TOPICS IN ECONOMETRICS 1996/97

SOME STATISTICAL PROPERTIES OF THE OLS ESTIMATOR

The expectation or mean vector of B, and its dispersion matrix as well,
may be found from the expression

(13) g = (X'X)_lX’_(Xﬁ +e)
=B+ (X'X) X,

The expectation is

E(f) =B+ (X'X)"'X'E(e)

(14)
- 3.

Thus B 1is an unbiased estimator. The deviation of B from its expected value is

B —E(B)=(X'X)"'X'e. Therefore the dispersion matrix, which contains the

variances and covariances of the elements of (3, is

D(3) = E[{B - B} - B))]
(15) = (X'X)'X'E(ee) X (X'X)7!
=3 X'X)"L

The Gauss—Markov theorem asserts that B is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of B, although it
may also be characterised in terms of the determinant of the dispersion matrix

~

D(f). Thus

(16) If B is the ordinary least-squares estimator of 3 in the classical
linear regression model, and if §* is any other linear unbiased
estimator of (3, then V(¢'5*) > V(q’B) where ¢ is any constant
vector of the appropriate order.

Proof. Since §* = Ay is an unbiased estimator, it follows that E(3*)
AE(y) = AX(B = [ which implies that AX = I. Now let us write A =
(X’X)"'X’'+ G. Then AX = I implies that GX = 0. It follows that

D(p") = AD(y) A’
= o {(X'X)' X'+ GHX(X'X)"' + G}
=2 X' X)) +0*Ga
= D(B) + 0*Ga'.

(17)

1



TOPICS IN ECONOMETRICS 1996/97

Therefore, for any constant vector ¢ of order k, there is the identity

(18) V(q'8") = q¢'D(B)g + 0*dGG'q
> ¢'D(B)q = V(' B);

and thus the inequality V(¢’8*) > V(¢/f) is established.

ORTHOGONALITY AND OMITTED-VARIABLES BIAS

Let us now investigate the effect that a condition of orthogonality amongst
the regressors might have upon the ordinary least-squares estimates of the
regression parameters. Let us take the partitioned regression model of equation
(109) which was written as

(166) y:[Xl,Xg] |:g;1 +€:X1ﬁ1 +X2ﬁ2+€.

We may assume that the variables in this equation are in deviation form. Let
us imagine that the columns of X; are orthogonal to the columns of X5 such
that X{Xo = 0. This is the same as imagining that the empirical correlation
between variables in X7 and variables in X5 is zero.

To see the effect upon the ordinary least-squares estimator, we may exam-
ine the partitioned form of the formula 3 = (X’X)~!X’y. Here we have

v | X XX X Xe| | X1Xy 0

aenxx= [ o =[5 TR = [

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X’X in the case of X| X5 =0 is

-1
rvy-1_ [ X1Xi 0 _ [ 0
(168) (XX _{ 0 X3Xa| | 0 (x|
We also have
X! X/
(169) X'y:{ ﬂy:{ ﬂ
X5 Xoy

On combining these elements, we find that

(170) [?1]:{@”1)1 0 [ < e

B2 0 (X5X2)™H ] L X3y (X5X2) 1 X3y
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In this special case, the coefficients of the regression of y on X = [X7, X5] can
be obtained from the separate regressions of y on X; and y on Xo.

We should make it clear that this result does not hold true in general. The
general formulae for Bl and Bg are those which we have given already under
(112) and (117):

B = (X1X1) "' X (y — Xofo),

(171) ) )
By = {X5(I — P)Xy )} ' X5(I— Py, Pr= X1 (X X1) X

We can easily confirm that these formulae do specialise to those under (170) in
the case of X1 X5 =0.

The purpose of including X5 in the regression equation when, in fact, our
interest is confined to the parameters of ; is to avoid falsely attributing the
explanatory power of the variables of X5 to those of Xj.

Let us investigate the effects of erroneously excluding X5 from the regres-
sion. In that case, our estimate will be

B = (X1X1) ' X1y
(172) = (X1X1) 7' X[ (X181 + Xofa + )
= B1 + (X1 X1) ' X[ XaB + (X1 X1) ' X]e.

