates the two equation SUR subject to the
restrictions. Then it computes an F-statistic of the null hypothesis that the restrictions are true
versus the alternative that at least one of them is not true. It returns the computed F-statistic
and its p-value. A p-value less than the desired level of significance leads to a rejection of the
hypothesis.

The gretl output from this test procedure is

F test for the specified restrictions:

F(3,34) = 2.92224 with p-value 0.0478934

which matches the results in the text. At the 5% level of significance, the equality of the two
equations is rejected.

221

Table 15.1: Script for imposing cross-equation restrictions in an SUR model

system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

restrict "Grunfeld"

b[1,1]-b[2,1]=0

b[1,2]-b[2,2]=0

b[1,3]-b[2,3]=0

end restrict

estimate "Grunfeld" method=sur --geomean

15.3 NLS Example

Hill et al. (2007) provides a subset of National Longitudinal Survey which is conducted by
the US Department of Labor. The database includes observations on women, who in 1968, were
between the ages of 14 and 24. It then follows them through time, recording various aspects of their
lives annually until 1973 and bi-annually afterwards. Our sample consists of 716 women observed
in 5 years (1982, 1983, 1985, 1987 and 1988). The panel is balanced and there are 3580 total
observations.

Two models are considered in equations (15.13) and (15.14) below.

ln(WAGE)it = β1i + β2experit + β3exper
2
it + β4tenureit

+ β5tenure
2
it + β6southit + β7unionit + eit (15.13)

ln(WAGE)it = β1i + β2experit + β3exper
2
it + β4tenureit

+ β5tenure
2
it + β6southit + β7unionit+

+ β8blackit + β9educit + eit (15.14)

The first model (15.13) is estimated using fixed effects. Race (black) and education (educ)
are added to form the model in (15.14). Since these variables do not change for individuals in the
sample, their influences cannot be estimated using fixed effects. So, this equation is estimated using
random effects using the script below:

open "c:\Program Files\gretl\data\poe\nels_panel.gdt"

panel lwage const exper exper2 tenure tenure2 south union

222

panel lwage const exper exper2 tenure tenure2 south union \

black educ --random-effects

Notice that in the random effects line a backslash follows the variable union. This is the contin-
uation command, which tells gretl that the command continues on the next line. The results, in
tabular form, are in Table 15.2 below. Wisely, gretl has omitted the R2 for the random effects
model. Recall that R2 is only suitable for linear models estimated using OLS, which is the case for
one-way fixed effects.

The complete set of results of random effects estimation is shown in the table 15.3 below. The
estimate of σ̂ε =

√
0.0380681 = 0.1951. Also, the result of the LM test for the randomness of the

individual effects (σ2u > 0) and the Hausman test of the independence of the random effects from
the regressors matches that of your text.

The conclusion from these tests is that even though there is evidence of random effects (LM
rejects), the random effects are not independent of the regressors; GLS estimator will be inconsistent
and you’ll have to use the fixed effects estimator of the smaller model. As a result, you will be
unable to determine the effects of education and race on wages.

There is one difference between the gretl results and those from POE, namely σ̂u =
√

0.115887 =
0.3404 from gretl is slightly larger than that obtained by Hill et al. (2007) using Stata. This is
not too surprising since there are several ways to compute σ2u. The difference apparently has little
effect on the computation of the coefficients and standard errors since these are fairly close matches
to those in the text.

223

Table 15.2: Fixed Effects and Random Effects estimates for equations (15.13) and (15.14), respec-
tively.

Model Estimates
Dependent variable: lwage

Fixed Effects Random Effects

exper 0.04108∗∗ 0.04362∗∗

(0.006620) (0.006358)

exper2 −0.0004091 −0.0005610∗∗

(0.0002733) (0.0002626)

tenure 0.01391∗∗ 0.01415∗∗

(0.003278) (0.003167)

tenure2 −0.0008962∗∗ −0.0007553∗∗

(0.0002059) (0.0001947)

south −0.01632 −0.08181∗∗

(0.03615) (0.02241)

union 0.06370∗∗ 0.08024∗∗

(0.01425) (0.01321)

const 0.5339∗∗

(0.07988)

black −0.1167∗∗

(0.03021)

educ 0.07325∗∗

(0.005331)

n 3580 3580
R̄2 0.8236
` 1173.78 −6999.08

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

224

Table 15.3: Random-effects (GLS) estimates using 3580 observations

Dependent variable: lwage

Variable Coefficient Std. Error t-statistic p-value

const 0.533929 0.0798828 6.6839 0.0000
exper 0.0436170 0.00635758 6.8606 0.0000
exper2 −0.000560959 0.000262607 −2.1361 0.0327
tenure 0.0141541 0.00316656 4.4699 0.0000
tenure2 −0.000755342 0.000194726 −3.8790 0.0001
south −0.0818117 0.0224109 −3.6505 0.0003
union 0.0802353 0.0132132 6.0724 0.0000
black −0.116737 0.0302087 −3.8643 0.0001
educ 0.0732536 0.00533076 13.7417 0.0000

Mean of dependent variable 1.91824
S.D. of dependent variable 0.464607
Sum of squared residuals 10460.3
Standard error of residuals (σ̂) 1.71126
σ̂2ε 0.0380681
σ̂2u 0.115887
θ 0.743683
Akaike information criterion 14016.2
Schwarz Bayesian criterion 14071.8
Hannan–Quinn criterion 14036.0

Breusch-Pagan test –
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: χ2

1 = 3859.28
with p-value = 0

Hausman test –
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: χ2

6 = 20.7252
with p-value = 0.00205521

225

15.4 Script

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl firm = 3 || firm = 8 --restrict

ols Inv const V K

modtest --panel

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl full

panel Inv const V K

open "c:\Program Files\gretl\data\poe\grunfeld.gdt"

smpl full

panel Inv const V K --random-effects

open "c:\Program Files\gretl\data\poe\grunfeld2.gdt"

system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=sur --geomean

restrict "Grunfeld"

b[1,1]-b[2,1]=0

b[1,2]-b[2,2]=0

b[1,3]-b[2,3]=0

end restrict

estimate "Grunfeld" method=sur --geomean

system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=ols --geomean

226

Chapter 16
Qualitative and Limited Dependent Variable
Models

16.1 Probit

There are many things in economics that cannot be meaningfully quantified. How you vote
in an election, whether you go to graduate school, whether you work for pay, or what major you
choose has no natural way of being quantified. Each of these expresses a quality or condition you
possess. Models of how these decisions are determined by other variables are called qualitative
choice or qualitative variable models.

In a binary choice model, the decision you wish to model has only two possible outcomes.
You assign artificial numbers to each outcome so that you can do further analysis. In a binary
choice model it is conventional to assign ‘1’ to the variable if it possesses a particular quality or if
a condition exists and ‘0’ otherwise. Thus, your dependent variable is

yt =

{
1 if individual t has the quality
0 if not.

The probit statistical model expresses the probability p that your dependent variable takes the
value 1 as a function of your independent variables.

P [(yt|xt) = 1] = Φ(β1 + β2xt) (16.1)

where Φ is the cumulative normal probability distribution (cdf). Estimating this model using
maximum likelihood is very simple since the MLE of the probit model is already programmed
into gretl. The syntax for a script is the same as for linear regression except you use the probit

command in place of ols. The following script estimates how the difference in travel time between
bus and auto affects the probability of driving a car. The dependent variable (auto) is equal to 1
if travel is by car, and dtime is (bus time - auto time).

227

open "c:\Program Files\gretl\data\poe\transport.gdt"

probit auto const dtime

genr p1 = $coeff(const)+$coeff(dtime)*20

genr dt = dnorm(p1)*$coeff(dtime)

genr p2 = cnorm($coeff(const)+$coeff(dtime)*30)

The second line computes the predicted value of the index (β1 + β2dtime) when dtime = 20 using
the estimates from the probit MLE. The next line computes the marginal affect on the probability
of driving if you increase the difference in travel time by one minute when dtime = 20, i.e.,
φ(β1 + β2dtime)β2. The dnorm function in gretl computes φ(), the normal pdf evaluated at the
argument in parentheses. The last line computes the estimated probability of driving, given that
it takes 30 minutes longer to ride the bus. This computation requires cnorm, which computes the
cumulative normal cdf, Φ().

The results are:

p1 = 0.535545

dt = 0.0103690

p2 = 0.798292

Of course, you can also access the probit estimator from the pull-down menus using Model>Nonlinear

models>Probit>Binary. The dialog box (Figure 16.1 looks very similar to the one for linear re-
gression, except it gives you a new option to view the details of the iterations.

Whether you use the script or the dialog box, you will get the following results:

Model 1: Probit estimates using the 21 observations 1–21
Dependent variable: auto

Coefficient Std. Error z-stat Slope∗

const −0.0644342 0.399244 −0.1614 .
dtime 0.0299989 0.0102867 2.9163 0.0119068

Mean dependent var 0.476190 S.D. dependent var 0.396907
McFadden R2 0.575761 Adjusted R2 0.438136
Log-likelihood −6.165158 Akaike criterion 16.33032
Schwarz criterion 18.41936 Hannan–Quinn 16.78369

∗Evaluated at the mean

Number of cases ‘correctly predicted’ = 19 (90.5 percent)

228

Figure 16.1: Use Model>Nonlinear models>Probit to open the Probit model’s dialog box.

229

Likelihood ratio test: χ2(1) = 16.734 [0.0000]

Several other statistics are computed. They include a measure of fit (McFadden’s pseudo-R2), the
value of f(β′x) at mean of independent variables, and a test statistic for the null hypothesis that the
coefficients on the independent variables (but not the constant) are jointly zero; this corresponds
to the overall F-statistic of regression significance in Chapter 6.

16.2 Multinomial Logit

Starting with version 1.8.1, Gretl includes a routing to estimate multinomial logit (MNL) using
maximum likelihood. In versions before 1.8.1 the alternatives were either (1) use gretl’s maximum
likelihood module to estimate your own or (2) use another piece of software! In this section we’ll
estimate the multinomial logit model using the native gretl function and I’ll relegate the other
methods to a separate (optional) section 16.2.1. The other methods serve as good examples of how
to use gretl’s scripting language and to use it in conjunction with R.

The first step is to open the nels small.gdt data

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

Next consider the model. The dependent variable represents choice of school. We have 1000 obser-
vations on students who choose, upon graduating from high school, either no college psechoice=1,
a 2-year college psechoice=2, or a 4-year college psechoice=3. The explanatory variable is grades,
which is an index ranging from 1.0 (highest level, A+ grade) to 13.0 (lowest level, F grade) and rep-
resents combined performance in English, Math and Social Studies. For this example, the choices
are treated as being unordered.

To estimate the model of school choice as a function of grades and a constant open the gretl
console and type:

logit psechoice const grades --multinomial

This yields the output:

Model 1: Multinomial Logit estimates using the 1000 observations 1–1000
Dependent variable: psechoice

Standard errors based on Hessian

230

Coefficient Std. Error z-stat p-value

const 2.50642 0.418385 5.9907 0.0000
grades −0.308789 0.0522849 −5.9059 0.0000
const 5.76988 0.404323 14.2705 0.0000
grades −0.706197 0.0529246 −13.3435 0.0000

Mean dependent var 2.305000 S.D. dependent var 0.810328
Log-likelihood −875.3131 Akaike criterion 1758.626
Schwarz criterion 1778.257 Hannan–Quinn 1766.087

Number of cases ‘correctly predicted’ = 552 (55.2 percent)
Likelihood ratio test: χ2(2) = 286.689 [0.0000]

It is a little confusing because the sets of coefficients are not labeled. However, the first set are the
coefficients that go with psechoice=2 and the second set go with psechoice=3; psechoice=1 is
used at the base.

To obtain the probabilities and marginal effects, a little work is required. Fortunately, gretl’s
matrix and scripting abilities will save you from doing a lot of calculations by hand. The first thing
to do is to place the coefficients into a matrix, which I will call theta. Then each of the elements of
theta has to be assigned to the desired coefficient. I refer to β12 as b12 and so on. Then, equations
(16.9) in POE are used to compute the estimated probabilities for the 50th and 5th percentiles of
the data.

matrix theta = $coeff

Assign elements of theta to coefficient names

scalar b12 = theta[1]

scalar b22 = theta[2]

scalar b13 = theta[3]

scalar b23 = theta[4]

#Use the Quantile function to get the 5% and 50% quantiles

scalar q50 = quantile(grades,.5)

scalar q5 = quantile(grades,.05)

Note: gretl uses a different method to get quantiles than poe so

I reassigned the 5th quantile to match that in POE.

scalar q5 = 2.635

#No College probabilities

231

scalar p1_50 = 1/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

scalar p1_5 = 1/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

#2 Year college probabilities

scalar p2_50 = exp(b12+b22*q50)/(1+exp(b12+b22*q50) \

+ exp(b13+b23*q50))

scalar p2_5 = exp(b12+b22*q5)/(1+exp(b12+b22*q5) \

+ exp(b13+b23*q5))

#4 Year college probabilities

scalar p3_50 = exp(b13+b23*q50)/(1+exp(b12+b22*q50) \

+ exp(b13+b23*q50))

scalar p3_5 = exp(b13+b23*q5)/(1+exp(b12+b22*q5) \

+ exp(b13+b23*q5))

print "Predicted Probabilities for 50th and 5th quantiles

print p1_50 p2_50 p3_50 p1_5 p2_5 p3_5

The estimated marginal effects from POE can also be easily reproduced using the following
script.

#Marginal effects, No College

scalar pa_50 = 1/(1+exp(b12+b22*(q50-.5))+exp(b13+b23*(q50-.5)))

scalar pa_5 = 1/(1+exp(b12+b22*(q5-.5))+exp(b13+b23*(q5-.5)))

scalar pb_50 = 1/(1+exp(b12+b22*(q50+.5))+exp(b13+b23*(q50+.5)))

scalar pb_5 = 1/(1+exp(b12+b22*(q5+.5))+exp(b13+b23*(q5+.5)))

scalar m1=pb_50-pa_50

scalar m2=pb_5-pa_5

#Marginal effects, 2 Year College

scalar pa_50 = exp(b12+b22*(q50-.5))/(1+exp(b12+b22*(q50-.5)) \

+ exp(b13+b23*(q50-.5)))

scalar pa_5 = exp(b12+b22*(q5-.5))/(1+exp(b12+b22*(q5-.5)) \

+ exp(b13+b23*(q5-.5)))

scalar pb_50 = exp(b12+b22*(q50+.5))/(1+exp(b12+b22*(q50+.5)) \

+ exp(b13+b23*(q50+.5)))

scalar pb_5 = exp(b12+b22*(q5+.5))/(1+exp(b12+b22*(q5+.5)) \

+ exp(b13+b23*(q5+.5)))

scalar m3=pb_50-pa_50

scalar m4=pb_5-pa_5

#Marginal effects, 4 Year college

scalar pa_50 = exp(b13+b23*(q50-.5))/(1+exp(b12+b22*(q50-.5)) \

+ exp(b13+b23*(q50-.5)))

scalar pa_5 = exp(b13+b23*(q5-.5))/(1+exp(b12+b22*(q5-.5)) \

232

+ exp(b13+b23*(q5-.5)))

scalar pb_50 = exp(b13+b23*(q50+.5))/(1+exp(b12+b22*(q50+.5)) \

+ exp(b13+b23*(q50+.5)))

scalar pb_5 = exp(b13+b23*(q5+.5))/(1+exp(b12+b22*(q5+.5)) \

+ exp(b13+b23*(q5+.5)))

scalar m5=pb_50-pa_50

scalar m6=pb_5-pa_5

print "Marginal Effects"

print m1 m2 m3 m4 m5 m6

This script uses a common trick. The quantiles are evaluated at ±.5 on either side of each quantile;
then the discrete difference is taken. The results match those in POE as well as those produced
using the slick mfx command in Stata.

The option --multinomial is used when the choices are unordered. For ordered logit, this
option is omitted. Gretl takes a look at the dependent variable, in this case psechoice, to make
sure that it is actually discrete. Ours takes on three possible values (1,2, or 3) and the logit

function in gretl will handle this automatically.

The output appears in Figure 16.2. As you can see, these results match those in POE almost

Figure 16.2: These results are from the native gretl routine to estimate unordered choice models.

exactly.

233

16.2.1 Using a script for MNL

In this section I’ll give you an idea of how to estimate this model using gretl script and in
section 16.9 I’ll show you how to estimate the model in another free software called R.

Although versions of Gretl prior to 1.8.1 did not include a specific function for estimating
MNL, it can estimated with a little effort. Gretl contains two things that make this reasonably
easy to do. First, it includes a module for maximizing likelihood functions (see Chapter 14 for
other examples). To use the mle function, the user has to write a program using gretl’s language
to compute a model’s log-likelihood given the data. The parameters of the log-likelihood must
be declared and given starting values (using the genr command). If you want, you can specify
the derivatives of the log-likelihood function with respect to each of the parameters; if analytical
derivatives are not supplied, a numerical approximation is computed. In many instances, the
numerical approximations work quite well. In the event that the computations based on numerical
derivatives fail, you may have to specify analytical ones to make the program work.

Gretl also includes a way for users to define new functions. These are placed in a script that
can be run from the script editor. Once a function is written, it can often be reused with ease.
Functions can also be published and shared via gretl’s database server. The Gretl Users Guide
will have the most up-to-date information on the use of functions and I suggest you look there for
further information. What appears below is taken from the gretl Users Guide. The example for
MNL for POE requires only a slight modification in order for the program to run with our dataset.

Functions must be defined before they are called (used). The syntax for defining a function
looks like this

function name(inputs)

function body

end function

You select a name to give your function. Keep it under 32 characters and start the name with a
character. The inputs usually include the data and any parameters included in the log-likelihood.
The parameters can be in matrix or scalar form.

The multinomial logit function, which can be found in the Gretl User’s Guide, is defined

function mlogitlogprobs(series y, matrix X, matrix theta)

scalar n = max(y)

scalar k = cols(X)

matrix b = mshape(theta,k,n)

matrix tmp = X*b

series ret = -ln(1 + sumr(exp(tmp)))

loop for i=1..n --quiet

series x = tmp[,i]

234

ret += (y=$i) ? x : 0

end loop

return series ret

end function

The function is named mlogitlogprobs and has three arguments. The first is the dependent
variable, series y, the second is set of independent variables contained in matrix X, and the last
is the matrix of parameters, called theta. Scalars in the function are defined for sample size, number
of regressors, and the coefficients are placed in an nxk array in order to match the dimensionality
of the data. The index tmp=X*b is created and ret returns the log-likelihood function. Don’t worry
if you can’t make sense of this because you should not have to change any of this to estimate MNL
with another dataset. That is one of the beauties of defining and using a function.

To use the mlogitlogprobs function, you need to know a little about how it works. You will
have to get your data into the right form in order for the function to work properly. After loading
the data, make sure that the dependent choice variable is in the correct format for the function.
The function requires the choices to start at 0. If you list the data, you’ll find that psechoice is
coded 1, 2, 3 instead of the required 0, 1, 2. So the next step is to subtract 1 from psechoice.

Create the matrix of regressors, define the number of regressors and use these to initialize the
matrix of coefficients, theta. Then list the dependent variable, matrix of independent variables,
and the initialized parameter matrix in the function. Click the run button and wait for the result.

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

dep. var. must be 0-based

psechoice = psechoice-1

#put regressors into a matrix called X

smpl full matrix X = { grades const }

scalar k = cols(X)

matrix theta = zeros(2*k, 1)

mle loglik = mlogitlogprobs(psechoice,X,theta)

params theta

end mle --verbose --hessian

The only changes I had to make to the original example in the Gretl User Guide are (1) change
the dataset (2) change the dependent variable to psechoice (3) put the desired regressors into X
and (4) make sure the function contains the desired variables.

The results from the program appear below in Figure 16.3. Wow! They match those in POE
and are dirt simple to obtain!1 Finally, if you want to produce the probabilities and marginal

1Thanks to Jack Lucchetti for pointing this out to me.

235

Figure 16.3: These results are from a gretl function taken from the Gretl Users Guide.

effects, you can use the estimates gretl has stored in the 4x1 vector called theta. This was the
approach taken in the preceding section and I won’t repeat the details here.

16.3 Conditional Logit

Gretl doesn’t include a routine to estimate conditional logit yet (as of version 1.8.1), so you’ll
want to use R to estimate this model. See sections 16.9 and 16.9.2 for details.

16.4 Ordered Probit

In this example, the probability of attending no college, a 2 year college, and a 4 year college
are modeled as a function of a student’s grades. In principle, we would expect that those with
higher grades to be more likely to attend a 4 year college and less likely to skip college altogether.
In the dataset, grades are measured on a scale of 1 to 13, with 1 being the highest. That means
that if higher grades increase the probability of going to a 4 year college, the coefficient on grades
will be negative. The probabilities are modeled using the normal distribution in this model where
the outcomes represent increasing levels of difficulty.

236

We can use gretl to estimate the ordered probit model because its probit command actually
handles multinomial ordered choices as well as binomial choice. Open the nels small.gdt data

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

probit psechoice const grades

The results in Figure 16.4 are very much like the ones in POE and produced by MCMCpack below.

Model 3: Ordered Probit estimates using the 1000 observations 1–1000
Dependent variable: psechoice

Coefficient Std. Error z-stat p-value

grades −0.306624 0.0191735 −15.9921 0.0000

cut1 −2.94559 0.146828 −20.0615 0.0000
cut2 −2.08999 0.135768 −15.3938 0.0000

Mean dependent var 2.305000 S.D. dependent var 0.810328
Log-likelihood −875.8217 Akaike criterion 1757.643
Schwarz criterion 1772.367 Hannan–Quinn 1763.239

Number of cases ‘correctly predicted’ = 545 (54.5 percent)
Likelihood ratio test: χ2(1) = 285.672 [0.0000]

From the pull-down menus simply click on Model>Nonlinear model>Probit>Ordered and fill in
the now familiar dialog box. To get marginal effects is easy using some of the built-in functions in
gretl. The algebraic results we use are:

∂P (y = 1)

∂grades
= −φ(µ1 − βgrades)β

∂P (y = 2)

∂grades
= [φ(µ1 − βgrades)− φ(µ2 − βgrades)]β

∂P (y = 3)

∂grades
= φ(µ2 − βgrades)β

where φ is the probability density function of a standard normal distribution. The parameters
µ1 and µ2 are the thresholds and β is the coefficient on grades. So, for example if you want to
calculate the marginal effect on the probability of attending a 4-year college (y = 3) for a student
having grades at the median (6.64) and 5th percentile (2.635) use:

probit psechoice grades

237

Figure 16.4: Ordered probit results from the gretl’s probit command called from the Console

k = $ncoeff

matrix b = $coeff[1:k-2]

mu1 = $coeff[k-1]

mu2 = $coeff[k]

matrix X = {6.64}

scalar Xb = X*b

P3a = pdf(N,mu2-Xb)*b

matrix X = 2.635

scalar Xb = X*b

P3b = pdf(N,mu2-Xb)*b

printf "\nFor the median grade of 6.64, the marginal effect is %.4f\n", P3a

printf "\nFor the 5th percentile grade of 2.635, the marginal effect is %.4f\n", P3b

16.5 Poisson Regression

When the dependent variable in a regression model is a count of the number of occurrences of
an event you’ll want to use the poisson regression model. In these models, the dependent variable is
a nonnegative integer, (i.e., y = 0, 1, . . .), which represent the number of occurrences of a particular
event. The probability of a given number of occurrences is modeled as a function of independent

238

variables.

P (Y = y|x) =
e−λλy

y!
y = 0, 1, 2, . . . (16.2)

where λ = β1 + β2x is the regression function.

Estimating this model using maximum likelihood is very simple since the MLE of the poisson
regression model is already programmed into gretl. The syntax for a script is the same as for linear
regression except you use the possion command in place of ols. This is shown in the following
script which replicates the example from your textbook.

