TOPICS IN ECONOMETRICS 2002

THE STATISTICAL PROPERTIES OF THE OLS
ESIMATOR: UNBIASEDNESS AND EFFICIENCY
Some Statistical Properties of the Estimator

The expectation or mean vector of B, and its dispersion matrix as well,
may be found from the expression
o f=X'X)"'X(XB +¢)
=8+ (X' X)X,

The expectation is

E(B) =B+ (X'X)"'X'E(e)

2) .

Thus B is an unbiased estimator. The deviation of B from its expected value is
B—E(B) = (X'X)"'X'e. Therefore the dispersion matrix, which contains the
variances and covariances of the elements of 3, is

A A A A A/
D(B) = B[{6 - EB)}{3- BB} ]
(3) = (X'X) ' X'B(e) X (X'X) ™!
= (X' X))
The Gauss—Markov theorem asserts that ﬁ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the

variance of an arbitrary linear combination of the elements of B, although it
may also be characterised in terms of the determinant of the dispersion matrix

~

D(p). Thus

(4) If 3 is the ordinary least-squares estimator of 3 in the classical
linear regression model, and if §* is any other linear unbiased
estimator of 3, then V(¢'8*) > V(¢'3) where ¢ is any constant
vector of the appropriate order.

Proof. Since * = Ay is an unbiased estimator, it follows that E(5*) =
AE(y) = AX( = [ which implies that AX = I. Now let us write A =
(X’X)"1X’'+ G. Then AX = I implies that GX = 0. It follows that
D(3") = AD(y)A’

= o {(X'X)' X'+ GHX(X'X)"' + G}

= X'X) '+ 0*GE

= D(3) + 0*GG".

(5)
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Therefore, for any constant vector ¢ of order k, there is the identity
V(¢'B") = ¢ D(B)g+0°¢GGCq
> ¢'D(B)g = V(¢'B);

and thus the inequality V' (¢'6*) > V(¢ B) is established.

(6)

Estimating the Variance of the Disturbance

The principle of least squares does not, of its own, suggest a means of
estimating the disturbance variance o2 = V(g;). However it is natural to esti-
mate the moments of a probability distribution by their empirical counterparts.
Given that e, = y; — xtﬂA is an estimate of &, it follows that 7! Do e? may
be used to estimate o2. However, it transpires that this is biased. An unbiased
estimate is provided by

1 T
~2 2
o _T—k;et

1 - A

= T——k(y - X0)'(y — XP).

(7)

The unbiasedness of this estimate may be demonstrated by finding the
expected value of (y — X3) (y — X3) = v/(I — P)y. Given that (I — P)y =
(I — P)(Xp+¢) = (I — P)e in consequence of the condition (I — P)X =0, it
follows that

(8) E{(y— Xp)'(y— XB)} = E('e) — B('Pe).

The value of the first term on the RHS is given by

(9) E('e) =) E(e}) = To>.

The value of the second term on the RHS is given by

E(¢'Pe) = Trace{ E(¢'Pe)} = E{Trace(c'Pe)} = E{Trace(sc'P)}
(10) = Trace{ E(ce') P} = Trace{c?P} = o*Trace(P)

= o’k.

The final equality follows from the fact that Trace(P) = Trace(I)) = k. Putting
the results of (9) and (10) into (8), gives

(11) E{ly—XB)'(y— XB)} = o*(T — k);
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and, from this, the unbiasedness of the estimator in (7) follows directly.

THE PARTITIONED REGRESSSION MODEL

Consider taking a regression equation in the form of

g

(1) y=[X1 Xz][ﬁ}—FE:Xlﬁl%—Xgﬁz%—e.

1
2
Here [ X1, X3] = X and [1, 35]' = [ are obtained by partitioning the matrix X
and vector 3 of the equation y = X3+ ¢ in a conformable manner. The normal
equations X’ X3 = X'y can be partitioned likewise. Writing the equations
without the surrounding matrix braces gives

(2) X1 X161 + X( Xof2 = X1y,

(3) X5 X161 + X5 Xo 2 = Xoy.

From (2), we get the equation X| X35, = X7 (y — X202) which gives an expres-
sion for the leading subvector of 3 :

(4) B = (X1X1) "' X (y — Xofo).

To obtain an expression for 32, we must eliminate [3; from equation (3). For
this purpose, we multiply equation (2) by X5X1(X{X;)~! to give

(5) X5 X101+ X5 X1 (X1 X1) 7' X[ Xo02 = X5 X1 (X[ X1) ™' X1y,
When the latter is taken from equation (3), we get

(6) {X3Xz — XpX2(X[X1) " X[ Xa } B2 = Xpy — X3 X1 (X[X1) ' Xy,
On defining

(7) Py = X1 (X1 X1) 71X,

can we rewrite (6) as

®) {X3 = P)Xa } 82 = X4(1 - P,
whence
(9) Bo = {Xé(f - Pl)Xz}_lXé(I - Pp)y.
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Now let us investigate the effect that conditions of orthogonality amongst
the regressors have upon the ordinary least-squares estimates of the regression
parameters. Consider a partitioned regression model, which can be written as

(10 v= 10 | )| 2 = X0+ Xath e
It can be assumed that the variables in this equation are in deviation form.
Imagine that the columns of X; are orthogonal to the columns of X5 such that
X{X2 = 0. This is the same as assuming that the empirical correlation between
variables in X7 and variables in X5 is zero.