On applying the expectations operator to these equations, we find that
(173) E(B1) = B + (X1X1) 7' X{ Xo 0,

since E{(X|X1) ' Xje} = (X|X1)"1X{E(¢) = 0. Thus, in general, we have
E(ﬁl) # (31, which is to say that 3, is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X{ X5 = 0 or
B2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of

such instruments are provided by interest rates, tax rates, exchange rates and
the like.
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On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|z1,...,xx) which specifies the conditional expectation of y given
the values of x1,...,x,—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness of the regression parameters does not arise.

COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector § in the model
N(y; X3,02%I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

y=XB+(y—XB) and

(1) . .
y—Xp=(Xp—-XpB)+(y—Xp),

where the second equation comes from subtracting the unknown mean vector
X3 from both sides of the first. These equations can also be expressed in
terms of the projector P = X (X'X)~1X’ which gives Py = X3 and (I —P)y =
y—X B = e. Using the definition ¢ = y— X 3 within the second of the equations,
we have

y=Py+(I—-P)y and

(2)

e = Pe+ (I — P)e.
The reason for rendering the equation in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
using the fact that P = P’ = P? and the fact that P/(I — P) = 0, it can be
established that

gle=e'Pe+e'(I—P)e  or

(3) . . . .
e = (XP - XPB)(XB—XB)+ (y— XB)'(y — XB).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pe at the base, (I — P)e
as the vertical side and ¢ as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector 3 is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is (5. To test this notion, we
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compare the value of X3y with the estimated mean vector X /3’ The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This would be given by
¢’ Pe = (XB — Xﬁo)’(XB — X f3p) if the hypothesis were true. If the hypothesis
is untrue and if Xy is remote from the true value of X3, then the distance is
liable to be excessive. The distance can only be assessed in comparison with
the variance o2 of the disturbance term or with an estimate thereof. Usually,
one has to make do with the estimate of 0? which is provided by

s2_ (W—XB)'(y— XP)

T—k
() eI —-P)
T T—k

The numerator of this estimate is simply the squared length of the vector
e = (I — P)y = (I — P)e which constitutes the vertical side of the right-angled
triangle.

The test uses the result that

(5) If y ~ N(X3,0%I) and if 3 = (X’X)"' X"y, then

b { (X3 - XB)(XB - XB) / (y—XB)'(y— XB) }
k T—k

is distributed as an F'(k,T — k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:

(6) Let ¢ ~ N(0,02%Ir) be a random vector of T' independently and
identically distributed elements. Also let P = X(X'X)~'X’ be a
symmetric idempotent matrix, such that P = P’ = P2, which is
constructed from a matrix X of order 7" x k with Rank(X) = k.

Then /p "I P) .
e¢'Pe ¢&'(I—P)e ¢£e
2 T 2 - 27 X*(T),
o

o g

which is a chi-square variate of T' degrees of freedom, represents
the sum of two independent chi-square variates &' Pe/o? ~ x?(k)
and ¢'(I — P)e/o? ~ x*(T — k) of k and T — k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X (X'X)~1X’. First consider the fact that X’X is a symmetric

5
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positive-definite matrix. It follows that there exists a matrix transformation
T such that T(X'X)T" = I and T'T = (X'X)~!. Therefore P = XT'TX' =
C1C1, where C; = XT" is a T x k matrix comprising k orthonormal vectors
such that C1Cy = I} is the identity matrix of order k.

Now define C5 to be a complementary matrix of T'—k orthonormal vectors.
Then C = [C}, (5] is an orthonormal matrix of order T" such that

cC' = ClC{ + CQCé =Ir and

cic, O] [I 0
Ly C4Cs | T |0 Ir_p |

(7) o {

The first of these results allows us to set I — P = [ — C;C] = CyC%. Now,
if ¢ ~ N(0,02I7) and if C is an orthonormal matrix such that C'C = I,
then it follows that C’e ~ N(0,0%Ir). In effect, if ¢ is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C' is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C’e, we find
that