A country’s total number of medals (medaltot) in the 1988 olympics is modeled as a function
of ln(gdp) and ln(pop). Of course, you can also access the poisson regression estimator from the
pull-down menus using Model>Nonlinear models>Possion. To replicate the example in POE be
sure to restrict the sample to 1988 before estimating the model.

open "c:\Program Files\gretl\data\poe\olympics.gdt"

smpl year = 88 --restrict

genr lpop = log(pop)

genr lgdp = log(gdp)

poisson medaltot const lpop lgdp

genr mft = exp($coeff(const)+$coeff(lpop)*median(lpop) \

+$coeff(lgdp)*median(lgdp))*$coeff(lgdp)

The results for poisson model are:

Model 2: Poisson estimates using the 151 observations 29–179
Dependent variable: medaltot

Coefficient Std. Error z-stat p-value

const −15.8875 0.511805 −31.0420 0.0000
lgdp 0.576603 0.0247217 23.3238 0.0000
lpop 0.180038 0.0322801 5.5773 0.0000

Mean dependent var 4.887417 S.D. dependent var 16.62670
Sum squared resid 25165.58 S.E. of regression 13.03985
McFadden R2 0.544658 Adjusted R2 0.542766
Log-likelihood −722.3365 Akaike criterion 1450.673
Schwarz criterion 1459.725 Hannan–Quinn 1454.350

239

16.6 Tobit

The tobit model is essentially just a linear regression where some of the observations on your
dependent variable have been censored. A censored variable is one that, once it reaches a limit, it
is recorded at that limit no matter what it’s actual value might be. For instance, anyone earning
$1 million or more per year might be recorded in your dataset at the upper limit of $1 million.
That means that Bill Gates and the authors of your textbook earn the same amount in the eyes
of your dataset (just kidding, fellas). Least squares can be seriously biased in this case and it is
wise to use a censored regression model (tobit) to estimate the parameters of the regression when
a portion of your sample is censored.

Hill et al. (2007) use tobit to estimate a model of hours worked shown in equation (16.3).

hoursi = β1 + β2 ∗ educi + β3experi + β4 ∗ agei + β5 ∗ kidsl6i + ei (16.3)

using the mroz.gdt data. A number of individuals in the sample do not work and report zero hours
worked. Estimation of this model in gretl is shown in the following script which replicates the
example from POE. The script estimates a tobit model of hours worked and generates the marginal
effect of another year of schooling on the average hours worked.

open "c:\Program Files\gretl\data\poe\mroz.gdt"

tobit hours const educ exper age kidsl6

The results from the basic tobit estimation of the hours worked equation are:

Model 1: Tobit estimates using the 753 observations 1–753
Dependent variable: hours

Coefficient Std. Error z-stat p-value

const 1349.88 382.729 3.5270 0.0004
educ 73.2910 20.7496 3.5322 0.0004
exper 80.5353 6.58247 12.2348 0.0000
age −60.7678 7.27480 −8.3532 0.0000
kidsl6 −918.918 113.036 −8.1294 0.0000

Mean dependent var 740.5764 S.D. dependent var 871.3142
Censored obs 325 sigma 1133.697
Log-likelihood −3827.143 Akaike criterion 7666.287
Schwarz criterion 7694.031 Hannan–Quinn 7676.975

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 6.31677
with p-value = 0.0424944

240

The marginal effect of another year of schooling on hours worked is

∂E(Hoursi)

∂Educi
= Φ(̂Hoursi)β̂2, (16.4)

where ̂Hoursi is the estimated regression function evaluated at the mean levels of education, expe-
rience, and age for a person with one child under the age of six. Then, the cnorm function is used
to compute the normal CDF, Φ(̂Hoursi), evaluated at the prediction.

genr H_hat = $coeff(const)+$coeff(educ)*mean(educ) \

+$coeff(exper)*mean(exper) \

+$coeff(age)*mean(age)+$coeff(kidsl6)*1

genr z = cnorm(H_hat/$sigma)

genr pred = z*$coeff(educ)

Note, the backward slashes (\) used at the end of the first two lines in the generation of H_hat
are continuation commands. The backslash at the end of a line tells gretl that the next line is a
continuation of the current line. This helps keep your programs looking good (and in this case,
fitting within the margins of the page!).

Finally, estimates of the restricted sample using least squares and the full sample that includes
the zeros for hours worked follow.

smpl hours > 0 --restrict

ols hours const educ exper age kidsl6

smpl --full

ols hours const educ exper age kidsl6

Notice that the sample is restricted to the positive observations using the smpl hours > 0 --restrict

statement. To estimate the model using the entire sample the full range is restored using smpl full.

16.7 Simulation

You can use gretl to show that least squares is biased when the sample is censored using a
Monte Carlo simulation. The simulated data are generated

y∗i = −9 + 1xi + ei (16.5)

where ei ∼ N(0, 16). Then,

yi =

{
y∗i if y∗i > 0
0 if y∗i ≤ 0

241

The xi ∼ U(0, 20), which are held constant in the simulated samples.

The following script demonstrates that least squares is indeed biased when all observations,
including the zero ones, are included in the sample. The line genr yi = y > 0 is a logical statement
that generates ‘1’ or ‘0’ depending on whether the statement to the right of the equal sign is true.
Thus, a new variable, yi, is created that takes the value 1 if y >0 and is zero if not. When
multiplied by y in the next statement, the result is a sample, yc, censored from below at zero.

open "c:\Program Files\gretl\data\poe\tobit.gdt"

smpl 1 200

genr xs = 20*uniform()

loop 1000 --progressive

genr y = -9 + 1*xs + 4*normal()

genr yi = y > 0

genr yc = y*yi

ols yc const xs

genr b1s = $coeff(const)

genr b2s = $coeff(xs)

store coeffs.gdt b1s b2s

endloop

To repeat the exercise using least squares on only the positive observations use

open "c:\Program Files\gretl\data\poe\tobit.gdt"

genr xs = 20*uniform()

genr idx = 1

matrix A = zeros(1000,3)

loop 1000

smpl --full

genr y = -9 + 1*xs + 4*normal()

smpl y > 0 --restrict

ols y const xs --quiet

genr b1s = $coeff(const)

genr b2s = $coeff(xs)

matrix A[idx,1]=idx

matrix A[idx,2]=b1s

matrix A[idx,3]=b2s

genr idx = idx + 1

endloop

A matrix bb = meanc(A) bb

In this case, we are not able to use the --progressive loop construct in gretl. Without it, gretl
generates a lot of output to the screen, but it can’t be avoided in this case. Using the regular loop

242

function, store each round’s estimates in a matrix called A. Then, after the loop is finished, matrix
bb = meanc(A) returns the column means of your matrix. These are the average values of the
parameters in the Monte Carlo.

16.8 Selection Bias

Selection bias occurs when your sample is truncated and the cause of that truncation is corre-
lated with your dependent variable. Ignoring the correlation, the model could be estimated using
least squares or truncated least squares. In either case, obtaining consistent estimates of the re-
gression parameters is not possible. In this section the basic features of the this model will be
presented.

Consider a model consisting of two equations. The first is the selection equation, defined

z∗i = γ1 + γ2wi + ui, i = 1, . . . , N (16.6)

where z∗i is a latent variable, γ1 and γ2 are parameters, wi is an explanatory variable, and ui is
a random disturbance. The latent variable is unobservable, but we do observe the dichotomous
variable

zi =

{
1 z∗i > 0

0 otherwise
(16.7)

The second equation, called the regression equation, is the linear model of interest. It is

yi = β1 + β2xi + ei, i = 1, . . . , n, N > n (16.8)

where yi is an observable random variable, β1 and β2 are parameters, xi is an exogenous variable,
and ei is a random disturbance. It is assumed that the random disturbances of the two equations
are distributed as [

ui
ei

]
∼ N

[(
0
0

)
,

(
1 ρ
ρ σ2e

)]
(16.9)

A selectivity problem arises when yi is observed only when zi = 1 and ρ 6= 0. In this case the
ordinary least squares estimator of β in (16.8) is biased and inconsistent. A consistent estimator has
been suggested by Heckman (1979) and is commonly referred to as Heckman’s two-step estimator,
or more simply, Heckit. Because the errors are normally distributed, there is also a maximum
likelihood estimator of the parameters. Gretl includes routines for both.

The two-step (Heckit) estimator is based on conditional mean of yi given that it is observed

E[yi|zi > 0] = β1 + β2xi + βλλi (16.10)

where

λi =
φ(γ1 + γ2wi)

Φ(γ1 + γ2wi)
(16.11)

243

is the inverse Mill’s ratio; φ(·) is the standard normal probability density function evaluated at
the argument, and Φ(·) is the cumulative density function of the standard normal random variable
evaluated at the argument (γ1 + γ2wi). The argument (γ1 + γ2wi) is commonly referred to as the
index function. Adding a random disturbance yields:

yi = β1 + β2xi + βλλi + vi (16.12)

It can be shown that (16.12) is heteroskedastic and if λi were known (and nonstochastic),
then the selectivity corrected model (16.12) could be estimated by generalized least squares. Al-
ternately, the heteroskedastic model (16.12) could be estimated by ordinary least squares, using
White’s heteroskedasticity consistent covariance estimator (HCCME) for hypothesis testing and
the construction of confidence intervals. Unfortunately, λi is not known and must be estimated
using the sample. The stochastic nature of λi in (16.12) makes the automatic use of HCCME in
this context inappropriate.

The two-steps of the Heckit estimator consist of

1. estimate the selection equation to obtain γ̂1 and γ̂2. Use these in equation (16.11) to estimate
the inverse Mill’s ratio, λ̂i.

2. Add λ̂i to the regression model as in equation (16.12) and estimate it using least squares.

The example from POE uses the mroz.gdt data. The first thing we’ll do is to estimate the
model ignoring selection bias using least squares on the nonzero observations. Load the data and
generate the natural logarithm of wages. Since wages are zero for a portion of the sample, gretl
will generate an error when you take the natural logs. You can safely ignore it as gretl will simply
create missing values for the variables that cannot be transformed. Then use the ols command to
estimate a linear regression on the truncated subset.

open "c:\Program Files\gretl\data\poe\mroz.gdt"

logs wage

ols l_wage const educ exper

The results are:

Model 1: OLS estimates using the 428 observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const −0.400174 0.190368 −2.1021 0.0361
educ 0.109489 0.0141672 7.7283 0.0000
exper 0.0156736 0.00401907 3.8998 0.0001

244

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 190.1950 S.E. of regression 0.668968
R2 0.148358 Adjusted R2 0.144350
F (2, 425) 37.01805 P-value(F) 1.51e–15
Log-likelihood −433.7360 Akaike criterion 873.4720
Schwarz criterion 885.6493 Hannan–Quinn 878.2814

Notice that the sample has been truncated to include only 428 observations for which hour
worked are actually observed. The estimated return to education is about 11%, and the estimated
coefficients of both education and experience are statistically significant.

The Heckit procedure takes into account that the decision to work for pay may be correlated
with the wage a person earns. It starts by modeling the decision to work and estimating the resulting
selection equation using a probit model. The model can contain more than one explanatory variable,
wi, and in this example we have four: a womans age, her years of education, a dummy variable for
whether she has children and the marginal tax rate that she would pay upon earnings if employed.
Generate a new variable kids which is a dummy variable indicating the presence of any kids in the
household.

genr kids = (kidsl6+kids618>0)

Estimate the probit model, generate the index function, and use it to compute the inverse Mill’s
ratio variable. Finally, estimate the regression including the IMR as an explanatory variable.

list X = const educ exper

list W = const mtr age kids educ

probit lfp W

genr ind = $coeff(const) + $coeff(age)*age + \

$coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr

genr lambda = dnorm(ind)/cnorm(ind)

ols lwage X lambda

This script uses a convenient way to accumulate variables into a set using the list command
first encountered in section 10.3.3. The command list X = const educ exper puts the variables
contained in const, educ, and exper into a set called X. Once defined, the set of variables can be
referred to as X rather than listing them individually as we’ve done up to this point. Similarly, we’ve
put the variables from the selection equation into a set called W. The dnorm and cnorm functions
return the normal density and normal cumulative density evaluated at the argument, respectively.
The results are:

Model 2: OLS estimates using the 428 observations 1–428
Dependent variable: l wage

245

Coefficient Std. Error t-ratio p-value

const 0.810542 0.494472 1.6392 0.1019
educ 0.0584579 0.0238495 2.4511 0.0146
exper 0.0163202 0.00399836 4.0817 0.0001
lambda −0.866439 0.326986 −2.6498 0.0084

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 187.0967 S.E. of regression 0.664278
R2 0.162231 Adjusted R2 0.156304
F (3, 424) 27.36878 P-value(F) 3.38e–16
Log-likelihood −430.2212 Akaike criterion 868.4424
Schwarz criterion 884.6789 Hannan–Quinn 874.8550

Notice that the estimated coefficient of the inverse Mill’s ratio is statistically significant, im-
plying that there is a selection bias in the least squares estimator. Also, the estimated return to
education has fallen from approximately 11% (which is inconsistently estimated) to approximately
6%. Unfortunately, the usual standard errors do not account for the fact that the inverse Mills
ratio is itself an estimated value and so they are not technically correct. To obtain the correct
standard errors, you will use gretl’s built-in heckit command.

The heckit command syntax is

heckit y const x2 x3 ... xk; z const w2 w3 ... ws --options

where const x2 ... xk are the k independent variables for the regression and const w2

ws are the s independent variables for the selection equation. In this example, we’ve used the two-
step option which mimics the manual procedure employed above, but returns the correct standard
errors. If you don’t specify the option, gretl will estimate the model using maximum likelihood.
For the Mroz data the gretl command is

heckit lwage X ; lfp W --two-step

Again, we’ve used the results from the list function, which put the independent variables for the
regression into X and the variables for the selection equation into W.

The results appear below:

Model 3: Two-step Heckit estimates using the 428 observations 1–428
Dependent variable: l wage

Selection variable: lfp

246

Coefficient Std. Error z-stat p-value

const 0.810542 0.610798 1.3270 0.1845
educ 0.0584579 0.0296354 1.9726 0.0485
exper 0.0163202 0.00420215 3.8838 0.0001
lambda −0.866439 0.399284 −2.1700 0.0300

Selection equation

const 1.19230 0.720544 1.6547 0.0980
mtr −1.39385 0.616575 −2.2606 0.0238
age −0.0206155 0.00704470 −2.9264 0.0034
kids −0.313885 0.123711 −2.5372 0.0112
educ 0.0837753 0.0232050 3.6102 0.0003

Mean dependent var 1.190173 S.D. dependent var 0.723198
σ̂ 0.932559 ρ̂ −0.929098

Total observations: 753
Censored observations: 325 (43.2%)

To use the pull-down menus, select Model>Nonlinear models>Heckit from gretl’s main win-
dow. This will reveal the dialog shown in figure 16.5. Enter lwage as the dependent variable and
the 0/1 variable lfp as the selection variable. Then enter the desired independent variables for the
regression and selections equations. Finally, select the 2-step estimation button at the bottom of
the dialog box and click OK.

You will notice that the coefficient estimates are identical to the ones produced manually above.
However, the standard errors, which are now consistently estimated, have changed. The t-ratio of
the coefficient on the inverse Mills ratio, λ̂, has fallen to -2.17, but it is still significant at the 5%
level. Gretl also produces the estimates of the selection equation, which appear directly below
those for the regression.

16.9 Using R for Qualitative Choice Models

R is a programming language that can be very useful for estimating sophisticated econometric
models. In fact, many statistical procedures have been written for R. Although gretl is reasonably
powerful, there are still many things that it won’t do. The ability to export gretl data into R
makes it possible to do some fancy econometrics with relative ease.

To do some of these, you’ll need a copy of R and access to its packages. A package is just a
collection of programs written in R that make it easier to use for specific tasks. Below, we use a
package to read in data saved in Stata’s format and another to estimate qualitative choice models.

247

Figure 16.5: Choose Model>Nonlinear models>Heckit from gretl’s main window to reveal the
dialog box for Heckit.

248

The R software package that is used to estimate qualitative choice models is called MCMCpack.
MCMCpack stands for Markov Chain Monte Carlo package and it can be used to estimate ev-
ery qualitative choice model in this chapter. We will just use it to estimate multinomial logit,
conditional logit, and ordered probit. So, let’s take a quick look at MCMCpack and what it does.

The Markov chain Monte Carlo (MCMC) methods are basic numerical tools that are often
used to compute Bayesian estimators. In Bayesian analysis one combines what one already knows
(called the prior) with what is observed through the sample (the likelihood function) to estimate
the parameters of a model. The information available from the sample information is contained in
the likelihood function; this is the same likelihood function discussed in your book. If we tell the
Bayesian estimator that everything we know is contained in the sample, then the two estimators
are essentially the same. That is what happens with MCMCpack under its defaults. The biggest
difference is in how the two estimators are computed. The MLE is computed using numerical
optimization of the likelihood function, whereas MCMCpack uses simulation to accomplish virtually
the same thing. See Lancaster (2004) or Koop (2003) for an introduction to Bayesian methods and
its relationship to maximum likelihood.

The MCMC creates a series of estimates–called a (Markov) chain–and that series of estimates
has a probability distribution. Under the proper circumstances the probability distribution of the
chain will mimic that of the MLE. Various features of the chain can be used as estimates. For
instance, the sample mean is used by MCMCpack to estimate the parameters of the multinomial
logit model. MCMCpack uses variation within the chain to compute the MLE variance covariance
matrix, which is produced using the summary command.

One piece of information that you must give to MCMCpack is the desired length of your Markov
chain. In the examples here, I chose 20,000, which is the number used in the sample programs
included in MCMCpack. Longer chains tend to be more accurate, but take longer to compute.
This number gets us pretty close to the MLEs produced by Stata.

16.9.1 Multinomial Logit

The program code to estimate the multinomial logit example is shown below:

library(foreign)

nels <- read.dta("C:/Data/Stata/nels_small.dta")

library(MCMCpack)

posterior <- MCMCmnl(nels$psechoice ~

nels$grades, mcmc=20000)

summary(posterior)

249

First, read the Stata dataset nels small.dta2 into an object we will call nels. This requires you
to first load the foreign library in R using the command library(foreign). The read.dta()

command reads data in Stata’s format; its argument points to the location on your computer where
the Stata dataset resides. Refer to sections D.1 and D.2 for a brief introduction to packages and
reading Stata datasets in R.

Then load MCMCpack library into R. The next line calls the multinomial logit estimator (MCMCmnl).
The first argument of MCMCmnl is the dependent variable nels$psechoice, followed by a ∼, and
then the independent variable nels$grades. The last argument tells R how many simulated val-
ues to compute, in this case 20,000. The results of the simulation are stored in the object called
posterior. Posterior is the name given in the Bayesian literature to the probability distribution
of the estimates. The mean or median of this distribution is used as a point estimate (vis-a-vis
the MLE). The last line of the program requests the summary statistics from the Markov chain.
The results appear in Figure 16.6 In the MNL model, the estimates from MCMCpack are a little

Figure 16.6: Multinomial logit results from the MCMCmnl estimator in R

different from those produced by Stata, but they are reasonably close.

To compute predicted probabilities and marginal effects, you can use the following script for
inspiration:

library(foreign)

nels <- read.dta("C:/Data/Stata/nels_small.dta")

library(MCMCpack)

posterior <- MCMCmnl(nels$psechoice ~

nels$grades, mcmc=20000)

summary(posterior)

2This should be available from the POE website.

250

summary(nels$grades)

q5 <- quantile(nels$grades,.05)

q50 <- quantile(nels$grades,.5)

b12 <- mean(posterior[,1])

b13 <- mean(posterior[,2])

b22 <- mean(posterior[,3])

b23 <- mean(posterior[,4])

"No College probabilities"

p1_50 <- 1/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

p1_5 <- 1/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

p1_50

p1_5

"Marginal effects, No College"

p2_50 <- 1/(1+exp(b12+b22*(q50+1))+exp(b13+b23*(q50+1)))

p2_5 <- 1/(1+exp(b12+b22*(q5+1))+exp(b13+b23*(q5+1)))

p2_50-p1_50

p2_5-p1_5

"2 Year college probabilities"

p1_50 <- exp(b12+b22*q50)/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

p1_5 <- exp(b12+b22*q5)/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

p1_50

p1_5

"Marginal effects, 2 Year College"

p2_50 <- exp(b12+b22*(q50+1))/

(1+exp(b12+b22*(q50+1))+exp(b13+b23*(q50+1)))

p2_5 <- exp(b12+b22*(q5+1))/

(1+exp(b12+b22*(q5+1))+exp(b13+b23*(q5+1)))

p2_50-p1_50

p2_5-p1_5

"4 Year college probabilities"

p1_50 <- exp(b13+b23*q50)/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

p1_5 <- exp(b13+b23*q5)/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

p1_50

p1_5

"Marginal effects, 4 Year college"

p2_50 <- exp(b13+b23*(q50+1))/

(1+exp(b12+b22*(q50+1))+exp(b13+b23*(q50+1)))

251

p2_5 <- exp(b13+b23*(q5+1))/

(1+exp(b12+b22*(q5+1))+exp(b13+b23*(q5+1)))

p2_50-p1_50

p2_5-p1_5

16.9.2 Conditional Logit

In this example I’ll show you how to use MCMCpack in R to estimate the conditional logit
model.

The first order of business is to get the data into a format that suits R. This part is not too
pretty, but it works. The data are read in from a Stata dataset using the read.dta function that is
included in the foreign library. The data are assigned (<-) to the object cola. The attach(cola)

statement is not necessary, but including it will enable you to call each of the variables in the object
cola by name. For example, cola$price refers to the variable named price in the object named
cola. Once the data object cola is attached, you can simply use price to refer to the variable
without prefixing it with the object to which it belongs (i.e., cola$).

The data in the original Stata dataset are arranged

> cola[1:12,]

obs id choice price feature display

1 1 0 1.79 0 0

2 1 0 1.79 0 0

3 1 1 1.79 0 0

4 2 0 1.79 0 0

5 2 0 1.79 0 0

6 2 1 0.89 1 1

7 3 0 1.41 0 0

8 3 0 0.84 0 1

9 3 1 0.89 1 0

10 4 0 1.79 0 0

The MCMCpack routine in R wants to see it as

id bev.choice pepsi.price sevenup.price coke.price

1 3 1.79 1.79 1.79

2 3 1.79 1.79 0.89

3 3 1.41 0.84 0.89

4 3 1.79 1.79 1.33

where each line represents an individual, recording his choice of beverage and each of the three
prices he faces. The goal then is to reorganize the original dataset so that the relevant information

252

for each individual, which is contained in 3 lines, is condensed into a single row. To simplify the
example, I dropped the variables not being used.

Most of the program below is devoted to getting the data into the proper format. The line

pepsi.price <- cola$price[seq(1,nrow(cola),by=3)]

creates an object called pepsi.price. The new object consists of every third observation in
cola$price, starting with observation 1. The square brackets [] are used to take advantage of
R’s powerful indexing ability. The function seq(1,nrow(cola),by=3) creates a seqence of num-
bers that start at 1, increment by 3, and extends until the last row of cola i.e., [1 3 6 9 . . . 5466].
When used inside the square brackets, these numbers constitute an index of the object’s elements
that you want to grab. In this case the object is cola$price. The sevenup.price and coke.price

lines do the same thing, except their sequences start at 2 and 3, respectively.

The next task is to recode the alternatives to a single variable that takes the value of 1, 2 or 3
depending on a person’s choice. For this I used the same technique.

pepsi <- cola$choice[seq(1,nrow(cola),by=3)]

sevenup <- 2*cola$choice[seq(2,nrow(cola),by=3)]

coke <- 3*cola$choice[seq(3,nrow(cola),by=3)]

The first variable, pepsi, takes every third observation of cola$choice starting at the first row.
The variable will contain a one if the person chooses Pepsi and a zero otherwise since this is how
the variable choice is coded in the Stata file. The next variable for Sevenup starts at 2 and the
sequence again increments by 3. Since Seven-up codes as a 2 the ones and zeros generated by the
sequence get multiplied by 2 (to become 2 or 0). Coke is coded as a 3 and its sequence of ones and
zeros is multiplied by 3. The three variables are combined into a new one called bev.choice that
takes the value of 1,2, or 3 depending on a person’s choice of Pepsi, Seven-up, or Coke.