The effect upon the ordinary least-squares estimator can be seen by exam-
ining the partitioned form of the formula 8 = (X’X)~1X’y. Here we have

v | X4 XXy X1Xe | [ XXy 0

(1) XX = [Xé (X Xa]= XX, X5Xo| | 0 X5Xo|?

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X’X in the case of X{X5 =0 is

—1
b1 [XIX1 0 (XX 0
(12)  (XX)" = { 0 X4X.| T 0 (Xpxy)|
We also have
Xi X1y
(13) X/y:[xjy:[x' }
2 2y

On combining these elements, we find that

(14) [Z] _ {(X{Xl)_l 0 } [ng} _ [(X{Xl)_lX{y}

0 (X5Xo)~ 1] [ X3y (X5 Xo)t X0y

In this special case, the coeflicients of the regression of y on X = [X7, X5] can
be obtained from the separate regressions of y on X; and y on Xs.

It should be understood that this result does not hold true in general. The
general formulae for [31 and Bg are those which we have given already under
(4) and (9):

B = (X1X1) 7' X (y — Xao),

(15) R ~
By = {X5(I — P)Xy) ' X5(I— Py, Py =X (X|X1)"'X].
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It can be confirmed easily that these formulae do specialise to those under (14)
in the case of X{X3 = 0.

The purpose of including X5 in the regression equation when, in fact,
interest is confined to the parameters of 3, is to avoid falsely attributing the
explanatory power of the variables of X5 to those of X;.

Let us investigate the effects of erroneously excluding X5 from the regres-
sion. In that case, the estimate will be

B = (X1X1) ' X1y
(16) = (X1 X1) "X (X181 + Xofa +¢)
=B+ (X1 X1) T X Xofe + (X1 X1) 1 X e

On applying the expectations operator to these equations, we find that
(17) E(f1) = b + (X1 X1) ' X] X202,

since E{(X]X1) ' X{e} = (X|X1)"1X{E(¢) = 0. Thus, in general, we have
E(ﬁl) # (31, which is to say that 3, is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X{ X5 = 0 or
B2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of
such instruments are provided by interest rates, tax rates, exchange rates and
the like.

On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|z1,...,xx) which specifies the conditional expectation of y given
the values of x1,...,x,—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness the regression estimates does not arise.
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DIAGONALISATION OF A SYMMETRIC MATRIX

Characteristic Roots and Characteristic Vectors. Let A be an n x n
symmetric matrix such that A = A’, and imagine that the scalar A and the
vector x satisfy the equation Az = Az. Then A is a characteristic root of A
and x is a corresponding characteristic vector. We also refer to characteristic
roots as latent roots or eigenvalues. The characteristic vectors are also called
eigenvectors.

(1) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Axy = Az and Axe = Aoxo
with A\ # Ag, then zjxo = 0.

Proof. Premultiplying the defining equations by x/, and x| respectively, gives
xhAxy = Mzhry and x) Axg = Aexize. But A = A’ implies that x5 Az, =
x) Azg, whence \jzhry = Aozl xe. Since A\ # A, it must be that xfze = 0.

The characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a characteristic vector of A such
that Az = Az. Then multiplying the equation by a scalar p gives A(ux) =
Apx) or Ay = Ay; so y = px is another characteristic vector corresponding to
A

(2) If P = P = P? is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P?, it follows that, if Pz = Az, then P?x = \z or P(Px) =
P(\x) = M2z = Az, which implies that A = A\2. This is possible only when
A=0,1.

Diagonalisation of a Symmetric Matrix. Let A be an n xn symmetric ma-

trix, and let 1, ..., x, be a set of n linearly independent characteristic vectors
corresponding to its roots Ai,...,A,. Then we can form a set of normalised
vectors
1 Tn
C1 = cee y, Cp = y

NS Tl T
1+1 n+n

which have the property that

CZ'Cj -

, {0, if i # j;
1, ifi=j.

The first of these reflects the condition that zjz; = 0. It follows that C' =
[c1,...,¢yn) is an orthonormal matrix such that C'C = CC’ = 1.
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Now consider the equation Alcq,...,c,] = [Mc1,. .., Ancy] which can also
be written as AC = CA where A = Diag{\1,...,\,} is the matrix with )\; as
its 7th diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C’ gives ACC’ = A = CAC’; and premultiplying
by C’ gives C'AC = C'CA = A. Thus A = CAC’ and C'AC = A; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/1/A; so that
D'D = A~! and D’AD = I. Premultiplying the equation C'AC = A by D’
and postmultiplying it by D gives D'C'ACD = D'AD = I or TAT' = I, where
T =D'C'. Also, T'T = CDD'C' = CA—'C’" = A~'. Thus we have shown that

(3) For any symmetric matrix A = A’, there exists a matrix T such
that TAT' =1 and T'T = A~ 1.

The Geometry of Quadratic Forms

The Circle Let the coordinates of the points in the Cartersian plane be the
denoted by (z1,22). Then the equation of a circle of radius r centred on the
origin is just

(1) 224 22 =2

This follows immediately from Pythagorus. The so-called parametic equations
for the coordiantes of the circle are

(2) z1 =rcos(w), and 2z =rsin(w).

The Ellipse The equation of an ellipse whose principal axes are aligned with
those of the coordinate system in the (y1,y2) plane is

(2) Myi + Aays =12,

On setting \1y? = 27 and \yy3 = 23, we can see that

(3) Y1 = L — L COS(W), Z—2 — r Sin(u})

N YR/ P Ve

We can write equation (2) in matrix notation as

2 MOy | 2, o
(4) ¢ =y yg][o /\2] [yz}—zl—}—z?
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This implies

(6) U1 _ 1/ VA1 0 21

Y2 0 1 / vV /\2 Z9
The Oblique Ellipse An oblique ellipse is one whose principal axes are not
aligned with those of the coordinate system. Its general equation is

2 2 2
(6) a1177 + 20127172 + a22x5 = 17;

which is subject to the ccondition that a11a20 — 2a12 > 0. We can write this in
matrix notation:

Tg_[x 23] cos@ sinf| [N O cosf —sinf| |z
20 Sing cos® 0 M| |sin® cos@ 9

_ A1 0 Y| _ 2 2
= y2][0 )\2] {y2]—z1+22

(7)

The coefficients of the equation (6) are the elements of the matrix

(8) ai; a2 | _ )\1 COS2 0 + /\2 SiIl2 0 ()\2 — )\1) cosfsinf
az1 Qa929 o ()\2 — )\1) cosfsinf /\1 Sin2 0 + )\2 COS2 A

Notice that if Ay = A9, which is to say that both axes are are rescaled
by the same factor, then the equation is that of a circle of radius A\;, and the
rotation of the circle has no effect.

The mapping from the ellipse to the circle is
(9)

2] VA0 cos —sinf| [z1|  [vAi(z1c0s0 — z2sin6)
LJ a [ 0 \/)\_2} {sin@ cos 6 } [902] o {\/E(acl sinf + xo cos@)} '

and the inverse mapping, from the circle to the ellipse, is

O i B e | S T

We see from the latter that the circle is converted to an oblique ellipse via
two operations. The first is an operation of scaling which produces an ellipse

8
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whose principal axes are aligned with those of the coordinate system. The
second operation is a rotation which tilts the ellipse.

The vectors of the matrix which affects the rotation define the axes of
the ellipse. They have the property that, when they are mapped through the
matrix A, their orientation is preserved and only their length is altered. Thus

air ail2 cos 6
as1 Q92 —sind
(11) | cos@ sin@ | |A O |]|cosf —sind cos 6
| —sinf cosf 0 MXo| |sinf cos@ —sinf |-
| cosf sind A O I A\ cos
| —sinf cos@ 0 X | |O] ™| —sind

Such vectors are described as the characteristic vectors of the matrix, and
the factors A\; and Ay by which their lengths are altered under the transforma-
tion are described as the corresponding characteristic roots.

COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector J in the model
N(y; Xf3,02I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

~

y:XB+(y—Xﬁ) and

(1) . .
y—XB=(XB-XB)+(y—XP),

where the second equation comes from subtracting the unknown mean vector

X3 from both sides of the first. These equations can also be expressed in

terms of the projector P = X (X'X)~1X’ which gives Py = X3 and (I —P)y =

y—X B = e. Using the definition ¢ = y— X 3 within the second of the equations,

we have

y=Py+(I—-P)y and

) e =Pe+ (I — P)e.

The reason for rendering the equations in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
from the condition that P = P’ = P?, which is equivalent to the condition that
P'(I — P) =0, it can be established that

9



TOPICS IN ECONOMETRICS 2002

fe=e'Pe+e'(I—Pe  or

(3) A : A A
e = (XB - XB) (X3 - XB) +(y— XB) (y — X).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pe at the base, (I — P)e
as the vertical side and ¢ as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector 3 is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is (5. To test this notion, we
compare the value of X3y with the estimated mean vector X B The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This is given by &' Pe =
(XB — Xﬁo)’(XB — X o). If the hypothesis is untrue and if X /3 is remote from
the true value of X3, then the distance is liable to be excessive. The distance
can only be assessed in comparison with the variance o2 of the disturbance term
or with an estimate thereof. Usually, one has to make do with the estimate of
o? which is provided by

2 (= XP)'(y — XP)

T—k
) eI —P)
T T—k

The numerator of this estimate is simply the squared length of the vector
e = (I — P)y = (I — P)e which constitutes the vertical side of the right-angled

triangle.
The test uses the result that
(5) If y ~ N(X3,0%I) and if 3 = (X’X)"' X"y, then
b { (X3 - XB) (X3~ XB) / (y—XB)(y = XB) }
k T—k

is distributed as an F'(k,T — k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:

(6) Let € ~ N(0,0%Ir) be a random vector of T' independently and
identically distributed elements. Also let P = X(X'X)~'X’ be a
symmetric idempotent matrix, such that P = P’ = P2, which is

10
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constructed from a matrix X of order T x k with Rank(X) = k.
Then 'p - P .
e'Pe €'(I—-P)e £e 9
0_2 + 0_2 = ? ~ X (T)7

which is a chi-square variate of T' degrees of freedom, represents
the sum of two independent chi-square variates &’ Pe/o? ~ x2(k)
and &'(I — P)e/o? ~ x*(T — k) of k and T — k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X (X'X)~1X’. First consider the fact that X’X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation
T such that T(X'X)T" = I and T'T = (X'X)~!. Therefore P = XT'TX' =
C1C1, where C; = XT" is a T x k matrix comprising k orthonormal vectors
such that C1Cy = I} is the identity matrix of order k.

