EXERCISE: The Identification of ARMA Models

An appropriate ARMA model for fitting to a stationary series may be identified by
inspecting the following three functions:

(1) The Empirical Autocorrelation Function,
(2) The Empirical Partial Autocorrelation Function,
(3) The Nonparametric Estimate of the Spectral Density Function.

The procedures for determining the orders of an ARMA process from the first two
of these functions described in the appendix to Lecture 4 which is titled Identification
of ARIMA Models. Some practice in identifying the orders can be gained by using the
TSERIES program and the MESOSAUR program.

The Pseudo-Random Data Series

Within the TSERIES program, there are facilities for generating pseudo-random
data from specified models. You are invited to generate data from each of the models
specified in the following list under the numerals (i) to (xiv). In the process, you may
consider the effects of varying the sample size. Alternatively, data that have been
generated in this manner by TSERIES are available on website; and they can be read
into the program or into MESOSAUR. All of these data files comprise 160 observations.

Using either TSERIES or MESOSAUR, you can plot the data sequence correspond-
ing to each of the models, before examining the autocorrelation function, the partial
autocorrelation function and the periodogram. You should understand how the features
of these functions reflect those of the corresponding theoretical functions, which would
be generated by the true parameters of the processes.

The TSERIES program has facilities for plotting both the theoretical functions
and their empirical counterparts. In the case of the spectral density function, TSERIES
provides only the periodogram as an empirical counterpart. However, MESOSAUR
provides an estimate of the spectral density function via a smoothed version of the
periodogram. Whereas this program lacks the facility for generating pseudo-random
data, it does provide the means for fitting an ARMA model to the imported data.

1ARMAO1L: y(t) = (1 — OL)=(%)
y(t) = (14 0.75L)e(t)

2ARMAOL: y(t) = (1 — §L)(t)
y(t) = (1 — 0.75L)e(t)
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(i)

1IARMA10: (1 - ¢L)y(t) =e(?)
i (1= 0.T5L)y(t) = e(t)
, 2ARMA10: (1 — ¢L)y(t) = £(t)
(i) (1+0.75L)y(t) = £(t)
1ARMAT11: (1 — ¢L)y(t) = (1 — OL)e(t)
() (1-0.9L)y(t) = (1 + 0.9L)e(t)
_ 2ARMA11: (1 —¢L)y(t) = (1 —60L)e(t)
(vi) (1+0.9L)y(t) = (1 — 0.9L)e(t)
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TARMA20: (1 + a1l + aoL?)y(t) = &(t)
(1 —1.273L + 0.81L%)y(t) = £(t)

2ARMA20: (1 + oqL + asL?)y(t) = ()
(14 1.85L + 0.855L%)y(t) = (t)

TARMAOQ2: y(t) = (1 + p1 L + paL?)e(t)
y(t) = (1 — 1.273L + 0.81L%)e(t)

2ARMAO02: y(t) = (14 1 L + pa L*)e(t)
y(t) = (14 1.85L + 0.855L%)e(t)

TARMA21: (1 + aL + aoL?)y(t) = (1 + uL)e(t)
(1 —1.785L + 0.9025L2)y(t) = (14 0.95L)e(t)

2ARMA21: (1 + oL + apL?)y(t) = (14 pL)e(t)
(14 1.691L + 0.81L%)y(t) = (1 — 0.95L)e(t)

1IARMA22: (1 + aL + asL?)y(t) = (14 py L + pa L?)e(t)
(1 —1.4745L 4+ 0.51L%)y(t) = (1 — 1.157L + 0.81L*)e(t)

2ARMA22: (1 + oL 4+ o L?)y(t) = (14 p1 L + po L?)
(1 —1.275L + 0.81L%)y(t) = (1 + 1.273L + 0.81L%)e(t)

Pseudo Random Data from Unspecified Processes

Model identification is essentially a matter of practice. Therefore, a large collection
of pseudo-random computer-generated data is provided in the files XYARMA which you
may examine in detail. The processes that have generated the data series in XYARMA will
be revealed to you only after you have attempted to guess the orders of the processes:



