
TOPICS IN ECONOMETRICS 1998: BOCCONI

SOME STATISTICAL PROPERTIES OF THE OLS ESTIMATOR

The expectation or mean vector of β̂, and its dispersion matrix as well,
may be found from the expression

(13)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

The expectation is

(14)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus β̂ is an unbiased estimator. The deviation of β̂ from its expected value is
β̂ −E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains the
variances and covariances of the elements of β̂, is

(15)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.

The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of β̂, although it
may also be characterised in terms of the determinant of the dispersion matrix
D(β̂). Thus

(16) If β̂ is the ordinary least-squares estimator of β in the classical
linear regression model, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂) where q is any constant
vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β which implies that AX = I. Now let us write A =
(X ′X)−1X ′ + G. Then AX = I implies that GX = 0. It follows that

(17)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′

}
= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.
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Therefore, for any constant vector q of order k, there is the identity

(18)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

CHARACTERISTIC ROOTS AND VECTORS
OF A SYMMETRIC MATRIX

Let A be an n× n symmetric matrix such that A = A′, and imagine that
the scalar λ and the vector x satisfy the equation Ax = λx. Then λ is a
characteristic root of A and x is a corresponding characteristic vector. We also
refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(11) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2

with λ1 6= λ2, then x′1x2 = 0.

Proof. Premultiplying the defining equations by x′2 and x′1 respectively, gives
x′2Ax1 = λ1x

′
2x1 and x′1Ax2 = λ2x

′
1x2. But A = A′ implies that x′2Ax1 =

x′1Ax2, whence λ1x
′
2x1 = λ2x

′
1x2. Since λ1 6= λ2, it must be that x′1x2 = 0.

The characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a characteristic vector of A such
that Ax = λx. Then multiplying the equation by a scalar µ gives A(µx) =
λ(µx) or Ay = λy; so y = µx is another characteristic vector corresponding to
λ.

(12) If P = P ′ = P 2 is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) =
P (λx) = λ2x = λx, which implies that λ = λ2. This is possible only when
λ = 0, 1.

The Diagonalisation of a Symmetric Matrix

Let A be an n×n symmetric matrix, and let x1, . . . , xn be a set of n linearly
independent characteristic vectors corresponding to its roots λ1, . . . , λn. Then
we can form a set of normalised vectors

c1 =
x1√
x′1x1

, . . . , cn =
xn√
x′nxn

,
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which have the property that

c′icj =
{ 0, if i 6= j;

1, if i = j.

The first of these reflects the condition that x′ixj = 0. It follows that C =
[c1, . . . , cn] is an orthonormal matrix such that C ′C = CC ′ = I.

Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn] which can also
be written as AC = CΛ where Λ = Diag{λ1, . . . , λn} is the matrix with λi as
its ith diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C ′ gives ACC ′ = A = CΛC ′; and premultiplying
by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′ and C ′AC = Λ; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/
√

λi so that
D′D = Λ−1 and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′

and postmultiplying it by D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where
T = D′C ′. Also, T ′T = CDD′C ′ = CΛ−1C ′ = A−1. Thus we have shown that

(13) For any symmetric matrix A = A′, there exists a matrix T such
that TAT ′ = I and T ′T = A−1.

COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(1)
y = Xβ̂ + (y −Xβ̂) and

y −Xβ = (Xβ̂ −Xβ) + (y −Xβ̂),

where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in
terms of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I−P )y =
y−Xβ̂ = e. Using the definition ε = y−Xβ within the second of the equations,
we have

(2)
y = Py + (I − P )y and

ε = Pε + (I − P )ε.

The reason for rendering the equation in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
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using the fact that P = P ′ = P 2 and the fact that P ′(I − P ) = 0, it can be
established that

(3)
ε′ε = ε′Pε + ε′(I − P )ε or

ε′ε = (Xβ̂ −Xβ)′(Xβ̂ −Xβ) + (y −Xβ̂)′(y −Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I − P )ε
as the vertical side and ε as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is β0. To test this notion, we
compare the value of Xβ0 with the estimated mean vector Xβ̂. The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This would be given by
ε′Pε = (Xβ̂−Xβ0)′(Xβ̂−Xβ0) if the hypothesis were true. If the hypothesis
is untrue and if Xβ0 is remote from the true value of Xβ, then the distance is
liable to be excessive. The distance can only be assessed in comparison with
the variance σ2 of the disturbance term or with an estimate thereof. Usually,
one has to make do with the estimate of σ2 which is provided by

(4)
σ̂2 =

(y −Xβ̂)′(y −Xβ̂)
T − k

=
ε′(I − P )ε

T − k
.

The numerator of this estimate is simply the squared length of the vector
e = (I − P )y = (I − P )ε which constitutes the vertical side of the right-angled
triangle.

The test uses the result that

(5) If y ∼ N(Xβ, σ2I) and if β̂ = (X ′X)−1X ′y, then

F =

{
(Xβ̂ −Xβ)′(Xβ̂ −Xβ)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

is distributed as an F (k, T − k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:

(6) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and
identically distributed elements. Also let P = X(X ′X)−1X ′ be a
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symmetric idempotent matrix, such that P = P ′ = P 2, which is
constructed from a matrix X of order T × k with Rank(X) = k.
Then

ε′Pε

σ2
+

ε′(I − P )ε
σ2

=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents
the sum of two independent chi-square variates ε′Pε/σ2 ∼ χ2(k)
and ε′(I −P )ε/σ2 ∼ χ2(T − k) of k and T − k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X(X ′X)−1X ′. First consider the fact that X ′X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation
T such that T (X ′X)T ′ = I and T ′T = (X ′X)−1. Therefore P = XT ′TX ′ =
C1C

′
1, where C1 = XT ′ is a T × k matrix comprising k orthonormal vectors

such that C ′1C1 = Ik is the identity matrix of order k.
Now define C2 to be a complementary matrix of T−k orthonormal vectors.

Then C = [C1, C2] is an orthonormal matrix of order T such that

(7)

CC ′ = C1C
′
1 + C2C

′
2 = IT and

C ′C =
[

C ′1C1 C ′1C2

C ′2C1 C ′2C2

]
=
[

Ik 0
0 IT−k

]
.

The first of these results allows us to set I − P = I − C1C
′
1 = C2C

′
2. Now,

if ε ∼ N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT ,
then it follows that C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C ′ε, we find
that

(8)
[

C ′1ε
C ′1ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2It−k

])
,

which is to say that C ′1ε ∼ N(0, σ2Ik) and C ′2ε ∼ N(0, σ2IT−k) are indepen-
dently distributed normal vectors. It follows that

(9)

ε′C1C
′
1ε

σ2
=

ε′Pε

σ2
∼ χ2(k) and

ε′C2C
′
2ε

σ2
=

ε′(I − P )ε
σ2

∼ χ2(T − k)

are independent chi-square variates. Since C1C
′
1 +C2C

′
2 = IT , the sum of these

two variates is

(10)
ε′C1C

′
1ε

σ2
+

ε′C2C
′
2ε

σ2
=

ε′ε

σ2
∼ χ2(T );
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and thus the theorem is proved.
The statistic under (5) can now be expresed in the form of

(11) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
.

This is manifestly the ratio of two chi-sqaure variates divided by their respec-
tive degrees of freedom; and so it has an F distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector β.

DYNAMIC REGRESSION MODELS: TRANSFER FUNCTIONS

Consider a simple dynamic model of the form

(1) y(t) = φy(t− 1) + x(t)β + ε(t).

With the use of the lag operator, we can rewrite this as

(2) (1− φL)y(t) = βx(t) + ε(t)

or, equivalently, as

(3) y(t) =
β

1− φL
x(t) +

1
1− φL

ε(t).

The latter is the so-called rational transfer-function form of the equation. We
can replace the operator L within the transfer functions or filters associated
with the signal sequence x(t) and disturbance sequence ε(t) by a complex num-
ber z. Then, for the transfer function associated with the signal, we get

(4)
β

1− φz
= β

{
1 + φz + φ2z2 + · · ·

}
,

where the RHS comes from a familiar power-series expansion.
The sequence {β, βφ, βφ2, . . .} of the coefficients of the expansion consti-

tutes the impulse response of the transfer function. That is to to say, if we
imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(5) x(t) = {. . . , 0, 1, 0, 0, . . .},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(6) r(t) = {. . . , 0, β, βφ, βφ2, . . .}.
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Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(7) x(t) = {. . . , 0, 1, 1, 1, . . .}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(8) s(t) = {. . . , 0, β, β + βφ, β + βφ + βφ2, . . .}

whose elements, from the point when the step occurs in x(t), are simply the
partial sums of the impulse-response sequence.

This sequence of partial sums {β, β +βφ, β +βφ+βφ2, . . .} is described as
the step response. Given that |φ| < 1, the step response converges to a value

(9) γ =
β

1− φ

which is described as the steady-state gain or the long-term multiplier of the
transfer function.

These various concepts apply to models of any order. Consider the equa-
tion

(10) α(L)y(t) = β(L)x(t) + ε(t),

where

(11)

α(L) = 1 + α1L + · · ·+ αpL
p

= 1− φ1L− · · · − φpL
p,

β(L) = 1 + β1L + · · ·+ βkL
k

are polynomials of the lag operator. The transfer-function form of the model
is simply

(12) y(t) =
β(L)
α(L)

x(t) +
1

α(L)
ε(t),

The rational function associated with x(t) has a series expansion

(13)
β(z)
α(z)

= ω(z)

=
{
ω0 + ω1z + ω2z

2 + · · ·
}
;
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and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

(14) γ =
β(1)
α(1)

=
β0 + β1 + · · ·+ βk
1 + α1 + · · ·+ αp

.

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

(15)
β0 + β1z

1− φ1z − φ2z2
=
{
ω0 + ω1z + ω2z

2 + · · ·
}
.

We rewrite this equation as

(16) β0 + β1z =
{
1− φ1z − φ2z

2
}{

ω0 + ω1z + ω2z
2 + · · ·

}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(17)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

By examining this scheme, we are able to distinguish between the different roles
which are played by the numerator parameters β0, β1 and the denominator pa-
rameters φ1, φ2. The parameters of the numerator serve as initial conditions
for the process which generates the impulse response. The denominator pa-
rameters determine the dynamic nature of the impulse response.

Consider the case where the impulse response takes the form a damped
sinusoid. This case arises when the roots of the equation α(z) = 1−φz−φ2z

2 =
0 are a pair of conjugate complex numbers falling outside the unit circle—
as they are bound to do if the response is to be a damped one. Then the
parameters β0 and β1 are jointly responsible for the initial amplitude and for
the phase of the sinusoid. The phase is the time lag which displaces the peak
of the sinusoid so that it occurs after the starting time t = 0 of the response,
which is where the peak of an undisplaced cosine response would occur.

The parameters φ1 and φ2, on the other hand, serve to determine the
period of the sinusoidal fluctuations and the degree of damping, which is the
rate at which the impulse response converges to zero.
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It seems that all four parameters ought to be present in a model which
aims at capturing any of the dynamic responses of which a second-order system
is capable. To omit one of the numerator parameters of the model would be a
mistake unless, for example, there is good reason to assume that the impulse
response attains its maximum value at the starting time t = 0. We are rarely
in the position to make such an assumption.

DYNAMIC REGRESSION MODELS: LAGGED DEPENDENT

VARIABLES AND AUTOREGRESSIVE DISTURNANCES

Models with Lagged-Dependent Variables

The reactions of economic agents, such as consumers or investors, to changes in
their environment resulting, for example, from changes in prices or incomes, are
never instantaneous. The changes are likely to be distributed over time; and
positions of equilibrium, if they are ever attained, are likely to be approached
gradually.

The slowness to respond may be due to two factors. In the first place, there
will be time delays in the transmission and the reception of the information
upon which the agents base their actions. In the second place, costs will be
entailed in the process of adapting to the new circumstances; and these costs are
liable to be positively related to the speed and to the extent of the adjustments.
For these reasons, it is appropriate to make some provision in econometric
equations for dynamic responses which are distributed over time.

The easiest way of setting an econometric equation in motion is to in-
troduce an element of feedback. This is done by including one or more lagged
values of the dependent variable on the right-hand side of the equation to stand
in the company of the other explanatory variables. It transpires that, if the
current disturbance is unrelated to the lagged dependent variables, then the
standard results concerning the consistency of the ordinary least-squares re-
gression procedure retain their validity. This is despite the fact that we can
no longer assert that the ordinary least-square estimates of the parameters are
unbiased in finite samples.

If the current disturbances and the lagged-dependent variables which are
included on the RHS of a dynamic regression equation are not unrelated, then
resulting parameter estimates are liable to suffer from considerable biases. The
biases are worst when the variance of the disturbance process is large relative
to the variances of the explanatory variables.

The essential nature of the problem can be illustrated via a simple model
which includes only a lagged dependent variable and which has no other ex-
planatory variables. Imagine that the disturbances follow a first-order autore-
gressive process. Then there are two equations to be considered. The first of
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these is the regression equation

(18) y(t) = y(t− 1)β + η(t), where |β| < 1,

and the second is the equation

(19) η(t) = ρη(t− 1) + ε(t), where |ρ| < 1,

which describes the autoregressive disturbance process. Here ε(t) stands for an
unobservable white-noise process which generates a sequence of independently
and identically distributed random variables which are assumed to be inde-
pendent of the elements of y(t) which precede them in time. The conditions
on the parameters β and ρ are necessary to ensure the stability of the model.
That is to say, they are necessary conditions for the attainment of a long-run
equilibrium in the dynamic response.

Equations (18) and (19), it will be observed, have the same mathematical
form. Using the lag operator L, we may rewrite them, in slightly different
forms, as

(20) (I − βL)y(t) = η(t) and η(t) =
ε(t)

I − ρL
.

Combining the latter gives

(21) (I − ρL)(I − βL)y(t) =
{
I − (ρ + β)L + ρβL2

}
y(t) = ε(t).

What we have here is just a particular rendering of the equation

(22) (I − β1L− β2L
2)y(t) = ε(t)

which relates to the regression of the sequence y(t) on itself lagged by one and
by two periods. The only restriction which is entailed by writing the equation
in the form of (21) derives from the implication that ρ and β are real-valued
coefficients. In the case of equation (22), the corresponding values λ1 and λ2,
which would be obtained by factorising the the polynomial

(23) 1 + β1z + β2z
2 = (1− λ1z)(1− λ2z),

might be complex numbers. In that case, the two equations (21) and (22)
would have different implications regarding their dynamic responses to the
disturbances in ε(t).

Now consider the effect of fitting a model with a single lagged value from
the sequence y(t) in the role of the explanatory variable. This can be described
as the endeavour to estimate the parameter β of equation (18) by applying
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ordinary least-squares regression to the equation whilst overlooking the serially
correlated nature of the disturbance sequence η(t).

Both y(t) and η(t) are serially correlated sequences which are linked to
each other via equation (18). Therefore the current elements of η(t) will be
correlated with both past, current and future values of y(t). This means that
the essential condition on which the consistency of the ordinary least-squares
estimator depends is violated.

On substituting the expression yt = (ρ + β)yt−1 − ρβyt−2 + εt into the
regression formula, we derive the following expression for the estimate:

(24)

β̂ =
∑

yt−1yt∑
y2
t−1

= (ρ + β)
∑

y2
t−1∑

y2
t−1

− ρβ

∑
yt−1yt−2∑

y2
t−1

+
∑

yt−1εt∑
y2
t−1

.

It is straightforward to take limits in the expression as the sample size T in-
creases. Let β̂ → δ as T →∞. Then the equation above becomes the equation

(25) δ = (β + ρ)− βρδ.

The final term on the RHS of (24) vanishes since, according to the assumptions,
the elements of ε(t) are uncorrelated with elements of y(t) which precede them
in time. Rearranging equation (25) gives the result that

(26) δ =
ρ + β

1 + ρβ
.

Notice that the expression for δ is symmetric with respect of ρ and β.
However, we have tended to regard β as the regression parameter and ρ as
the parameter of an autoregressive disturbance process. This distinction now
appears to be false. However, if y(t − 1) on the RHS of equation (18) were
standing in the company of another explanatory variable, say x(t), then the
distinction would be a valid one.

Now let us imagine, for the sake of argument, that ρ→ 0. Then it is clear
that δ → β. Since the variance of the process η(t) is related positively to the
value of ρ, it can be said that the bias in β is directly related to the variance
of the serially-correlated disturbance process. Exactly the same result obtains
when y(t− 1) is accompanied in the regression equation by other explanatory
variables.

DYMAMIC MOEDLS: ERROR CORRECTION FORMS,

NONSTATIONARITY AND COINTERGRATED VARIABLES

11
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Consider taking y(t − 1) from both sides of the equation under (1). This
gives

(27)

∇y(t) = y(t)− y(t− 1) = (φ− 1)y(t− 1) + βx(t) + ε(t)

= (1− φ)
{

β

1− φ
x(t)− y(t− 1)

}
+ ε(t)

= λ
{
γx(t)− y(t− 1)

}
+ ε(t),

where λ = 1−φ and where γ is the gain of the transfer function as defined under
(9). This is the so-called error-correction form of the equation; and it indicates
that the change in y(t) is a function of the extent to which the proportions of
the series x(t) and y(t− 1) differs from those which would prevail in the steady
state.

The error-correction form provides the basis for estimating the parameters
of the model when the signal series x(t) is trended or nonstationary. In such
circumstances, it is easy to obtain an accurate estimate of γ simply by running
a regression of y(t− 1) on x(t); for all that is required of the regression is that
it should determine the fundamental coefficient of proportionality which, in
the long term, dominates the relationship which exists between the two series.
Once a value for γ is available, the remaining parameter λ may be estimated
by regressing ∇y(t) upon the composite variable {γx(t)− y(t− 1)}.

It is possible to derive an error-correction form for the more general model
to be found under (10). We may begin by writing the model in the form of

(28) y(t) = φ1y(t− 1) + · · ·+ φpy(t− p) + β0x(t) + · · ·+ βkx(t− k) + ε(t).

We can proceed to reparametrise this model so that it assumes the equivalent
form of

(29)
y(t) = θy(t− 1) + ρ1∇y(t− 1) + · · ·+ ρp∇y(t− p + 1)

+κx(t) + δ0∇x(t) + · · ·+ δk∇x(t− k + 1) + ε(t),

where θ = φ1 + · · · + φp and κ = β0 + · · · + βk. Now let us subtract y(t − 1)
from both sides of equation (29). This gives

(30)
∇y(t) =(θ − 1)y(t− 1) + κx(t)

+ ρ1∇y(t− 1) + · · ·+ ρp∇y(t− p + 1)
+ δ0∇x(t) + · · ·+ δk∇x(t− k + 1) + ε(t).

The first two terms on the RHS combine to give

(31)
(θ − 1)y(t− 1) + κx(t) = (1− θ)

{
κ

1− θ
x(t)− y(t− 1)

}
= λ

{
γx(t)− y(t− 1)

}
12
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which is an error-correction term in which γ is the value of the gain defined in
(14) above. It follows that the error-correction form of equation (28) is

(32) ∇y(t) = λ
{
γx(t)− y(t− 1)

}
+
p−1∑
i=1

ρi∇y(t− i) +
k−1∑
i=0

δi∇x(t− i) + ε(t).

In the case of a nonstationary signal x(t), this is amenable to precisely the
same principle of estimation as was the simpler first-order equation equation
under (27). That is to say, we can begin by estimating the gain γ by a simple
regression of y(t − 1) on x(t). Then, when a value for γ is available, we can
proceed to find the remaining parameters of the model via a second regression.

Example. To reveal the nature of the reparameterisation which transforms
equation (28) into equation (29), let us consider the following example:

(33)

β0x(t) + β1x(t− 1) + β2x(t− 2) + β3x(t− 3)

=
{
β0 + β1 + β2 + β3

}
x(t)−

{
β1 + β2 + β3

}{
x(t)− x(t− 1)

}
−
{
β2 + β3

}{
x(t− 1)− x(t− 2)

}
− β3

{
x(t− 2)− x(t− 3)

}
= κx(t) + δ0∇x(t) + δ1∇x(t− 1) + δ2∇x(t− 2).

The example may be systematised. Consider the product β′x wherein x =
[x(t), x(t− 1), x(t− 2), x(t− 3)]′ and β′ = [β0, β1, β2, β3]. Let Λ be an arbitrary
nonsingular, i.e. invertible, matrix of order 4× 4. Then β′x = {β′Λ−1}{Λx} =
δ′z where z = Λx and δ′ = β′Λ−1. That is to say, the expression in terms of z
and δ is equivalent to the original expression in terms of x and β. With these
results in mind, let us consider the following transformations:

(34)


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




x(t)
x(t− 1)
x(t− 2)
x(t− 3)

 =


x(t)
−∇x(t)
−∇x(t− 1)
−∇x(t− 2)


and

(35) [β0 β1 β2 β3 ]


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 = [κ −δ0 −δ1 −δ2 ] .

Here the two matrices which affect the transformation upon the variables and
upon their associated parameters stand in an inverse relationship to one an-
other. They are, in fact, the matrix analogues, repsctively, of the operators
1−L and (1−L)−1 = {1+L+L2 + · · ·}. The transformations provide a simple
example of what is entailed in converting equation (28) into equation (29).

13
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Answer THREE questions in TWO HOURS

1. Prove that the characteristic vectors x1, . . . , xn of an n×n symmetric matrix
corresponding to n distinct roots λ1, . . . , λn are mutually orthogonal.

Show how we can reduce a symmetric matrix to a diagonal matrix using
an orthonormal matrix, and thence prove that, for any symmetric matrix
Q, there exists a matrix T such that TQT ′ = I and T ′T = Q−1. Using the
latter result, show how the generalised least-squares estimator of β in the
model (y;Xβ, σ2Q) may be obtained as the ordinary least-squares estimator
of the regression parameters of a transformed model.

2. Describe the essential differences between the permanent-income and the
partial-adjustment models of consumption behaviour, both in respect of
their mathematical formulations and their behavioral implications.

Describe and account for the distortions which might affect the estimates
if a parsimonious model of the form

α(L)y(t) = β(L)x(t) + ε(t)

were fitted to data generated by an equation in the form of

y(t) =
δ(L)
γ(L)

x(t) +
θ(L)
φ(L)

ε(t).

3. Demonstrate the unbiasedness of the estimators β̂ = (X ′X)−1X ′y and σ̂2 =
(y −Xβ̂)′(y −Xβ̂)/(T − k) in the classical regression model (y;Xβ, σ2I).

Prove that V (q′β̂) ≤ V (q′β∗) where β∗ is any other linear unbiased estima-
tor of β and q is an arbitrary nonstochastic vector.
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4. Explain what is mean by the phase, the amplitude, the damping and the pe-
riod of a complex impulse response generated by a rational transfer function
in the form of

ω(z) =
β0 + β1z

1− φ1z − φ2z2
.

Explain why all four coefficients β0, β1, φ1 and φ2 must be present if the
transfer function is to provide a sufficiently flexible means of representing
complex dynamic behaviour.

Show how the coefficients of the series expansion of ω(z) may be obtained,
and find the first four coefficients in the case where β0 = 1, β2 = 3, φ1 =
−0.5 and φ2 = 0.9. Is this response complex or not and is it damped or
explosive?

5. Consider the model
y(t) = y(t− 1)β + η(t)

wherein
η(t) = ρη(t− 1) + ε(t)

is a sequence of disturbances generated by a first-order autoregressive pro-
cess which is driven by a white-noise sequence ε(t) of independently and
identically distributed random variables. Show that the estimate of β, ob-
tained by applying the ordinary least-squares procedure, would tend to the
value of (β + ρ)/(1 + ρβ) as the size of the sample increases.

Imagine that the model

y(t) = β1y(t− 1) + β2y(t− 2) + ε(t)

is fitted to the data via the ordinary least-squares procedure. What values
would you expect to obtain for β1 and β2 in the limit, as the size of the
sample increases indefinitely?

6. Let P = X(X ′X)−1X ′, where X is the matrix of explanatory variables
within the regression equation y = Xβ + ε which comprises a vector ε ∼
N(0, σ2I) of normally distributed disturbances. Demonstrate that

ε′ε

σ2
=

ε′Pε

σ2
+

ε′(I − P )ε
σ2

represents the decomposition of a chi-square variate ε′ε/σ2 ∼ χ2(T ) into a
pair of independent chi-square variates ε′Pε/σ2 ∼ χ2(k) and ε′(I − P )ε/σ2

∼ χ2(T − k). What is the practical use of this result?
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