Now define Cs to be a complementary matrix of 7'— k orthonormal vectors.
Then C = [C}, (5] is an orthonormal matrix of order T" such that

CC' = C\C) +CyC, =TIy  and

cic, O] [I 0
CLCy C4Cs | T |0 Ir_y |

The first of these results allows us to set I — P = [ — C1C] = C2C5. Now,
if & ~ N(0,0%I7) and if C is an orthonormal matrix such that C'C = I,
then it follows that C’e ~ N(0,02Ir). In effect, if ¢ is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C' is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C’e, we find
that

<8> e ()70 )

which is to say that Cfe ~ N(0,0%1;) and Che ~ N(0,0%Ir_;) are indepen-
dently distributed normal vectors. It follows that

e'CiC'e  €'Pe
121 =— ~ x?*(k) and

(7) . {

) e'CyCle  €'(I — P)e
22 2(m
o2 o2 ~X AT = k)

are independent chi-square variates. Since CC{ + CoC% = I, the sum of these

two variates is

e'C1Cle  €'CyChe e
+ = =

(10)

o2 o

11
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and thus the theorem is proved.
The statistic under (5) can now be expressed in the form of

) e'Pe JE'(I—P)e
. o fere Jeu-ne)

This is manifestly the ratio of two chi-square variates divided by their respec-
tive degrees of freedom; and so it has an F' distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector [3.

TRANSFER FUNCTIONS

Consider a simple dynamic model of the form

(1) y(t) = gy(t —1) + x(t) + ().
With the use of the lag operator, we can rewrite this as
(2) (L= o¢L)y(t) = Bx(t) +&(t)
or, equivalently, as

__B 1
3) v(t) = T el + 77t

The latter is the so-called rational transfer-function form of the equation. We
can replace the operator L within the transfer functions or filters associated
with the signal sequence x(t) and disturbance sequence £(t) by a complex num-
ber z. Then, for the transfer function associated with the signal, we get

B 2.2
4 =41 z z e
(4) > B{l+¢z+¢°2" +--- ],
where the RHS comes from a familiar power-series expansion.

The sequence {3, 8¢, 3¢%, ...} of the coefficients of the expansion consti-
tutes the impulse response of the transfer function. That is to to say, if we
imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(5) z(t) =1{...,0,1,0,0,...},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(6) r(t) =1{...,0,8, B¢, d*,...}.

12
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Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(7) z(t)=1{...,0,1,1,1,...}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(8) s(t)

whose elements, from the point when the step occurs in z(t), are simply the
partial sums of the impulse-response sequence.

This sequence of partial sums {3, 3+ B¢, 3+ B¢+ B¢?, ...} is described as
the step response. Given that |¢| < 1, the step response converges to a value

p
9 -7
(9) Ll
which is described as the steady-state gain or the long-term multiplier of the
transfer function.
These various concepts apply to models of any order. Consider the equa-

{707676+6¢76+6¢+6¢2,}

tion
(10) a(L)y(t) = B(L)x(t) +&(t),
where
a(L)=1+ao1L+ -+ a,LP
(11) =1—¢1L—-—¢pLP,
B(L) =1+ B L+ + BL"

are polynomials of the lag operator. The transfer-function form of the model
is simply

(12 () = S+ Sope),

The rational function associated with x(t) has a series expansion

B(2)
(13) o(z)

= w(z)
= {wo +wiz +we2® + -}

13
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and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

B()  Bo+Bi+-+ B

14 _ _ _
(14) 7 al)  l1+a1+-+a

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

Bo + iz
1 — 12 — P22

(15) = {wo +wiz +wr2® + - }.

We rewrite this equation as
(16) ﬁO“f’ﬁlZZ{1—¢1Z—¢222}{w0—|—w12—|—w222+...}_

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

Bo = wo, wo = Bo,
B1 = w1 — p1wo, w1 = B1 + p1wo,
(17) 0 =ws — P1w1 — Pawo, wa = P1w1 + Pawo,
0=wp — Prwn—1 — Pawpn_2, Wp = Q1Wn—1 + Pawp_2.

By examining this scheme, we are able to distinguish between the different roles
which are played by the numerator parameters 3y, 31 and the denominator pa-
rameters ¢1, ¢o. The parameters of the numerator serve as initial conditions
for the process which generates the impulse response. The denominator pa-
rameters determine the dynamic nature of the impulse response.

Consider the case where the impulse response takes the form a damped
sinusoid. This case arises when the roots of the equation a(z) = 1—¢z— 222 =
0 are a pair of conjugate complex numbers falling outside the unit circle—
as they are bound to do if the response is to be a damped one. Then the
parameters 3y and (1 are jointly responsible for the initial amplitude and for
the phase of the sinusoid. The phase is the time lag which displaces the peak
of the sinusoid so that it occurs after the starting time ¢ = 0 of the response,
which is where the peak of an undisplaced cosine response would occur.

The parameters ¢; and ¢2, on the other hand, serve to determine the
period of the sinusoidal fluctuations and the degree of damping, which is the
rate at which the impulse response converges to zero.

14
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It seems that all four parameters ought to be present in a model which
alms at capturing any of the dynamic responses of which a second-order system
is capable. To omit one of the numerator parameters of the model would be a
mistake unless, for example, there is good reason to assume that the impulse
response attains its maximum value at the starting time ¢ = 0. We are rarely
in the position to make such an assumption.

THE GEOMETRIC LAG SCHEME

An early approach to the problem of defining a lag structure which depends
on a limited number of parameters was that of Koyk who proposed the following
geometric lag scheme:

(1) y(t) = B{a(t) + ¢x(t — 1) + ¢°x(t —2) + - } +(2).

Here, although we have an infinite set of lagged values of x(t), we have only
two parameters which are 8 and ¢.

It can be seen that the impulse-response function of the Koyk model takes
a very restricted form. It begins with an immediate response to the impulse.
Thereafter, the response dies away in the manner of a convergent geometric
series, or of a decaying exponential function of the sort which also characterises
processes of radioactive decay.