Once the data are arranged, load the MCMCpack library and use MCMCmnl to estimate the
model. In the conditional logit model uses choice specific variables. For MCMCmnl choice-specific
covariates have to be entered using a special syntax: choicevar(cvar,"var","choice") where
cvar is the name of a variable in data, var is the name of the new variable to be created, and
choice is the level of bev.choice that cvar corresponds to.

library(foreign)

cola <- read.dta("c:/Data/Stata/cola.dta")

attach(cola) # optional

pepsi.price <- cola$price[seq(1,nrow(cola),by=3)]

sevenup.price <- cola$price[seq(2,nrow(cola),by=3)]

253

coke.price <- cola$price[seq(3,nrow(cola),by=3)]

pepsi <- cola$choice[seq(1,nrow(cola),by=3)]

sevenup <- 2*cola$choice[seq(2,nrow(cola),by=3)]

coke <- 3*cola$choice[seq(3,nrow(cola),by=3)]

library(MCMCpack)

posterior <- MCMCmnl(bev.choice ~

choicevar(coke.price, "cokeprice", "3") +

choicevar(pepsi.price, "cokeprice", "1") +

choicevar(sevenup.price, "cokeprice", "2"),

mcmc=20000, baseline="3")

summary(posterior)

In this example, we specified that we want to normalize the conditional logit on the coke choice;
this is done using the baseline="3" option in MCMCmnl.

The results appear in Figure 16.7.

Figure 16.7: Conditional logit results from the MCMCoprobit estimator in R

16.9.3 Ordered Probit

MCMCpack can also be used to estimate the ordered probit model. It is very easy and the results
you get using the Markov chain Monte Carlo simulation method are very similar to those from
maximizing the likelihood. In principle the maximum likelihood and the simulation estimator used
by MCMCpack are asymptotically equivalent.3 The difference between MCMCpack and Stata’s

3Of course, if you decide to use more information in your prior then they can be substantially different.

254

MLE results occurs because the sample sizes for the datasets used is small.

library(foreign) nels <- read.dta("C:/Program Files/nels_small.dta")

attach(nels)

library(MCMCpack)

posterior <- MCMCoprobit(psechoice ~ grades, mcmc=20000)

summary(posterior)

The first line loads the foreign package into into your R library. This package allows you to read in
Stata’s datasets. The second line creates the data object called nels. The attach(nels) statement
allows you to refer to the variables in nels directly by their names.

The next line loads MCMCpack into R. Then the ordered probit estimator (MCMCoprobit) is
called. The first argument of MCMCoprobit is the dependent variable psechoice, followed by a
∼, and then the independent variable grades. The last argument tells R how many simulated
values to compute, in this case 20,000. The results of the simulation are stored in the object called
posterior. The mean or median of this distribution is used as your point estimate (vis-a-vis the
MLE). The last line of the program requests the summary statistics from the simulated values
of the parameters. The results appear in Figure 16.8, where the MLEs are highlighted in red.
One important difference between MCMCpack and the MLE is in how the results are reported.

Figure 16.8: Ordered probit results from the MCMCoprobit estimator in R

The model as specified in your textbook contains no intercept and 2 thresholds. To include a
separate intercept would cause the model to be perfectly collinear. In MCMCpack, the default
model includes an intercept and hence can contain only one threshold.

255

The ‘slope’ coefficient β, which is highlighted in Figure 16.8, is virtually the same as that
reported in Hill et al. (2007). The other results are also similar and are interpreted like the ones
produced in gretl. The intercept in MCMCpack is equal to −µ1. The second cut-off in POE ’s
no-intercept model is µ2 = −(Intercept− γ2), where γ2 is the single threshold in the MCMCpack
specification. The standard errors are comparable and you can see that they are equivalent to 3 or
4 decimal places to those from the MLE.

16.10 Script

open "c:\Program Files\gretl\data\poe\transport.gdt"

#Probit

probit auto const dtime

genr p1 = $coeff(const)+$coeff(dtime)*20

genr dt = dnorm(p1)*$coeff(dtime)

genr p2 = cnorm($coeff(const)+$coeff(dtime)*30)

Multinomial Logit

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

logit psechoice const grades --multinomial

#Ordered Probit

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

probit psechoice const grades

Marginal effects on probability of going to 4 year college

k = $ncoeff

matrix b = $coeff[1:k-2]

mu1 = $coeff[k-1]

mu2 = $coeff[k]

matrix X = {6.64}

scalar Xb = X*b

P3a = pdf(N,mu2-Xb)*b

matrix X = 2.635

scalar Xb = X*b

P3b = pdf(N,mu2-Xb)*b

printf "\nFor the median grade of 6.64, the marginal effect is %.4f\n", P3a

printf "\nFor the 5th percentile grade of 2.635, the marginal effect is %.4f\n", P3b

Poisson Regression

256

open "c:\Program Files\gretl\data\poe\olympics.gdt"

smpl year = 88 --restrict

genr lpop = log(pop)

genr lgdp = log(gdp)

poisson medaltot const lpop lgdp

genr mft = exp($coeff(const)+$coeff(lpop)*median(lpop) \

+$coeff(lgdp)*median(lgdp))*$coeff(lgdp)

#Tobit

open "c:\Program Files\gretl\data\poe\mroz.gdt"

tobit hours const educ exper age kidsl6

genr H_hat = $coeff(const)+$coeff(educ)*mean(educ) \

+$coeff(exper)*mean(exper) \

+$coeff(age)*mean(age)+$coeff(kidsl6)*1

genr z = cnorm(H_hat/$sigma)

genr pred = z*$coeff(educ)

smpl hours > 0 --restrict

ols hours const educ exper age kidsl6

smpl --full

ols hours const educ exper age kidsl6

#Heckit

open "c:\Program Files\gretl\data\poe\mroz.gdt"

genr kids = (kidsl6+kids618>0)

logs wage

list X = const educ exper

list W = const mtr age kids educ

probit lfp W

genr ind = $coeff(const) + $coeff(age)*age + \

$coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr

genr lambda = dnorm(ind)/cnorm(ind)

ols lwage X lambda

heckit lwage X ; lfp W --two-step

#Monte Carlo

open "c:\Program Files\gretl\data\poe\tobit.gdt"

smpl 1 200

genr xs = 20*uniform()

loop 1000 --progressive

257

genr y = -9 + 1*xs + 4*normal()

genr yi = y > 0

genr yc = y*yi

ols yc const xs --quiet

genr b1s = $coeff(const)

genr b2s = $coeff(xs)

store coeffs.gdt b1s b2s

endloop

open "c:\Program Files\gretl\data\poe\tobit.gdt"

genr xs = 20*uniform()

genr idx = 1

matrix A = zeros(1000,3)

loop 1000 --quiet

smpl --full

genr y = -9 + 1*xs + 4*normal()

smpl y > 0 --restrict

ols y const xs --quiet

genr b1s = $coeff(const)

genr b2s = $coeff(xs)

matrix A[idx,1]=idx

matrix A[idx,2]=b1s

matrix A[idx,3]=b2s

genr idx = idx + 1

endloop

The matrix A contains all 1000 sets of coefficients

bb finds the column mean of A

matrix bb = meanc(A)

bb

And the MNL.inp script for multinomial logit.

open "c:\Program Files\gretl\data\poe\nels_small.gdt"

logit psechoice const grades --multinomial

matrix theta = $coeff

#To get predictions

scalar b12 = theta[1]

scalar b22 = theta[2]

scalar b13 = theta[3]

scalar b23 = theta[4]

258

#Use the Quantile function to get the 5% and 50% quantiles

scalar q50 = quantile(grades,.5)

scalar q5 = quantile(grades,.05)

scalar q5 = 2.635

#No College probabilities

scalar p1_50 = 1/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

scalar p1_5 = 1/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

#2 Year college probabilities

scalar p2_50 = exp(b12+b22*q50)/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

scalar p2_5 = exp(b12+b22*q5)/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

#4 Year college probabilities

scalar p3_50 = exp(b13+b23*q50)/(1+exp(b12+b22*q50)+exp(b13+b23*q50))

scalar p3_5 = exp(b13+b23*q5)/(1+exp(b12+b22*q5)+exp(b13+b23*q5))

print "Predicted Probabilities for 50th and 5th quantiles

print p1_50 p2_50 p3_50 p1_5 p2_5 p3_5

#Marginal effects, No College

scalar pa_50 = 1/(1+exp(b12+b22*(q50-.5))+exp(b13+b23*(q50-.5)))

scalar pa_5 = 1/(1+exp(b12+b22*(q5-.5))+exp(b13+b23*(q5-.5)))

scalar pb_50 = 1/(1+exp(b12+b22*(q50+.5))+exp(b13+b23*(q50+.5)))

scalar pb_5 = 1/(1+exp(b12+b22*(q5+.5))+exp(b13+b23*(q5+.5)))

scalar m1=pb_50-pa_50

scalar m2=pb_5-pa_5

#Marginal effects, 2 Year College

scalar pa_50 = exp(b12+b22*(q50-.5))/(1+exp(b12+b22*(q50-.5)) \

+ exp(b13+b23*(q50-.5)))

scalar pa_5 = exp(b12+b22*(q5-.5))/(1+exp(b12+b22*(q5-.5))\

+ exp(b13+b23*(q5-.5)))

scalar pb_50 = exp(b12+b22*(q50+.5))/(1+exp(b12+b22*(q50+.5))\

+ exp(b13+b23*(q50+.5)))

scalar pb_5 = exp(b12+b22*(q5+.5))/(1+exp(b12+b22*(q5+.5))\

+ exp(b13+b23*(q5+.5)))

scalar m3=pb_50-pa_50

scalar m4=pb_5-pa_5

#Marginal effects, 4 Year college

scalar pa_50 = exp(b13+b23*(q50-.5))/(1+exp(b12+b22*(q50-.5)) \

+ exp(b13+b23*(q50-.5)))

259

scalar pa_5 = exp(b13+b23*(q5-.5))/(1+exp(b12+b22*(q5-.5)) \

+ exp(b13+b23*(q5-.5)))

scalar pb_50 = exp(b13+b23*(q50+.5))/(1+exp(b12+b22*(q50+.5)) \

+ exp(b13+b23*(q50+.5)))

scalar pb_5 = exp(b13+b23*(q5+.5))/(1+exp(b12+b22*(q5+.5)) \

+ exp(b13+b23*(q5+.5)))

scalar m5=pb_50-pa_50

scalar m6=pb_5-pa_5

print "Marginal Effects"

print m1 m2 m3 m4 m5 m6

260

Appendix A
gretl commands

A.1 Estimation

• ar : Autoregressive estimation

• arima : ARMA model

• corc : Cochrane-Orcutt estimation

• equation : Define equation within a system

• estimate : Estimate system of equations

• garch : GARCH model

• hccm : HCCM estimation

• heckit: Heckit estimation (2-step and MLE)

• hilu : Hildreth-Lu estimation

• hsk : Heteroskedasticity-corrected estimates

• lad : Least Absolute Deviation estimation

• logistic : Logistic regression

• logit : Logit regression

• mle : Maximum likelihood estimation

• mpols : Multiple-precision OLS

• nls : Nonlinear Least Squares

261

• ols : Ordinary Least Squares

• panel : Panel models

• poisson : Poisson estimation

• probit : Probit model

• pwe : Prais-Winsten estimator

• system : Systems of equations

• tobit : Tobit model

• tsls : Two-Stage Least Squares

• var : Vector Autoregression

• vecm : Vector Error Correction Model

• wls : Weighted Least Squares

A.2 Tests

• addto : Add variables to specified model

• adf : Augmented Dickey-Fuller test

• arch : ARCH test

• chow : Chow test

• coeffsum : Sum of coefficients

• coint : Engle-Granger cointegration test

• coint2 : Johansen cointegration test

• cusum : CUSUM test

• hausman : Panel diagnostics

• kpss : KPSS stationarity test

• leverage : Influential observations

• lmtest : LM tests (obsolete–replaced by modtest)

