
   

Methods of TimeSeries Analysis I

Course Summary 1990

1. Since we are dealing with dynamic phenomena, we ought to know some-
thing about non-stochastic dynamic theory. We ought to know something
about differential equations, but since we are dealing with discrete-time
models we concentrate on difference equations. The second-order differ-
ence equation exemplifies most of the relevant theory. We should know
how to obtain a general solution—at least in the homogeneous case, and
we should know how the nature of this solution is affected by the nature
of the roots of the auxiliary equation i.e. are they real or complex or do
they coincide? Do they have a modulus greater or less than unity?

2. The AR model α(L)y(t) = ε(t) is just a difference equation with a forc-
ing function which is a white-noise process. Once more, the second-order
case contains most of the interesting features. There are two ways of
parametrising an AR process: (1) in terms of the parameters of α(L) and
the variance of ε(t) and (2) in terms of the autocovariances of the process.
The Yule–Walker equations, which you must be able to derive, provide
a link between (1) and (2). Usually they are employed for the purposes
of going from (2) {γ0, γ1, . . . , γp} to (1) {α1, . . . αp, σ

2
ε}, but we have also

shown how to go in the reverse direction.

3. The other basic model of time-series analysis is the MA model. We should
be able to establish the same sort of relationship between the autocovari-
ances of the MA operator µ(L) as we have in the case of the AR model.
But now we find a strange reversal. In the case of the MA model, it is
almost trivial to find the autocovariances given the parameters. But to
find the parameters given the autocovariances is a difficult problem. For
this, we need special techniques for solving non-linear equations, e.g. The
Newton–Raphson procedure.

4. The AR and the MA models are mirror images of each other. If the condi-
tions of stationarity and invertibility are satisfied, then the AR(p) model
is equivalent to an MA(∞) model, and if the conditions of invertibility
are satisfied, then the MA(q) model is equivalent to an AR(∞) model. It
hardly makes any sense to consider an AR model which fails to satisfy the
conditions of stationarity, for then it corresponds to an explosive process.
On the other hand, some people would argue that there is no reason why
we should not consider a non-invertible MA process. However, it is easy
to avoid doing so provided that none of the roots of the MA operator are
on the unit circle. For, if we have a non-invertible MA process, then we
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can easily find an equivalent invertible process by inverting some of the
roots of the MA operator and by adjusting the variance of ε(t). Both the
invertible and the non-invertible processes will have the same autocovari-
ances. Given a non-invertible MA(2) process, you should be able to find
the corresponding invertible process as well as the autocovariances which
are shared by the two processes.

5. So far , we have talked only of the time domain. We are just as interested
in the frequency domain. We know, for example, that any stationary
stochastic process y(t) can be represented as an MA process of finite or
infinite order; and, to demonstrate this result, we had to use arguments
in the frequency domain. Essentially, we had to demonstrate that, if y(t)
has a spectral density function fy(ω), then there exits a factorisation of
the form fy(ω) = µ∗(ω)µ(ω)/2π, where µ(ω) = µ0 +µ1z+ · · ·+µqz

q with
z = e−iω and where µ∗(ω) is the complex conjugate of µ(ω). We saw that,
in view of this factorisation, we were able to write y(t) = µ(L)ε(t), which
is the MA representation of the process.

6. We also saw how to derive the spectral density functions which corre-
spond to simple AR and MA processes—e.g. the AR(1) and the MA(1)
processes—and we saw how to infer the nature of the time series from the
shape of the spectrum and vice versa. We regarded both the MA process
y(t) = µ(L)ε(t) and the AR process y(t) = α−1(L)ε(t) as the result of
passing the white-noise process ε(t) through a linear filter.
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