The values of the coefficients in the Koyk distributed-lag scheme tend
asymptotically to zero; and so it can said that the full response is never accom-
plished in a finite time. To characterise the speed of response, we may calculate
the median lag which is analogous to the half-life of a process of radioactive
decay. The gain of the transfer function, which is obtained by summing the
geometric series {3, #3, *(, ...}, has the value of

) =105

To make the Koyk model amenable to estimation, we might first transform
the equation. By lagging the equation by one period and multiplying the result
by ¢, we get

3) oy(t—1)=p{pz(t—1)+¢’x(t —2)+ ¢’x(t —3) + - } + pe(t — 1).

Taking the latter from (1) gives

(4) y(t) — oyt — 1) = Ba(t) + {e(t) — ¢e(t — 1) }.
With the use of the lag operator, we can write this as
(5) (L= oL)y(t) = Ba(t) + (1 — ¢L)e(?),
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of which the rational form is

ﬁ xXr
1— oL

(6) y(t) = (t) +e(t).

In fact, by using the expansion

p
(7) 1-¢L

z(t) = {1+ ¢L + ¢L* +--- }x(t)
= B{a(t) + oot — 1) + du(t —2) + -}

within equation (6), we can recover the original form under (1).

Equation (4) is not amenable to consistent estimation by ordinary least
squares regression. The reason is that the composite disturbance term {e(t) —
¢e(t — 1)} is correlated with the lagged dependent variable y(t — 1)—since the
elements of e(t — 1) form part of the contemporaneous elements of y(t — 1).
This conflicts with one of the basic conditions for the consistency of ordinary
least-squares estimation which is that the disturbances must be uncorrelated
with the regressors. Nevertheless, there is available a wide variety of simple
procedures for estimating the parameters of the Koyk model consistently.

One of the simplest procedures for estimating the geometric-lag scheme is
based on the original form of the equation under (1). In view of that equation,
we may express the elements of y(¢) which fall within the sample as

(/)
yr = Z ¢i$t—i + ¢

i=0
(8) t—1 .
=0¢' + 3 Z O'ri_;i + €
i=0
= 00" + Bz + &4
Here

(9) ezﬁ{$0+¢x71+¢2x72+...}

is a nuisance parameter which embodies the presample elements of the sequence
x(t), whilst

(10) Zt :$t+¢xt—1 +"‘+¢t_1$1

is an explanatory variable compounded from the observations x¢, x;_1,..., 21
and from the value attributed to ¢.
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The procedure for estimating ¢ and ([ which is based on equation (8)
involves running a number of trial regressions with differing values of ¢ and
therefore of the regressors ¢! and z;; t = 1,...,T. The definitive estimates are
those which correspond to the least value of the residual sum of squares.

It is possible to elaborate this procedure so as to obtain the estimates of
the parameters of the equation

& 1

(11) v(t) = T2 + o

e(t),

which has a first-order autoregressive disturbance scheme in place of the white-
noise disturbance to be found in equation (6). An estimation procedure may
be devised which entails searching for the optimal values of ¢ and p within the
square defined by —1 < p,¢ < 1. There may even be good reason to suspect
that these values will be found within the quadrant defined by 0 < p, ¢ < 1.

The task of finding estimates of ¢ and p is assisted by the fact that we can
afford, at first, to ignore autoregressive nature of the disturbance process while
searching for the optimum value of the systematic parameter ¢.

When a value has been found for ¢, we shall have residuals which are con-
sistent estimates of the corresponding disturbances. Therefore, we can proceed
to fit the AR(1) model to the residuals in the knowledge that we will then
be generating a consistent estimate of the parameter p; and, indeed, we can
might use ordinary least-squares regression for this purpose. Having found the
estimate for p, we should wish to revise our estimate of ¢.

Lagged Dependent Variables

In spite of the relative ease with which one may estimate the Koyk model,
it has been common throughout the history of econometrics to adopt an even
simpler approach in the attempt to model the systematic dynamics.

Perhaps the easiest way of setting a regression equation in motion is to
include a lagged value of the dependent variable on the RHS in the company
of the explanatory variable x. The resulting equation has the form of

(12) y(t) = oy(t — 1) + Ba(t) + (1),

In terms of the lag operator, this is

(13) (1 —=oL)y(t) = Bx(t) +&(t),
of which the rational form is

1
(14) Wt) = T alt) + el
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The advantage of equation (12) is that it is amenable to estimation by
ordinary least-squares regression. Although the estimates will be biased in
finite samples, they are, nevertheless, consistent in the sense that they will
tend to converge upon the true values as the sample size increases—provided,
of course, that the model corresponds to the processes underlying the data.

The model with a lagged dependent variable generates precisely the same
geometric distributed-lag schemes as does the Koyk model. This can be con-
firmed by applying the expansion given under (7) to the rational form of the
present model given in equation (14) and by comparing the result with (1).
The comparison of equation (14) with the corresponding rational equation (6)
for the Koyk model shows that we now have an AR(1) disturbance process
described by the equation

(15) n(t) = ¢n(t —1) +&(t)

in place of a white-noise disturbance &(t).

This might be viewed as an enhancement of the model were it not for the
constraint that the parameter ¢ in the systematic transfer function is the same
as the parameter ¢ in the disturbance transfer function. For such a constraint
is appropriate only if it can be argued that the disturbance dynamics are the
same as the systematic dynamics—and they need not be.

To understand the detriment of imposing the constraint, let us imagine
that the true model is of the form given under (11) with p and ¢ taking very
different values. Imagine that, nevertheless, it is decided to fit the equation
under (14). Then the estimate of ¢ will be a biased and an inconsistent one
whose value falls somewhere between the true values of p and ¢ in equation
(11). If this estimate of ¢ is taken to represent the systematic dynamics of the
model, then our inferences about such matters as the speed of convergence of
the impulse response and the value of the steady-state gain are liable to be
misleading.

Partial Adjustment and Adaptive Expectations

There are some tenuous justifications both for the Koyk model and for the
model with a lagged dependent variable which arise from economic theory.
Consider a partial-adjustment model of the form

(16) y(t) = Myz(t)} + (1= Nyt —1) + (1),

where, for the sake of a concrete example, y(t) is current consumption, z(t)
is disposable income and vyz(t) = y*(¢t) is “desired”consumption. Here we
are supposing that habits of consumption persist, so that what is consumed
in the current period is a weighted combination of the previous consumption
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and present desired consumption. The weights of the combination depend on
the partial-adjustment parameter A € (0,1]. If A = 1, then the consumers
adjust their consumption instantaneously to the desired value. As A\ — 0, their
consumption habits become increasingly persistent. When the notation Ay = 3
and (1 — \) = ¢ is adopted, equation (16) becomes identical to equation (12)
which relates to a simple regression model with a lagged dependent variable.

An alternative model of consumers’ behaviour derives from Friedman’s Per-
manent Income Hypothesis. In this case, the consumption function is specified
as

(17) y(t) = dx™(t) + (1),
where

o (t) = (1 — ¢){@(t) + da(t — 1) + ¢*x(t —2) + - }
(18) 1—-¢

=15 72(t)
is the value of permanent or expected income which is formed as a geometrically
weighted sum of all past values of income. Here it is asserted that a consumer
plans his expenditures in view of his customary income, which he assesses by
taking a long view over all of his past income receipts.
An alternative expression for the sequence of permanent income is obtained
by multiplying both sides of (18) by 1 — ¢L and rearranging the result. Thus

(19) z*(t) — 2" (t — 1) ¢){z(t) —z*(t—1)},

which depicts the change of permanent income as a fraction of the prediction
error z(t) — x*(t — 1). The equation depicts a so-called adaptive-expectations
mechanism.

On substituting the expression for permanent income under (18) into the
equation (17) of the consumption function, we get

(1-9¢)
51—¢L

(20) y(t) = 2(t) + &(t).

When the notation 6(1 — ¢) = [ is adopted, equation (20) becomes identical
to the equation (6) of the Koyk model.

ERROR CORRECTION, NONSTATIONARITY
AND COINTERGRATED VARIABLES

In this note, we shall consider some of the methods that are available for mod-
elling tranfer function relationships which map non-stationary input sequences
into nonstationary outputs.
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We can begin by considering a first-order simple dynamic model of the
form

(1) y(t) = oyt — 1) + x(t)B +&(t).

Taking y(t — 1) from both sides of this equation gives

Vy(t) =y(t) —y(t —1) = (¢ = Dy(t — 1) + B(t) + (1)
2 — (=0 { {2 5a0 -yt 1) | +elt)
= Maalt) - y(t — 1)} +<(0),

where A = 1 — ¢ and where ~y is the gain of the transfer function which maps
from x(t) to y(¢). This is the so-called error-correction form of the equation;
and it indicates that the change in y(t) is a function of the extent to which
the proportions of the series x(¢) and y(¢ — 1) differs from those which would
prevail in the steady state.

The error-correction form provides the basis for estimating the parameters
of the model when the signal series x(t) is trended or nonstationary. In such
circumstances, it is easy to obtain an accurate estimate of v simply by running
a regression of y(t — 1) on x(t); for all that is required of the regression is that
it should determine the fundamental coefficient of proportionality which, in
the long term, dominates the relationship which exists between the two series.
Once a value for v is available, the remaining parameter A may be estimated
by regressing Vy(t) upon the composite variable {yz(t) — y(t — 1)}.

It is possible to derive an error-correction form for a more general model
denoted by

3) y(t) =yt —1) + -+ dpy(t —p) + Boz(t) + - + Bra(t — k) + (1)

We can proceed to reparametrise this model so that it assumes the equivalent
form of

y(t) =0yt —1) + p1Vy(t = 1) + -+ pp,Vy(t —p+1)

(4) Fra(t) + 8oVa(t) + - + 0pVa(t — k +1) +e(t),

where § = ¢1 +--- + ¢, and kK = By + - - - + [x. Now let us subtract y(t — 1)
from both sides of equation (4). This gives

Vy(t) =0 — Dyt — 1) + rkx(t)
(5) +p1Vy(t —1) + -+ ppVy(t —p+1)
+8VE(t) + -+ 0 Va(t — k+ 1) +e(b).
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The first two terms on the RHS combine to give

(6 — Dy(t —1) + ra(t) = (1 6) { —a(t) —y(t - 1)}

= Ma(t) —y(t — 1))

which is an error-correction term in which ~ is the value of the gain of the
tranfer function. It follows that the error-correction form of equation (3) is

(6)

p—1 k—1
(1) Vyt) =Mrzt) —y(t =D} + D piVy(t — i)+ > 6;Va(t —i) +&(t).
=1 1=0

In the case of a nonstationary signal x(t), this is amenable to precisely the
same principle of estimation as was the simpler first-order equation equation
under (2). That is to say, we can begin by estimating the gain v by a simple
regression of y(t — 1) on x(t). Then, when a value for v is available, we can
proceed to find the remaining parameters of the model via a second regression.

Example. To reveal the nature of the reparameterisation which transforms
equation (3) into equation (4), let us consider the following example:

Box(t) + Brz(t — 1) + Paz(t — 2) + Bzz(t — 3)

= {Bo+ P14 B2+ Bs}a(t) — {B1+ Po+ B3 }{a(t) —x(t — 1)}

(8) —{Be+ Bs}{z(t—1) —z(t—2)}
— B3{z(t —2) —z(t —3)}

= kax(t) + 0oVa(t) + 61V (t — 1) + 0o Va(t — 2).
The example may be systematised. Consider the product f’'z wherein x =
[z(t),x(t —1),z(t —2),x2(t — 3)]" and 5" =[5y, (1, B2, #3]. Let A be an arbitrary
nonsingular, i.e. invertible, matrix of order 4 x 4. Then 'z = {F'A~}{Az} =
8’z where z = Az and ¢’ = ’A~!. That is to say, the expression in terms of z

and ¢ is equivalent to the original expression in terms of x and 5. With these
results in mind, let us consider the following transformations:

1 0 0 O x(t) x(t)
9 -1 1 0 0of |z(t—=1)| _ —Vz(t)
9) 0 —1 1 0| |a@t-2)|" |-Va—1)
0 0 -1 11 Lz(t—3) —Vz(t — 2)
and
1 0 0 0
(10) [Bo B B2 [s3] 1 } (1) 8 =[k =0 -0 —d2]
1 1 1 1
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Here the two matrices which affect the transformation upon the variables and
upon their associated parameters stand in an inverse relationship to one an-
other. They are, in fact, the matrix analogues, repsctively, of the operators
1—Land (1-L)™!' = {1+L+L*+---}. The transformations provide a simple
example of what is entailed in converting equation (3) into equation (4).

Reparametrisation of Dynamic Models

In this note, we demonstrate a simple identity affecting polynomials in the lag
operator and we show how this can be used in describing relationships between
cointegrated time series. The same identity has been used to express an ARIMA
process as the sum of a stationary stochastic process and an ordinary random
walk. This expression is commonly know the Beveridge-Nelson decomposition
after its original proponents.

A Polynomial Identity

Let 3(2) = Bo + Brz+ -+ Bpz® = Z?:o ;27 be a polynomial of degree k
in the argument z. We wish to show that this can be written in the following
forms:

B(z) = B(1) + V(2)v(2)

(1) = 2"B(1) + V(2)dn(2),

where V(z) = 1 — z, where 0 < n < k and where v(z) and 6,(z) are both
polynomials of degree k — 1. Also, 3(1) is the constant which is obtained by
setting z = 1 in the polynomial 3(z).

To obtain the first expression on the RHS of (1), we divide ((z) by V(z) =
1 — z to obtain a quotient of y(z) and a remainder of 4:

(2) Bz) =~(2)(1 - 2) + 0.
Setting z = 1 in this equation gives
(3) 6 =p(1) =00+ b1+ + Bk

This is an instance of the well-known remainder theorem of polynomial division.
The coefficients of the quotient polynomial v(z) are given by

k
(4) Tp = — Z Bj, where p=0,...,k—1.
Jj=p+1

There is a wide variety of ways in which these coefficients may de derived,
including the familiar method of long division. Probably, the easiest way is via
the method of synthetic division which may be illustrated by an example.

22



TOPICS IN ECONOMETRICS 2002
Example. Consider the case where k = 3. Then

(5) Bo + Bz + B2z + B32° = (yo + 712 + 7227) (1 — 2) + 6.

By equating the coefficients associated with the same powers of z on either side
of the equation, we obtain the following identities:

Bz = —72

B2 =—71 + 72
(6) B

Pr=—+m

Bo =6 + 0.

These can be rearranged to give

Y2 = —03

1 =—F2+v =—(B2+ B3)
Yo=-B1+m =—(B1+ B2+ Bs3)
d0=0o—v% =B+ b1+ B2+ Gs.

(7)

To obtain the second expression on the RHS of (1), consider the identity
(8) 1=2"+V(E)(1+z+-+2"h),
where 1 < n < k. Multiplying both sides by (1) gives
(9) B(1) = 2"B(1) + V() {1+ 2+ + 2" }B(D),
On substituting this expression into the first equation of (1) and on defining
(10) On(2) =7(2) + {1+ 2z +---+2""1}B(1),
we can write
(11) B(z) = 2"B(1) + V(2)dn(2).

This is a general expression which covers both equations of (1), since setting
n = 0 reduces it to the first equation.

A leading instance is obtained by setting n = 1. In that case, equation (9)
gives B(1) = z0(1) + V(2)B(1). Substituting this into 5(z) = 5(1) + V(2)7v(z)
gives the following specialisation of equation (11):

B(z) = zB(1) + V(2){r(2) + B(1)}

(12) = 23(1) + V(2)61(2).
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By comparing coefficients associated with the same powers of z on both sides
of the equation, it can be seen that the constant term of the polynomial 01 (z)
is just By. Reference to (3) and (7) confirms this result.

Reparametrisation of a Distributed Lag Model

Consider a distributed-lag model of the form

(13) y(t) = Box(t) + ra(t — 1) + -+ + Bra(t — k) + &(t).
This can be written is summary notation as

(14) y(t) = B(L)x(t) + (1),

where 3(L) = g + 1L + - - + B L* is a polynomial in the lag operator L.
Using the basic identity from (1), we can set 3(L) = 3(1) + V4(L). Then
taking y(t — 1) from both sides of the resulting equation gives

(15) Vy(t) = {8z (t) —y(t = 1)} + Vo(L)z(t) + (1),
which is an error-correction formulation of equation (14).

Reparametrisation of an Autoregressive Distributed Lag Model

Now consider an equation in the form of

(16) y(t) = dry(t = 1) + -+ dpy(t — p) + Box(t) + - + Bex(t — k) + (),
which can be written is summary notation as

(17) a(L)y(t) = B(L)x(t) + (),

with (L) = ap + oy L + -+ + o, L = 1 — ¢ L — --- — ¢,LP. On setting
a(L) =a(l)L+6,(L)V and B(L) = B(1)L + 01(L)V, this can be rewritten as

(18) {a(D)L +0:(L)V}y(t) = {B(1)L + 61(L)V}x(t) + &(t),
where the leading element of 81 (L) is ag = 1. Define

(19) p(L) = p1L+ poL® + -+ p,LP =1 — 6,(L).
Then equation (18) can be rearranged to give

Vy(t) = {6(1) Lx(t) — (D) Ly(t)} + 01(L)Va(t) + p(L)Vy(t) + £(t)

(20) = Mya(t — 1) = y(t — 1)} + 6, (L)Va(t) + p(L)Vy(t) + &(t),
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where A = «(1) is the so-called adjustment parameter and where v = (1) /(1)
is the steady-state gain of the rational transfer function 3(L)/a(L). The term
vx(t — 1) — y(t — 1) is described as the equilibrium error; and the value of
the error will tend to zero if a steady state is maintained by x(¢) and if there
are no disturbances. Equation (20) is the classical form of the error-correction
equation.

The Beveridge—Nelson Decomposition

Consider an ARIMA model which is represented by the equation

(21) a(L)Vy(t) = p(L)e(t)

Dividing both sides by a(L) gives

(22) a(L)
= P(L)e(t),

where (L) stands for the power series expansion of the rational function. If
the coeflicients of this expansion form an absolutely summable sequence, then
(L) will be subject to a decomposition in the form of equation (1). Then

Vy(t) = (1)e(t) + A(L) Ve(t)
(23) = Vu(t) + Vw(t).

The first term on the RHS is Vo(t) = ¥(1)e(t). Here v(t) stands for a random
walk. The difference operator can be elimiated from the second term to give
w(t) = A(L)e(t), which stands for a stationary stochastic process.

For another perspective on this decomposition, we may consider the fol-
lowing partial-fraction decompostion:

(24) e v(2) Y

- IRCACN

whence setting z = 1 gives § = p(1)/a(1). Thereafter, we can find v(z) =

{1(2) = 6a(2)}/V(2).
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LEONTIEFF’S INPUT-OUTPUT ANALYSIS.

According to the postulate of Leontieff, the value x;; of goods shipped from
the ith sector of the economy to the jth sector is proportional to the activity
level z; of the latter: x;; = a;;x;. Also, the activity level of the ith sector is
reckoned as the sum of (the values of) the output, x;;, consumed within that
sector, the goods, x;;;j = 1,...,n, shipped to other sectors, and the goods, y;,
consumed in final demand.

Imagine a closed economy of three sectors which is characterised by the
following activity levels and trade flows:

T 100 r11 I12 T13 10 30 10 Y1 50
T2 = 200 ) To1 To22 I23 = 30 50 20 5 Y2 = 100
T3 100 r31 I3 I33 10 20 20 Y3 50

Construct the complete input—output table including a row for the value
added to each sector by factor services, and confirm that the various accounting
identities have been observed in the construction of the table.

Calculate the matrix A = a;;] of input-output coefficients. Use the
method of Gaussian elimination and the method of back-substitution to solve
the equation (I — A)xz = y to find the vector © = [x1, x5, x3]" of the activ-
ity levels in the three sectors when the levels of final demand are given by

y = [y1,y2,y3] = [60,120,60]".

Answer. The trade flows, the activity levels and the final demands are dis-
played in the following input—output table:

Final Total
Sector 1 Sector 2 Sector 8 Demand Demand
Sector 1 10 30 10 50 100
Sector 2 30 50 20 100 200
Sector 3 10 20 20 50 100
Factors 50 100 50 200
| Activity Level | 100 | 200 | 100 | [

The matrix A of input—output coefficients and the Leontieff matrix I — A

are
0.1 0.15 0.1 09 -0.15 -0.1
A=103 025 02|, I-A=|-03 075 -0.2
0.1 01 0.2 -0.1 -0.1 0.8
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Imagine that the vector of final demands becomes y = [y1,y2,y3] =
[60, 120, 60])". Then, to find the corresponding activity levels in z = [z, 22, 23],
we must solve the system (I — A)z = y. We have

09 -0.15 -0.1 T1 60 0.9 -0.15 -0.1 T1 60
-03 07 =02 o | = 120 <= [ =09 225 0.6 x2 | = | 360
-0.1 —-0.1 0.8 x3 60 -09 -09 7.2 x3 540

Adding the first row to the second row and to the third gives

09 -015 -0.1 1 60 09 —-0.15 -0.1 1 60
0.0 21 -0.7 o | = 1420 <= (0.0 2.1 0.7 zo | = | 420
0.0 —-1.05 7.1 3 600 0.0 =21 14.2 T3 1200

Adding the second row of the final expression to the third row gives the following
triangular system:

09 -015 -0.1 T1 60
0.0 21 -0.7 zo | = | 420
0.0 0.0 13.5 3 1620

The solution of this system is

rs = 120, To = 240, Tr1 = 120.
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