• meantest : Difference of means

• omit : Omit variables

• omitfrom : Omit variables from specified model

262

• qlrtest : Quandt likelihood ratio test

• reset : Ramseys RESET

• restrict : Linear restrictions

• runs : Runs test

• testuhat : Normality of residual

• vartest : Difference of variances

• vif : Variance Inflation Factors

A.3 Transformation

• diff : First differences

• discrete : Mark variables as discrete

• dummify : Create sets of dummies

• lags : Create lags

• ldiff : Log-differences

• logs : Create logs

• multiply : Multiply variables

• rhodiff : Quasi-differencing

• sdiff : Seasonal differencing

• square : Create squares of variables

A.4 Statistics

• corr : Correlation coefficients

• corrgm : Correlogram

• freq : Frequency distribution

• hurst : Hurst exponent

• mahal : Mahalanobis distances

• pca : Principal Components Analysis

263

• pergm : Periodogram

• spearman : Spearmanss rank correlation

• summary : Descriptive statistics

• xtab : Cross-tabulate variables

A.5 Dataset

• addobs : Add observations

• append : Append data

• data : Import from database

• delete : Delete variables

• genr : Generate a new variable

• import : Import data

• info : Information on data set

• labels : Print labels for variables

• nulldata : Creating a blank dataset

• open : Open a data file

• rename : Rename variables

• setinfo : Edit attributes of variable

• setobs : Set frequency and starting observation

• setmiss : Missing value code

• smpl : Set the sample range

• store : Save data

• transpos : Transpose data

• varlist : Listing of variables

264

A.6 Graphs

• boxplot : Boxplots

• gnuplot : Create a gnuplot graph

• graph : Create ASCII graph

• plot : ASCII plot

• rmplot : Range-mean plot

• scatters : Multiple pairwise graphs

A.7 Printing

• eqnprint : Print model as equation

• outfile : Direct printing to file

• print : Print data or strings

• printf : Formatted printing

• tabprint : Print model in tabular form Prediction

• fcast : Generate forecasts

• fcasterr : Forecasts with confidence intervals

• fit : Generate fitted values

A.8 Programming

• break : Break from loop

• else

• end : End block of commands

• endif

• endloop : End a command loop

• function : Define a function

• if

• include : Include function definitions

265

• loop : Start a command loop

• matrix : Define or manipulate matrices

• run : Execute a script

• set : Set program parameters

A.9 Utilities

• criteria : Model selection criteria

• critical : Critical values

• help : Help on commands

• modeltab : The model table

• pvalue : Compute p-values

• quit : Exit the program

• shell : Execute shell commands

266

Appendix B
Some Basic Probability Concepts

In this chapter, you learned some basic concepts about probability. Since the actual values that
economic variables take on are not actually known before they are observed, we say that they are
random. Probability is the theory that helps us to express uncertainty about the possible values of
these variables. Each time we observe the outcome of a random variable we obtain an observation.
Once observed, its value is known and hence it is no longer random. So, there is a distinction to
be made between variables whose values are not yet observed (random variables) and those whose
values have been observed (observations). Keep in mind, though, an observation is merely one of
many possible values that the variables can take. Another draw will usually result in a different
value being observed.

A probability distribution is just a mathematical statement about the possible values that
our random variable can take on. The probability distribution tells us the relative frequency (or
probability) with which each possible value is observed. In their mathematical form probability dis-
tributions can be rather complicated; either because there are too many possible values to describe
succinctly, or because the formula that describes them is complex. In any event, it is common
summarize this complexity by concentrating on some simple numerical characteristics that they
possess. The numerical characteristics of these mathematical functions are often referred to as
parameters. Examples are the mean and variance of a probability distribution. The mean of a
probability distribution describes the average value of the random variable over all of its possible
realizations. Conceptually, there are an infinite number of realizations therefore parameters are
not known to us. As econometricians, our goal is to try to estimate these parameters using a finite
amount of information available to us. We collect a number of realizations (called a sample) and
then estimate the unknown parameters using a statistic. Just as a parameter is an unknown numer-
ical characteristic of a probability distribution, a statistic is an observable numerical characteristic
of a sample. Since the value of the statistic will be different for each sample drawn, it too is a
random variable. The statistic is used to gain information about the parameter.

Expected values are used to summarize various numerical characteristics of a probability dis-

267

tributions. For instance, if X is a random variable that can take on the values 0,1,2,3 and these
values occur with probability 1/6, 1/3, 1/3, and 1/6, respectively. The average value or mean of
the probability distribution, designated µ, is obtained analytically using its expected value.

µ = E[X] =
∑

xf(x) = 0 · 1

6
+ 1 · 1

3
+ 2 · 1

3
+ 3 · 1

6
=

3

2
(B.1)

So, µ is a parameter. Its value can be obtained mathematically if we know the probability
density function of the random variable, X. If this probability distribution is known, then there is
no reason to take samples or to study statistics! We can ascertain the mean, or average value, of a
random variable without every firing up our calculator. Of course, in the real world we only know
that the value of X is not known before drawing it and we don’t know what the actual probabilities
are that make up the density function, f(x). In order to Figure out what the value of µ is, we have
to resort to different methods. In this case, we try to infer what it is by drawing a sample and
estimating it using a statistic.

One of the ways we bridge the mathematical world of probability theory with the observable
world of statistics is through the concept of a population. A statistical population is the collection
of individuals that you are interested in studying. Since it is normally too expensive to collect
information on everyone of interest, the econometrician collects information on a subset of this
population–in other words, he takes a sample.

The population in statistics has an analogue in probability theory. In probability theory one
must specify the set of all possible values that the random variable can be. In the example above,
a random variable is said to take on 0,1,2, or 3. This set must be complete in the sense that the
variable cannot take on any other value. In statistics, the population plays a similar role. It consists
of the set that is relevant to the purpose of your inquiry and that is possible to observe. Thus it
is common to refer to parameters as describing characteristics of populations. Statistics are the
analogues to these and describe characteristics of the sample.

This roundabout discussion leads me to an important point. We often use the words mean,
variance, covariance, correlation rather casually in econometrics, but their meanings are quire
different depending on whether we are refereing to a probability distribution or a sample. When
referring to the analytic concepts of mean, variance, covariance, and correlation we are specifically
talking about characteristics of a probability distribution; these can only be ascertained through
complete knowledge of the probability distribution functions. It is common to refer to them in this
sense as population mean, population variance, and so on. These concepts do not have anything
to do with samples or observations!

In statistics we attempt to estimate these (population) parameters using samples and explicit
formulae. For instance, we might use the average value of a sample to estimate the average value
of the population (or probability distribution).

268

Probability Distribution Sample

mean E[X] = µ 1
n

∑
xi = x̄

variance E[X − µ]2 = σ2 1
n−1

∑
(xi − x̄)2 = s2x

When you are asked to obtain the mean or variance of random variables, make sure you know
whether the person asking wants the characteristics of the probability distribution or of the sample.
The former requires knowledge of the probability distribution and the later requires a sample.

In gretl you are given the facility to obtain sample means, variances, covariances and corre-
lations. You are also given the ability to compute tail probabilities using the normal, t-, F and
chisquare distributions. First we’ll examine how to get summary statistics.

Summary statistics usually refers to some basic measures of the numerical characteristics of your
sample. In gretl , summary statistics can be obtained in at least two different ways. Once your
data are loaded into the program, you can select Data>Summary statistics from the pull-down
menu. Which leads to the output in Figure B.2. The other way to get summary statistics is from

Figure B.1: Choosing summary statistics from the pull-down menu

the console or script. Recall, gretl is really just a language and the GUI is a way of accessing that
language. So, to speed things up you can do this. Load the dataset and open up a console window.
Then type summary. This produces summary statistics for all variables in memory. If you just want
summary statistics for a subset, then simply add the variable names after summary, i.e., summary
x gives you the summary statistics for the variable x.

Gretl computes the sample mean, median, minimum, maximum, standard deviation (S.D.),
coefficient of variation (C.V.), skewness and excess kurtosis for each variable in the data set. You

269

Figure B.2: Choosing summary statistics from the pull-down menu yields these results.

may recall from your introductory statistics courses that there are an equal number of observations
in your sample that are larger and smaller in value than the median. The standard deviation is the
square root of your sample variance. The coefficient of variation is simply the standard deviation
divided by the sample mean. Large values of the C.V. indicate that your mean is not very precisely
measured. Skewness is a measure of the degree of symmetry of a distribution. If the left tail (tail
at small end of the the distribution) extends over a relatively larger range of the variable than the
right tail, the distribution is negatively skewed. If the right tail covers a larger range of values then
it is positively skewed. Normal and t-distributions are symmetric and have zero skewness. The
χ2
n is positively skewed. Excess kurtosis refers to the fourth sample moment about the mean of

the distribution. ‘Excess’ refers to the kurtosis of the normal distribution, which is equal to three.
Therefor if this number reported by gretl is positive, then the kurtosis is greater than that of the
normal; this means that it is more peaked around the mean than the normal. If excess kurtosis is
negative, then the distribution is flatter than the normal.

Sample Statistic Formula

Mean
∑
xi/n = x̄

Variance 1
n−1

∑
(xi − x̄)2 = s2x

Standard Deviation s =
√
s2

Coefficient of Variation s/x̄

Skewness 1
n−1

∑
(xi − x̄)3/s3

Excess Kurtosis 1
n−1

∑
(xi − x̄)4/s4 − 3

You can also use gretl to obtain tail prob-

270

abilities for various distributions. For example if X ∼ N(3, 9) then P (X ≥ 4) is

P [X ≥ 4] = P [Z ≥ (4− 3)/
√

9] = P [Z ≥ 0.334]=̇0.3694 (B.2)

To obtain this probability, you can use the Tools>P-value finder from the pull-down menu.
Then, give gretl the value of X, the mean of the distribution and its standard deviation using
the dialog box shown in Figure B.3. The result appears in Figure B.4. Gretl is using the mean

Figure B.3: Dialog box for finding right hand side tail areas of various probability distributions.

Figure B.4: Results from the p value finder of P [X ≥ 4] where X ∼ N(3, 9). Note, the area in the
tail of this distribution to the right of 4 is .369441.

and standard deviation to covert the normal to a standard normal (i.e., z-score). As with nearly
everything in gretl, you can use a script to do this as well. First, convert 4 from the X ∼ N(3, 9)
to a standard normal, X ∼ N(0, 1). That means, subtract its mean, 3, and divide by its standard
error,

√
9. The result is a scalar so, open a script window and type:

scalar z1 = (4-3)/sqrt(9)

Then use the cdf function to compute the tail probability of z1. For the normal cdf this is

scalar c1 = 1-cdf(z,z1)

271

The first argument of the cdf function, z, identifies the probability distribution and the second, z1,
the number to which you want to integrate. So in this case you are integrating a standard normal
cdf from minus infinity to z1=.334. You want the other tail (remember, you want the probability
that Z is greater than 4) so subtract this value from 1.

In your book you are given another example X ∼ N(3, 9) then find P (4 ≤ X ≤ 6) is

P [4 ≤ X ≤ 6] = P [0.334 ≤ Z ≤ 1] = P [Z ≤ 1]− P [Z ≤ .33] (B.3)

Take advantage of the fact that P [Z ≤ z] = 1−P [Z > z] to obtain use the pvalue finder to obtain:

(1− 0.1587)− (1− 0.3694) = (0.3694− 0.1587) = 0.2107 (B.4)

Note, this value differs slightly from the one given in your book due to rounding error that occurs
from using the normal probability table. When using the table, the P [Z ≤ .334] was truncated to
P [Z ≤ .33]; this is because your tables are only taken out to two decimal places and a practical
decision was made by the authors of your book to forgo interpolation (contrary to what your Intro
to Statistics professor may have told you, it is hardly ever worth the effort to interpolate when
you have to do it manually). Gretl, on the other hand computes this probability out to machine
precision as P [Z ≤ 1

3]. Hence, a discrepancy occurs. Rest assured though that these results are,
aside from rounding error, the same.

Using the cdf function makes this simple and accurate. The script is

scalar z1 = (4-3)/sqrt(9)

scalar z2 = (6-3)/sqrt(9)

scalar c1 = cdf(z,z1)

scalar c2 = cdf(z,z2)

scalar area = c2-c1

272

Appendix C
Some Statistical Concepts

The hip data are used to illustrate computations for some simple statistics in your text.