® it = (] 170" n]),

which is to say that Cfe ~ N(0,0%1}) and Che ~ N(0,0%Ir_;) are indepen-
dently distributed normal vectors. It follows that

e'C1Cle €' Pe

(9) 2 = oz ~X(k) and
9
e'CyChe  &(I — P)e
o2 2 = o2 ~ X2 (T - k)

are independent chi-square variates. Since CC{ + CoC% = I, the sum of these
two variates is

e'C1Cle  e'CyChe e
2 + 2 = o2 ~ XQ(T)Q

(10)

o g

and thus the theorem is proved.
The statistic under (5) can now be expresed in the form of

) e'Pe [~ P)e
. o fere Jeure)

This is manifestly the ratio of two chi-sqaure variates divided by their respec-
tive degrees of freedom; and so it has an I’ distribution with these degrees of
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freedom. This result provides the means for testing the hypothesis concerning
the parameter vector [3.

CHARACTERISTIC ROOTS AND VECTORS
OF A SYMMETRIC MATRIX

Let A be an n X n symmetric matrix such that A = A’, and imagine that
the scalar A and the vector z satisfy the equation Ax = Azx. Then A is a
characteristic root of A and z is a corresponding characteristic vector. We also
refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(11) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Axy = A\iz1 and Axs = Aoxo
with A1 # Ag, then zjxs = 0.

Proof. Premultiplying the defining equations by zf, and x| respectively, gives
xhAxy = Mzhry and 2] Axg = Aexixe. But A = A’ implies that x5 Az, =
x Axo, whence \jxhary = Aoxxe. Since A\ # g, it must be that xfzs = 0.

The characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a characteristic vector of A such
that Az = Az. Then multiplying the equation by a scalar p gives A(ux) =
Apx) or Ay = Ay; so y = px is another characteristic vector corresponding to

A

(12) If P = P = P?is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P2, it follows that, if Px = Az, then P?x = Az or P(Px) =
P(A\x) = A2z = Az, which implies that A = \2. This is possible only when
A=0,1.

The Diagonalisation of a Symmetric Matrix

Let A be an n xn symmetric matrix, and let 1, ..., x, be a set of n linearly
independent characteristic vectors corresponding to its roots A1,..., A,. Then
we can form a set of normalised vectors

1 T,
C1 = cee y, Cp = 5

/ ) !
VLS TpTn

which have the property that
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The first of these reflects the condition that zjz; = 0. It follows that C' =
[c1,...,¢y] is an orthonormal matrix such that C'C = CC’ =

Now consider the equation Alcy, ..., c,] = [Aic1, ..., Apey] which can also
be written as AC = CA where A = Diag{\q,...,\,} is the matrix with \; as
its ¢th diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C’ gives ACC’' = A = CAC’; and premultiplying
by C’ gives C'AC = C'CA = A. Thus A = CAC’ and C'AC = A; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/1/A; so that
D'D = A=! and D’AD = I. Premultiplying the equation C'AC = A by D’
and postmultiplying it by D gives D'C'ACD = D'AD = I or TAT' = I, where
T =D'C'. Also, T'T = CDD'C' = CA='C’" = A~'. Thus we have shown that

(13) For any symmetric matrix A = A’, there exists a matrix T such
that TAT' =1 and T'T = A~ 1.

SEEMINGLY-UNRELATED REGRESSION EQUATIONS

The Algebra of the Kronecker Product. Consider the matrix equation
Y = AX B’ where

Y =lyul;k:=1,...,rl=1,...,s,
X = [mij];i = Laomyji=1,...,n,
M A=lagi;k:=1,...;ri=1,...,m,
B = [bj;];1 s S i =1,...,n.

The object is to reformulate this matrix equation so that it can be treated as
an ordinary vector equation. Amongst the advantages which this will entail
is the possibility of solving the equation by the methods which are commonly
applied in finding the solutions to vector equations.

Therefore consider writing Y = AX B’ more explicitly as

[9.179.27 s 7y.8] - A[CL’.]_,IE.Q, .- 71:11][ /1.7 /2.7 .. ab;]

(2) -
= [Az1, Az, ..., Ax ,][b] , b5 ... bs]

In this notation, the expression z ; stands for the jth column of the matrix X
whilst the notation b;. stands for the Ith row of B. Therefore the transposed
vector b, = [bj1, bi2, ..., bin]’ is a column vector of n elements—as it must be if
the multiplication of the two expressions on the RHS of (2) is to be properly

8



TOPICS IN ECONOMETRICS 1996/97

defined. By performing that multiplication, we find that

[Y1,Y2,- 95| = [{b11Azx 1 + bigAx o+ -+ - + b1, Az, b,
(3) {bglA.’B,l + bQQA.fC.Q + -+ anASC.n}, RN

{bslAm.l + szAx.Z + -+ bsnAxn}

Here, each of the expressions on the the RHS within braces {, } stands for one
of the vectors y.1,v.2,...,y.s on the LHS. These LHS vectors may be stacked
vertically one below the other to form long vectors. When the RHS of the
equation is rearranged likewise, a system is derived which takes the form of

Y biiA bi2A ... b,A T

Y.2 batA b A ... by, A| | o
(4) N : : :

y.s bslA bSQA e bsnA T n

The system can be written is a summary notation as
(5) Y= (AXB)*=(B® A)X".

Here the long vectors Y and X ¢ are derived simply by slicing the matrices and
rearranging the columns in the manner which we have described. The matrix
B ® A = [b;A], whose (Ij)th partition contains the matrix b;; A, is described
as the Kronecker product of B and A.

The following rules govern the use of the Kronecker product:

(i

(ii

) (A® B)(C® D)= AC & BD,
(6) )

)

)

A (B+C)=(A®B)+ (A® B),
(iii) MA®B)=M®B=A® AB,
(A B ' =(A"1'®B™).

(iv

The Kronecker product is non-commutative, which is to say that AQ B # BR A.
However, observe that

(7) AR B=(A®I1)I®B)=(I®B)(A®I).

Systems with Multiple Outputs. The typical regression equation describes
a system which transforms k£ observable inputs and a stochastic disturbance into

9
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a single output. We now wish to consider a system which produces M outputs.
Consider, therefore, the equations

[ytlayt2v e 7th] - [xt.ﬁ.lwrt.ﬁQv e 7xt./8,M] + [€t1v€t27 e aetM]
=24 [B1,B82, -, B + g1, €02, -+ €]

(8)
Here the generic equation is

(9) Ytm = xt.ﬁ.m + Etm;

and this has the form of a single regression equation. In a notation which mixes
matrices and vectors, the system under (8) may be written as

(10) Yr. = T4 B + e,

where B = [31,0.2, -, m], and T realisations of the latter may be compiled
to give the equation

(11) Y = XB+6,
or
(12) [y.17y.27 T 7Z/M] - [x.lax.2a e ,.flfk]B + [6.175.27 e 7€.M]-

When the latter equation is vectorised, we have
(13) Y¢=(XBI)*+&=(I®X)B°+£&°,

which can be written more explicitly as

Y X 0 ... 0 B.1 €1 X6 €1

Y.2 0O X ... 0 B2 €2 X B2 €2
4) 1. | =" : o : T

Y.s 0 0 ... XJLgum EM XB m EM

Some assumptions must now be made regarding the disturbance terms
of the model. We shall assume that, taken separately, the M equations
YemTt. Pom + Etmst = 1,...T,m = 1,..., M have the stochastic structure of
the classical linear model; which is to say that the disturbances are indepen-
dently and identically distributed with an expected value of zero and a common
variance. However, we shall assume that the M contemporaneous disturbances
in the vector e, = [e41,. .., &) have nonzero covariances such that

(15) D(gs) = E(eher) =X = [oyu] forall ¢

10
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Thus, if e.m and €.l are vectors of 1" disturbances from the equations vy ,, =
XB.m+emand y; = X3, + e, respectively, then we should have

E(em)=E(;)=0 and
(16) D(e ) = 0mmlIr, D(ei)=oulr,

C(am» E.I) = UmlITu

where C(e p,e1) = E(e.pnme’)) is the covariance matrix of the two vectors.
Putting these assumptions together, we get

(17) EE)=0 and D(&°) = E(E€Y =2 Ir.
It may be appropriate to write these in a manner which makes them more

explicit. First there is the assumption concerning the expected value of the
long vector of disturbances. Writing this vector in transposed form gives

(18) E(ECI):E[€/155/27aelM]:[O’ 0;70]

The assumptions concerning the dispersion matrix of this vector can be written
as

€1 1€y eaely .. eaey

€9 s eqey €928y ... €28y
/ / /

(19) 6.M 5_M5‘1 E.MS.Q . .. 8-M€.M
UlllT UlQIT Ce O'1MIT

UZIIT O'QQIT Ce O'QMIT

UMllT O'MQIT UMMIT

It is common to denote the regression model y = X3 + ¢ in which E(e) =
0 and E(e) = 02Q by the triplet (y; X3,0%Q). Using the same notation,
we may now denote the vectorised version of the model with M outputs as
(Ye,(I ® X)B¢, ¥ ® I). It is apparent that the two models are isomorphic,
which is to say that they share the same structure. Therefore it is possible to
estimate the parameters of the M-output model, once it has been cast in the
appropriate form, by using methods which have been developed in the context
of a single-equation model.

The approrpriate method is generalised least-squares regression. When it
is applied to the model (y; X/3,02Q), this method delivers the estimate B =

11
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(X'Q71X)71X'Q~'y. When it is applied to the M-equation model the method
delivers the estimate

—1

(200 B= {(I@X)’(Z@I)_1(1®X)} I®X)(Sel)'ve

The algebraic rules under (6) can now be invoked to simplify this result. It can
be see that

B=C"1'eX'X) (2o X))ty
(21) ={I®(X'X)"'X'}Y*
={(X'X)"'X'Y}".

Thus it transpires that the efficient system-wide estimator amounts to nothing
more than the repeated application of the ordinary least-squares procedure to
generate the regression estimates 3., = (X'X)"'X'Y,;m=1,...,M.

We can use the residual vectors e ,,, = y.;m—X B,m from these M estimations
to derive estimates of the elements of ¥ = [0,,;]. Thus an unbiased estimator
of o, 18

¢ mer (Y — XBm) (ya — XB4)
T—k T—k
Y - X(X'X) T X Yy

— - .

Oml =

(22)

The reduction of the system-wide estimator to an M-fold application of
ordinary least-square regression occurs only when all the variables in X are
present in each of the M equations and when no other variables are present in
any of them. If some of the variables are missing, or if we have a priori infor-
mation relating to the parameter vectors 3,,;m = 1,..., M, then, to obtain
efficient estimates, we must use the available information on Y. For example,
let X, be the submatrix containing only those variables which are present in
the mth equation. Then the system of equations assumes the following form:

Y Xl 0 0 61 €1

Yo 0 XQ Ce 0 ﬁg €9
(23) I . A

Y.s 0 0 ... Xum O EM

This can be written in summary notation as
(24) Ye=W¢+ &

12
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Now the block-diagonal or “staircase” matrix X no longer has the structure of a
Kronecker product. Nor can the subvectors of §' = [3], B, ..., 8}, be stacked
together in a matrix B, for the reason that they are liable to be of different
lengths. The efficient generalised least-squares estimator of the parameters now
takes the form of

(25) S={w'(E e} ' WE e )Y
and there in no longer any possibility of simplifying or reducing the expression.

DYNAMIC REGRESSION MODELS: TRANSFER FUNCTIONS
Consider a simple dynamic model of the form

(1) y(t) = y(t — 1) +a(t)5 + (1),

With the use of the lag operator, we can rewrite this as

(2) (1= oL)y(t) = Ba(t) +e(t)

or, equivalently, as

Q yt) = T palt) + el

The latter is the so-called rational transfer-function form of the equation. We
can replace the operator L within the transfer functions or filters associated
with the signal sequence x(t) and disturbance sequence £(t) by a complex num-
ber z. Then, for the transfer function associated with the signal, we get

B 2.2
4 = 1 + oz + z5+ - ,
(1) e AR AR )
where the RHS comes from a familiar power-series expansion.

The sequence {3, 8¢, 3¢?%, ...} of the coefficients of the expansion consti-
tutes the impulse response of the transfer function. That is to to say, if we
imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(5) z(t) ={...,0,1,0,0,...},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(6) r(t) ={...,0,8, B¢, B¢%, ...}

13
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Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(7) z(t)=1{...,0,1,1,1,...}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(8) s(t)

whose elements, from the point when the step occurs in z(t), are simply the
partial sums of the impulse-response sequence.

This sequence of partial sums {3, 3+ B¢, 3+ B¢+ B¢?, ...} is described as
the step response. Given that |¢| < 1, the step response converges to a value

p
9 -7
(9) Ll
which is described as the steady-state gain or the long-term multiplier of the
transfer function.
These various concepts apply to models of any order. Consider the equa-

{707676+6¢76+6¢+6¢2,}

tion
(10) a(L)y(t) = B(L)x(t) +&(t),
where
a(L)=1+ao1L+ -+ a,LP
(11) =1—¢1L—-—¢pLP,
B(L) =1+ B L+ + BL"

are polynomials of the lag operator. The transfer-function form of the model
is simply

(12 () = S+ Sope),

The rational function associated with x(t) has a series expansion

B(2)
(13) o(z)

= w(z)
= {wo +wiz +we2® + -}

14
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and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

B()  Po+Bi+-+ B

14 _ _ _
(14) 7 al)  l1+a1+-+a

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

Bo + iz
1 — 12 — P22

(15) = {wo +wiz +wr2® + - }.

We rewrite this equation as
(16) ﬁO“f’ﬁlZZ{1—¢1Z—¢222}{w0—|—w12—|—w222+...}_

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

Bo = wo, wo = Bo,
B1 = w1 — p1wo, w1 = B1 + p1wo,
(17) 0 =ws — P1w1 — Pawo, wa = P1w1 + Pawo,
0=wp — Prwn—1 — Pawpn_2, Wp = Q1Wn—1 + Pawp_2.

By examining this scheme, we are able to distinguish between the different roles
which are played by the numerator parameters 3y, 31 and the denominator pa-
rameters ¢1, ¢o. The parameters of the numerator serve as initial conditions
for the process which generates the impulse response. The denominator pa-
rameters determine the dynamic nature of the impulse response.

Consider the case where the impulse response takes the form a damped
sinusoid. This case arises when the roots of the equation a(z) = 1—¢z— 222 =
0 are a pair of conjugate complex numbers falling outside the unit circle—
as they are bound to do if the response is to be a damped one. Then the
parameters 3y and (1 are jointly responsible for the initial amplitude and for
the phase of the sinusoid. The phase is the time lag which displaces the peak
of the sinusoid so that it occurs after the starting time ¢ = 0 of the response,
which is where the peak of an undisplaced cosine response would occur.

The parameters ¢; and ¢2, on the other hand, serve to determine the
period of the sinusoidal fluctuations and the degree of damping, which is the
rate at which the impulse response converges to zero.
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It seems that all four parameters ought to be present in a model which
alms at capturing any of the dynamic responses of which a second-order system
is capable. To omit one of the numerator parameters of the model would be a
mistake unless, for example, there is good reason to assume that the impulse
response attains its maximum value at the starting time ¢ = 0. We are rarely
in the position to make such an assumption.

DYNAMIC REGRESSION MODELS:
THE GEOMETRIC LAG SCHEME

Anr early approach to the problem of defining a lag structure which de-
pends on a limited number of parameters was that of Koyk who proposed the
following geometric lag scheme:

(256) = B{z(t) + gx(t — 1) + *z(t —2) + - } +&(t)

Here, although we have an infinite set of lagged values of x(t), we have only
two parameters which are 3 and ¢.

It can be seen that the impulse-response function of the Koyk model takes
a very restricted form. It begins with an immediate response to the impulse.
Thereafter, the response dies away in the manner of a convergent geometric
series, or of a decaying exponential function of the sort which also characterises
processes of radioactive decay.

The values of the coefficients in the Koyk distributed-lag scheme tend
asymptotically to zero; and so it can said that the full response is never accom-
plished in a finite time. To characterise the speed of response, we may calculate
the median lag which is analogous to the half-life of a process of radioactive
decay. The gain of the transfer function, which is obtained by summing the
geometric series {3, 3, $?3, ...}, has the value of

(257) v = %

To make the Koyk model amenable to estimation, we might first transform
the equation. By lagging the equation by one period and multiplying the result
by ¢, we get

(258) ¢y(t—1) = B{oa(t — 1) + ¢*a(t = 2) + $°x(t = 3) + - } + ¢e(t — 1).
Taking the latter from (256) gives

(259) y(t) — gy(t — 1) = Bz (t) + {e(t) — ¢e(t — 1) }.
With the use of the lag operator, we can write this as
(260) (L= oL)y(t) = Ba(t) + (1 — ¢L)e(?),
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of which the rational form is

g

(261) Wt = e

(t) + ().

In fact, by using the expansion

p
(262) 1—oL

z(t) = {1+ ¢L + ¢L* +--- }x(t)
= B{a(t) + oot — 1) + du(t —2) + -}

within equation (261), we can recover the original form under (256).

Equation (259) is not amenable to consistent estimation by ordinary least
squares regression. The reason is that the composite disturbance term {e(t) —
¢e(t — 1)} is correlated with the lagged dependent variable y(t — 1)—since the
elements of e(t — 1) form part of the contemporaneous elements of y(t — 1).
This conflicts with one of the basic conditions for the consistency of ordinary
least-squares estimation which is that the disturbances must be uncorrelated
with the regressors. Nevertheless, there is available a wide variety of simple
procedures for estimating the parameters of the Koyk model consistently.

One of the simplest procedures for estimating the geometric-lag scheme
is based on the original form of the equation under (256). In view of that
equation, we may express the elements of y(¢) which fall within the sample as

(/)
yr = B Z ¢i$t—i + ¢

i=0
(263) =
=00+ Z P'rii + €t
i=0
= 9¢t + ﬁzt + &¢.
Here

(264) 0 = B{wo+ dr_1+ ¢*x_o+ -}

is a nuisance parameter which embodies the presample elements of the sequence
x(t), whilst

(265) 2t = Tt + ¢$t_1 + -+ ¢t_1$1

is an explanatory variable compounded from the observations x¢, x;_1,..., 21
and from the value attributed to ¢.

17
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The procedure for estimating ¢ and ( which is based on equation (263)
involves running a number of trial regressions with differing values of ¢ and
therefore of the regressors ¢! and z;; t = 1,...,T. The definitive estimates are
those which correspond to the least value of the residual sum of squares.

It is possible to elaborate this procedure so as to obtain the estimates of
the parameters of the equation

& 1

(266) y(t) = 1_¢Lm(t)+ =)L

e(t),

which has a first-order autoregressive disturbance scheme in place of the white-
noise disturbance to be found in equation (261). An estimation procedure may
be devised which entails searching for the optimal values of ¢ and p within the
square defined by —1 < p,¢ < 1. There may even be good reason to suspect
that these values will be found within the quadrant defined by 0 < p, ¢ < 1.

The task of finding estimates of ¢ and p is assisted by the fact that we can
afford, at first, to ignore autoregressive nature of the disturbance process while
searching for the optimum value of the systematic parameter ¢.

When a value has been found for ¢, we shall have residuals which are con-
sistent estimates of the corresponding disturbances. Therefore, we can proceed
to fit the AR(1) model to the residuals in the knowledge that we will then
be generating a consistent estimate of the parameter p; and, indeed, we can
might use ordinary least-squares regression for this purpose. Having found the
estimate for p, we should wish to revise our estimate of ¢.

Lagged Dependent Variables

In spite of the relative ease with which one may estimate the Koyk model,
it has been common throughout the history of econometrics to adopt an even
simpler approach in the attempt to model the systematic dynamics.

Perhaps the easiest way of setting a regression equation in motion is to
include a lagged value of the dependent variable on the RHS in the company
of the explanatory variable x. The resulting equation has the form of

(267) y(t) = dy(t — 1) + Ba(t) +<(t).

In terms of the lag operator, this is

(268) (1 —oL)y(t) = Bx(t) + &(t),
of which the rational form is

I} 1
1_¢Lm(t)—|— 1_¢L5(t).

(269) y(t) =

18
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The advantage of equation (267) is that it is amenable to estimation by
ordinary least-squares regression. Although the estimates will be biased in
finite samples, they are, nevertheless, consistent in the sense that they will
tend to converge upon the true values as the sample size increases—provided,
of course, that the model corresponds to the processes underlying the data.

The model with a lagged dependent variable generates precisely the same
geometric distributed-lag schemes as does the Koyk model. This can be con-
firmed by applying the expansion given under (262) to the rational form of
the present model given in equation (269) and by comparing the result with
(256). The comparison of equation (269) with the corresponding rational equa-
tion (261) for the Koyk model shows that we now have an AR(1) disturbance
process described by the equation

(270) n(t) = ¢n(t — 1) +(t)

in place of a white-noise disturbance &(t).

This might be viewed as an enhancement of the model were it not for the
constraint that the parameter ¢ in the systematic transfer function is the same
as the parameter ¢ in the disturbance transfer function. For such a constraint
is appropriate only if it can be argued that the disturbance dynamics are the
same as the systematic dynamics—and they need not be.

To understand the detriment of imposing the constraint, let us imagine
that the true model is of the form given under (266) with p and ¢ taking very
different values. Imagine that, nevertheless, it is decided to fit the equation
under (269). Then the estimate of ¢ will be a biased and an inconsistent one
whose value falls somewhere between the true values of p and ¢ in equation
(266). If this estimate of ¢ is taken to represent the systematic dynamics of
the model, then our inferences about such matters as the speed of convergence
of the impulse response and the value of the steady-state gain are liable to be
misleading.

Partial Adjustment and Adaptive Expectations

There are some tenuous justifications both for the Koyk model and for the
model with a lagged dependent variable which arise from economic theory.
Consider a partial-adjustment model of the form

(271) y(t) = Myz(t)} + (1= Nyt —1) +=(t),

where, for the sake of a concrete example, y(t) is current consumption, x(t)
is disposable income and vyz(t) = y*(¢) is “desired”consumption. Here we
are supposing that habits of consumption persist, so that what is consumed
in the current period is a weighted combination of the previous consumption
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and present desired consumption. The weights of the combination depend on
the partial-adjustment parameter A € (0,1]. If A = 1, then the consumers
adjust their consumption instantaneously to the desired value. As A\ — 0, their
consumption habits become increasingly persistent. When the notation Ay = 3
and (1 —\) = ¢ is adopted, equation (271) becomes identical to equation (267)
which relates to a simple regression model with a lagged dependent variable.

An alternative model of consumers’ behaviour derives from Friedman’s Per-
manent Income Hypothesis. In this case, the consumption function is specified
as

(272) y(t) = 6x* (t) + £(t),
where

2 (t) = (1— ){z(t) + da(t — 1) + ¢*x(t —2) + -+ }
(273) _ 11_—¢¢L ()

is the value of permanent or expected income which is formed as a geometrically
weighted sum of all past values of income. Here it is asserted that a consumer
plans his expenditures in view of his customary income, which he assesses by
taking a long view over all of his past income receipts.

An alternative expression for the sequence of permanent income is obtained
by multiplying both sides of (273) by 1 — ¢L and rearranging the result. Thus

(274) o*(t) —a*(t —1) o) {x(t) —z*(t — 1)},

which depicts the change of permanent income as a fraction of the prediction
error z(t) — x*(t — 1). The equation depicts a so-called adaptive-expectations
mechanism.

On substituting the expression for permanent income under (273) into the
equation (272) of the consumption function, we get

S1=9)

(275) vt = o7

x(t) + e(t).

When the notation §(1 — ¢) = 3 is adopted, equation (275) becomes identical
to the equation (261) of the Koyk model.
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