C.1 Summary Statistics

Using a script or operating from the console, open the hip data, hip.gdt, and issue the sum-
mary command. This yields the results shown in Table C.1. This gives you the mean, median,
minimum, maximum, standard deviation, coefficient of variation, skewness and excess kurtosis of
your variable(s). Once the data are loaded, you can use gretl’s language to generate these as
well. For instance, genr hip bar = mean(hip) yields the mean of the variable hip. To obtain the
sample variance use genr s2hat = sum((hip-mean(hip)̂ 2)/($nobs-1). The script below can be
used to compute other summary statistics as discussed in your text.

open c:\userdata\gretl\data\poe\hip.gdt

summary

genr hip_bar = mean(hip)

genr s2hat = sum((hip-mean(hip))^2)/($nobs-1)

genr varYbar = s2hat/$nobs

genr sdYbar = sqrt(varYbar)

genr sig_tild = sqrt(sum((hip-mean(hip))^2)/($nobs))

genr mu3 = sum((hip-mean(hip))^3)/($nobs)

genr mu4 = sum((hip-mean(hip))^4)/($nobs)

Then, to estimate skewness, S = µ̃3/σ̃3, and kurtosis, K = µ̃4/σ̃4:

genr skew = mu3/sig_tild^3

273

Table C.1: Summary statistics from the hip data

? open c:\userdata\gretl\data\poe\hip.gdt

Read datafile c:\userdata\gretl\data\poe\hip.gdt periodicity: 1,

maxobs: 50, observations range: 1-50

Listing 2 variables:

0) const 1) hip

? summary

Summary Statistics, using the observations 1 - 50

for the variable ’hip’ (50 valid observations)

Mean 17.158

Median 17.085

Minimum 13.530

Maximum 20.400

Standard deviation 1.8070

C.V. 0.10531

Skewness -0.013825

Ex. kurtosis -0.66847

?

274

genr kurt = mu4/sig_tild^4

Note, in gretl’s built in summary command, the excess kurtosis is reported. The normal dis-
tribution has a theoretical kurtosis equal to 3 and the excess is measured relative to that. Hence,
Excess K = µ̃4/σ̃4 − 3

If hip size in inches is normally distributed, Y ∼ N(µ, σ2). Based on our estimates, Y ∼
N(17.158, 3.265). The percentage of customers having hips greater than 18 inches can be estimated.

P (Y > 18) = P

(
Y − µ
σ

>
18− µ
σ

)
(C.1)

Replacing µ and σ by their estimates yields

genr zs = (18 - mean(hip))/sqrt(s2hat)

pvalue z zs

The last line actually computes the p-value associated with z-score. So, the pvalue command
requests that a p-value be returned, the second argument (z) indicates the distribution to be used
(in this case, z indicates the normal), and the final argument (zs) is the statistic itself, which is
computed in the previous line.

C.2 Interval Estimation

Estimating a confidence interval using the hip data is also easy to do in gretl. Since the true
variance, σ2, is not known, the t-distribution is used to compute the interval. The interval is

ȳ ± tc
σ̂√
N

(C.2)

where tc is the desired critical value from the student-t distribution. In our case, N = 50
and the desired degrees of freedom for the t-distribution is N − 1 = 49. The gretl command
critical(t,49,.025 can be used to return the 0.025 critical value from the t49 distribution shown
in Figure C.1 The computation is

open c:\userdata\gretl\data\poe\hip.gdt

genr s2hat = sum((hip-mean(hip))^2)/($nobs-1)

genr varYbar = s2hat/$nobs

genr sdYbar = sqrt(varYbar)

genr lb = mean(hip) - 2.01*sdYbar

genr ub = mean(hip) + 2.01*sdYbar

275

Figure C.1: Obtaining critical values from the t distribution using the console

which indicates that the interval [16.64,17.67] works 95% of the time. Note these numbers differ
slightly from those in your book because we used 2.01 as our critical value. Hill et al. carry their
critical value out to more decimal places and hence the difference. You can use gretl’s internal
functions to improve accuracy. Replace 2.01 with critical(t,$nobs-1,0.025) and see what
happens!

genr lb = mean(hip) - critical(t,$nobs-1,0.025)*sdYbar

genr ub = mean(hip) + critical(t,$nobs-1,0.025)*sdYbar

C.3 Hypothesis Tests

Hypothesis tests are based on the same principles and use the same information that is used in
the computation of confidence intervals. The first test is on the null hypothesis that hip size does
not exceed 16.5 inches against the alternative that it does. Formally, H0 : µ = 16.5 against the
alternative Ha : µ > 16.5. The test statistic is computed based on the sample average, Ȳ and is

t =
Ȳ − 16.5

σ̂/
√
N
∼ tN−1 (C.3)

if the null hypothesis is true. Choosing the significance level, α = .05, the right-hand side critical
value for the t49 is 1.677. The average hip size is 17.1582 with standard deviation 1.807 so the test
statistic is

t =
17.1582− 16.5

1.807/
√

50
= 2.576 (C.4)

The gretl code to produce this is:

open c:\userdata\gretl\data\poe\hip.gdt

genr s2hat = sum((hip-mean(hip))^2)/($nobs-1)

genr varYbar = s2hat/$nobs

genr sdYbar = sqrt(varYbar)

genr tstat = (mean(hip)-16.5)/(sdYbar)

scalar c = critical(t,49,0.025)

pvalue t 49 tstat

276

The scalar c = critical(t,49,0.025) statement can be used to get the α = 0.025 critical value
for the t distribution with 49 degrees of freedom. The next line, pvalue t 49 tstat, returns the
p-value from the t distribution with 49 degrees of freedom for the computed statistic, tstat.

The two-tailed test is of the hypothesis, H0 : µ = 17 against the alternative, Ha : µ 6= 17.

t =
Ȳ − 17

σ̂/
√
N
∼ tN−1 (C.5)

if the null hypothesis is true. Choosing the significance level, α = .05, the two sided critical value
is ±2.01. Hence, you will reject the null hypothesis if t < −2.01 or if t > 2.01. The statistic is
computed

t =
17.1582− 17

1.807/
√

50
= .6191 (C.6)

and you cannot reject the null hypothesis. The gretl code is:

genr tstat = (mean(hip)-17)/(sdYbar)

scalar c = critical(t,49,0.025)

pvalue t 49 tstat

C.4 Testing for Normality

Your book discusses the Jarque-Bera test for normality which is computed using the skewness
and kurtosis of the least squares residuals. To compute the Jarque-Bera statistic, you’ll first need
to obtain the summary statistics from your data series.

From gretl script

open c:\userdata\gretl\data\poe\hip.gdt

summary

You could also use the point and click method to get the summary statistics. This is accom-
plished from the output window of your regression. Simply highlight the hip series and then choose
Data>Summary statistics>selected variables from the pull-down menu. This yields the re-
sults in Table C.1.

One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis is
measured relative to that of the normal distribution which has kurtosis of three. Hence, your
computation is

JB =
N

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(C.7)

277

Which is

JB =
50

6

(
−0.01382 +

−0.668472

4

)
= .9325 (C.8)

Using the results in section C.1 for the computation of skewness and kurtosis, the gretl code is:

open c:\userdata\gretl\data\poe\hip.gdt

genr sig_tild = sqrt(sum((hip-mean(hip))^2)/($nobs))

genr mu3 = sum((hip-mean(hip))^3)/($nobs)

genr mu4 = sum((hip-mean(hip))^4)/($nobs)

genr skew = mu3/sig_tild^3

genr kurt = mu4/sig_tild^4

genr JB = ($nobs/6)*(skew^2+(kurt-3)^2/4)

pvalue X 2 JB

278

Appendix D
Using R with gretl

Another feature of gretl that makes it extremely powerful is its ability to work with another
free program called R. R is actually a programming language for which many statistical procedures
have been written. Although gretl is reasonably powerful, there are still many things that it won’t
do. The ability to export gretl data into R makes it possible to do some sophisticated analysis
with relative ease.

Quoting from the R web site

R is a language and environment for statistical computing and graphics. It is a GNU
project which is similar to the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statis-
tical tests, time-series analysis, classification, clustering, ...) and graphical techniques,
and is highly extensible. The S language is often the vehicle of choice for research in
statistical methodology, and R provides an Open Source route to participation in that
activity.

One of R’s strengths is the ease with which well-designed publication-quality plots can
be produced, including mathematical symbols and formulae where needed. Great care
has been taken over the defaults for the minor design choices in graphics, but the user
retains full control.

R is available as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code form. It compiles and runs on a wide variety
of UNIX platforms and similar systems (including FreeBSD and Linux), Windows and
MacOS.

279

R can be downloaded from http://www.r-project.org/ which is referred to as CRAN or
the comprehensive R archive network. To install R, you’ll need to download it and follow the
instructions given at the CRAN web site. Also, there is an appendix in the gretl manual about
using R that you may find useful. The remainder of this brief appendix assumes that you have R
installed and linked to gretl through the programs tab in the File>Preferences>General pull
down menu. Make sure that the ‘Command to launch GNR R’ box points to the RGui.exe file
associated with your installation of R.

To illustrate, open the food.gdt data in gretl.

open c:\userdata\gretl\data\poe\food.gdt

Now, select Tools>start GNU R from the pull-down menu. The current gretl data set, in this case
food.gdt, will be transported into R’s required format. You’ll see the R console which is shown in
Figure D.1.

Figure D.1: The R console when called from Gretl

In some versions of gretl this may not work (a bug?). To load the data in properly, type the
following at the command prompt in R.

gretldata <-

read.table("C:/userdata/myfiles/Rdata.tmp", header = TRUE)

280

http://www.r-project.org/

This assumes that you have set gretl’s user directory to C:\userdata\myfiles using the dialog
box shown in Figure (D.2). Tools¿Preferences¿General The addition of Header = TRUE to the code

Figure D.2: Use this dialog to set the default location for gretl files to be written and read.

that gretl writes for you ensures that the variable names, which are included on the first row of
the Rdata.tmp, get read into R properly. Then, to run the regression in R.

fitols <- lm(y~x,data=gretldata)

Figure D.3: The lm(y x,data=gretldata) command estimates a linear regression model with y
as the dependent variable and x as an independent variable. R automatically includes an intercept.
To print the results to the screen, you have to use the summary(anov) command.

Before going further, let me comment on this terse piece of computer code. First, in R the
symbol <- is used as the assignment operator; it assigns whatever is on the right hand side
(lm(y∼x,data=gretldata)) to the name you specify on the left (fitols). it can be reversed

281

-> if you want to call the object to its right what is computed on its left. Also, R does not bother
to print results unless you ask for them. This is handier than you might think, since most pro-
grams produce a lot more output than you actually want and must be coerced into printing less.
The lm command stands for ‘linear model’ and in this example it contains two arguments within
the parentheses. The first is your simple regression model. The dependent variable is y and the
independent variable x. They are separated by the symbol which substitutes in this case for an
equals sign. The other argument points to the data set that contains these two variables. This
data set, pulled into R from gretl, is by default called gretldata. There are other options for the
lm command, and you can consult the substantial pdf manual to learn about them. In any event,
you’ll notice that when you enter this line and press the return key (which executes this line) R
responds by issuing a command prompt, and no results! To print the results from your regression,
you issue the command:

summary.lm(fitols)

which yields the output shown in Figure D.4. Then, to obtain the ANOVA table for this regression

anova(fitols)

This gives the result in Figure D.4. It’s that simple! One thing to note about how R reports

Figure D.4: The anova(olsfit) command asks R to print the anova table for the regression results
stored in olsfit.

analysis of variance. It reports the explained variation (190627) in the top line and the unexplained
variation in y (304505) below. It does not report total variation. To obtain the total, you just have
to add the explained to the unexplained variation together (190627+304505=495132).

To do multiple regression in R, you have to put each of your independent variables (other than
the intercept) into a matrix. A matrix is a rectangular array (which means it contains numbers
arranged in rows and columns). You can think of a matrix as the rows and columns of numbers
that appear in a spreadsheet program like MS Excel. Each row contains an observation on each of
your independent variables; each column contains all of the observations on a particular variable.
For instance suppose you have two variables, x1 and x2, each having 5 observations. These can
be combined horizontally into the matrix, X. Computer programmers sometimes refer to this

282

operation as horizontal concatenation. Concatenation essentially means that you connect or link
objects in a series or chain; to concatenate horizontally means that you are binding one or more
columns of numbers together.

The function in R that binds columns of numbers together is cbind. So, to horizontally con-
catenate x1 and x2 use the command

X <- cbind(x1,x2)

which takes

x1 =

2
1
5
2
7

 , x2 =

4
2
1
3
1

 , and yieldsX =

2 4
1 2
5 1
2 3
7 1

 .

Then the regression is estimated using

fitols <- lm(y~X)

There is one more thing to mention about R that is very important and this example illustrates it
vividly. R is case sensitive. That means that two objects x and X can mean two totally different
things to R. Consequently, you have to be careful when defining and calling objects in R to get to
distinguish lower from upper case letters.

D.1 Packages

The following is section is taken with very minor changes from Venables et al. (2006).

All R functions and datasets are stored in packages. Only when a package is loaded are its
contents available. This is done both for efficiency (the full list would take more memory and
would take longer to search than a subset), and to aid package developers, who are protected from
name clashes with other code. The process of developing packages is described in section Creating
R packages in Writing R Extensions. Here, we will describe them from a users point of view. To
see which packages are installed at your site, issue the command library() with no arguments. To
load a particular package (e.g., the MCMCpack package containing functions for estimating models
in Chapter 16

> library(MCMCpack)

If you are connected to the Internet you can use the install.packages() and update.packages()

functions (both available through the Packages menu in the Windows GUI). To see which packages
are currently loaded, use

283

> search()

to display the search list.

To see a list of all available help topics in an installed package, use

> help.start()

to start the HTML help system, and then navigate to the package listing in the Reference section.

D.2 Stata Datasets

With R you can read in datasets in many different formats. Your textbook includes a dataset
written in Stata’s format and R can both read and write to this format. To read and write Stata’s
.dta files, you’ll have to load the foreign package using the library command:

library(foreign)

Then, type

nels <- read.dta("c:/DATA/Stata/nels_small.dta")

and the dataset will be read directly into R. There are two things to note, though. First, the slashes
in the filename are backwards from the Windows convention. Second, you need to point to the file
in your directory structure and enclose the path/filename in double quotes. R looks for the the
file where you’ve directed it and, provided it finds it, reads it into memory. It places the variable
names from Stata into the object. Then, to retrieve a variable from the object you create (called
in this example, data, use the syntax

pse <- nels$psechoice

Now, you have created a new object called pse that contains the variable retrieved from the nels

object called psechoice. This seems awkward at first, but believe it or not, it becomes pretty
intuitive after a short time.

The command

attach(nels)

284

will take each of the columns of nels and allow you to refer to them by their variable names. So,
instead of referring to nels$psechoice you can directly ask for psechoice without using the nels$
prefix. For complex programs, using attach() may lead to unexpected results. If in doubt, it is
probably a good idea to forgo this option. If you do decide to use it, you can later undo it using
detach(nels).

D.3 Final Thoughts

A very brief, but useful document can be found at http://cran.r-project.org/doc/contrib/
Farnsworth-EconometricsInR.pdf. This is a guide written by Grant Farnsworth about using R in
econometrics. He gives some alternatives to using MCMCpack for the models discussed in Chapter
16.

285

http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf

Appendix E
Errata and Updates

2007-12-16 Page 40. Syntax for pvalue(t,$df,t2) is fixed. This applies the script at the end of chapter 3
as well. Thanks to Greg Coleman.

2007-12-16 A new version of POEscripts.exe has been uploaded to the website, www.learneconometrics.
com/gretl.

2008-5-30 The variable names in the script for chapter 12 do not match those in the dataset provided.
FedFunds is F and Bonds is designated B. This will be fixed, eventually. Thanks to Peter
Robertson for this and the following corrections.

2008-5-30 Page 67: phrase ‘in tablular form’ changed to ‘in tabular form’. Peter Robertson.

2008-5-30 Page 68: phrase ‘Anaylsis>ANOVA’ changes to ’Analysis>ANOVA’. Peter Robertson.

2008-5-30 Page 73: ‘it’s’ changed to ‘its’. Peter Robertson.

2008-5-30 Page 93: ‘were’ changed to ‘where’. Peter Robertson.

2008-5-30 Page 185: ‘redidual’ supposed to be ‘residual. Peter Robertson.

2008-5-30 Page 196: ‘and ARCH option has been added’ changed to ‘an ARCH option has been added...’
Peter Robertson.

2008-5-30 Page 254: ‘MCMCpack can also be use to . . .’ changed to ‘MCMCpack can also be used to
. . .’ Peter Robertson.

2008-7-23 The variable names in the script for chapter 12 now match those in the data file. I chose the
longer, more descriptive variable names rather than the short ones used in POE. FedFunds is
F and Bonds is B in POE. Thanks to Peter Robertson for this and the following corrections.

2008-7-23 New screen shots were generated for Chapter 12 to match the new variable names in the
dataset. A new figure (Figure 12.15) was added to reflect changes made to the GUI in version
1.7.5 of gretl.

286

www.learneconometrics.com/gretl
www.learneconometrics.com/gretl

2008-9-26 In chapter 1 I added a figure (Figure 1.8) for the very useful function reference and updated
most of the screen shots (version 1.7.8).

2008-9-26 Updated screen shots in chapter 2.

2009-1-17 gretl uses a new symbol to designate the logical ’and’ (changes from | to ||. The script in
chapter 15 is changed to reflect this. Thanks to Michel Pouchain.

2009-6-22 Section 16.2 was rewritten using gretl’s new multinomial logit function. The previous version
of mnl.inp was rewritten as well and it now replicates the marginal effects in POE almost
exactly.

2009-6-22 To improve readability and to reduce printing costs, the book was recompiled using LaTeX’s
fullpage package.

2009-7-20 Some of the screen shots were updated to reflect recent changes in gretl. Also, Chapter 10
was revised slightly to reflect changes in gretl.

2010-5-20 In chapter 2 (see page 29) there was a bug in the Monte Carlo script. There is not supposed to
be a space between the double slashes and progressive, –progressive. I also added the –quiet
option.

2010-5-20 Replaced the obsolete lmtest command with modtest.

287

Appendix F
GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

288

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which

289

the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

290

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

291

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf

292

of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if

293

the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

294

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

295

Bibliography

Barro, Robert J. and Jong Wha Lee (1996), ‘International measures of schooling years and schooling
quality’, American Economic Review 82(2), 218–223.

Cottrell, Allin and Riccardo Jack Lucchetti (2007), Gretl User’s Guide, Department of Economics
and Wake Forest University and Dipartimento di Economia Università Politecnica delle Marche,
http://ricardo.ecn.wfu.edu/pub//gretl/manual/PDF/gretl-guide.pdf.

Doornik, J. A. and H. Hansen (1994), ‘An omnibus test for univariate and multivariate normality’,
working paper, Nuffield College, Oxford.

Greene, William H. (2003), Econometric Analysis, 5th edn, Prentice Hall, Upper Saddle River, N.J.

Grunfeld, Yehuda (1958), The Determinants of Corporate Investment, PhD thesis, University of
Chicago.

Heckman, James J. (1979), ‘Sample selection bias as a specification error’, Econometrica 47(1), 153–
161.

Hill, R. Carter, William E. Griffiths and Guay Lim (2007), Principles of Econometrics, third edn,
John Wiley and Sons.

Koop, Gary (2003), Bayesian Econometrics, John Wiley & Sons, Hoboken, NJ.

Lancaster, Tony (2004), An Introduction to Modern Bayesian Econometrics, Blackwell Publishing,
Ltd.

Mixon Jr., J. Wilson and Ryan J. Smith (2006), ‘Teaching undergraduate econometrics with gretl’,
Journal of Applied Econometrics 21, 1103–1107.

Ramanathan, Ramu (2002), Introductory Econometrics with Applications, The Harcourt series in
economics, 5th edn, Harcourt College Publishers, Fort Worth.

Stock, James H. and Mark W. Watson (2006), Introduction to Econometrics, second edn, Addison
Wesley, Boston, MA.

Venables, W. N., D. M. Smith and R Development Core Team (2006), ‘An introduction to R’.

296

	Introduction
	What is Gretl?
	Installing Gretl
	Gretl Basics
	Common Conventions

	Importing Data
	Using the gretl Language
	Console
	Scripts
	Sessions

	Simple Linear Regression
	Simple Linear Regression Model
	Retrieve the Data
	Graph the Data
	Estimate the Food Expenditure Relationship
	Elasticity
	Prediction
	Estimating Variance

	Repeated Sampling
	Script

	Interval Estimation and Hypothesis Testing
	Confidence Intervals
	Monte Carlo Experiment
	Hypothesis Tests
	Script for t-values and p-values
	Script

	Prediction, Goodness-of-Fit, and Modeling Issues
	Prediction in the Food Expenditure Model
	Coefficient of Determination
	Reporting Results
	Functional Forms
	Testing for Normality
	Examples
	Wheat Yield Example
	Growth Model Example
	Wage Equation
	Predictions in the Log-linear Model
	Generalized R2
	Prediction Interval

	Script

	Multiple Regression Model
	Linear Regression
	Big Andy's Burger Barn
	SSE, R2 and Other Statistics
	Covariance Matrix and Confidence Intervals
	t-Tests, Critical Values, and P-values

	Script

	Further Inference in the Multiple Regression Model
	F-test
	Regression Significance
	Extended Model
	Is Advertising Significant?
	Optimal Level of Advertising

	Nonsample Information
	Model Specification
	RESET
	Cars Example
	Script

	Nonlinear Relationships
	Polynomials
	Interaction Terms
	Examples
	Housing Price Example
	CPS Example
	Chow Test
	Pizza Example
	Log-Linear Wages Example

	Script

	Heteroskedasticity
	Food Expenditure Example
	Weighted Least Squares
	Skedasticity Function
	Grouped Heteroskedasticity
	Wage Example
	Food Expenditure Example

	Other Tests for Heteroskedasticity
	Script

	Dynamic Models and Autocorrelation
	Area Response Model for Sugar Cane
	Bandwidth and Kernel
	Dataset Structure
	HAC Standard Errors

	Nonlinear Least Squares
	Testing for Autocorrelation
	Autoregressive Models and Forecasting
	Using the Dialogs
	Using a Script

	Autoregressive Distributed Lag Model
	Script

	Random Regressors and Moment Based Estimation
	Basic Model
	IV Estimation
	Specification Tests
	Hausman Test
	Testing for Weak Instruments
	Sargan Test

	Wages Example
	Script

	Simultaneous Equations Models
	Truffle Example
	The Reduced Form Equations
	The Structural Equations
	Fulton Fish Example
	Script

	Analyzing Time Series Data and Cointegration
	Series Plots
	Tests for Stationarity
	Spurious Regressions
	Cointegration
	The Analysis Using a Gretl Script
	Script

	Vector Error Correction and Vector Autoregressive Models: Introduction to Macroeconometrics
	Vector Error Correction
	Series Plots–constant and trends
	Selecting Lag Length
	Cointegration Test
	VECM

	Vector Autoregression
	Script

	Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics
	ARCH and GARCH
	Testing for ARCH
	Simple Graphs
	Threshold ARCH
	Garch-in-Mean
	Script

	Pooling Time-Series and Cross-Sectional Data
	A Basic Model
	Estimation
	Pooled Least Squares
	Fixed Effects
	Random Effects
	SUR

	NLS Example
	Script

	Qualitative and Limited Dependent Variable Models
	Probit
	Multinomial Logit
	Using a script for MNL

	Conditional Logit
	Ordered Probit
	Poisson Regression
	Tobit
	Simulation
	Selection Bias
	Using R for Qualitative Choice Models
	Multinomial Logit
	Conditional Logit
	Ordered Probit

	Script

	gretl commands
	Estimation
	Tests
	Transformation
	Statistics
	Dataset
	Graphs
	Printing
	Programming
	Utilities

	Some Basic Probability Concepts
	Some Statistical Concepts
	Summary Statistics
	Interval Estimation
	Hypothesis Tests
	Testing for Normality

	Using R with gretl
	Packages
	Stata Datasets
	Final Thoughts

	Errata and Updates
	toGNU Free Documentation License
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE

