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SOME STATISTICAL PROPERTIES OF THE OLS ESTIMATOR

The expectation or mean vector of β̂, and its dispersion matrix as well,
may be found from the expression

(1)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

The expectation is

(2)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus β̂ is an unbiased estimator. The deviation of β̂ from its expected value is
β̂ −E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains the
variances and covariances of the elements of β̂, is

(3)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.

The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of β̂, although it
may also be characterised in terms of the determinant of the dispersion matrix
D(β̂). Thus

(4) If β̂ is the ordinary least-squares estimator of β in the classical
linear regression model, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂) where q is any constant
vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β which implies that AX = I. Now let us write A =
(X ′X)−1X ′ + G. Then AX = I implies that GX = 0. It follows that

(5)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′

}
= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.
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Therefore, for any constant vector q of order k, there is the identity

(6)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

2. THE PARTITIONED REGRESSION MODEL
AND OMITTED VARIABLES BIAS

Consider taking a regression equation in the form of

(1) y = [X1 X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

Here [X1, X2] = X and [β′1, β
′
2]
′ = β are obtained by partitioning the matrix X

and vector β of the equation y = Xβ +ε in a conformable manner. The normal
equations X ′Xβ = X ′y can be partitioned likewise. Writing the equations
without the surrounding matrix braces gives

X ′1X1β1 + X ′1X2β2 = X ′1y,(2)

X ′2X1β1 + X ′2X2β2 = X ′2y.(3)

From (2), we get the equation X ′1X1β1 = X ′1(y−X2β2) which gives an expres-
sion for the leading subvector of β̂ :

(4) β̂1 = (X ′1X1)−1X ′1(y −X2β̂2).

To obtain an expression for β̂2, we must eliminate β1 from equation (3). For
this purpose, we multiply equation (2) by X ′2X1(X ′1X1)−1 to give

(5) X ′2X1β1 + X ′2X1(X ′1X1)−1X ′1X2β2 = X ′2X1(X ′1X1)−1X ′1y.

When the latter is taken from equation (3), we get

(6)
{

X ′2X2 −X ′2X1(X ′1X1)−1X ′1X2

}
β2 = X ′2y −X ′2X1(X ′1X1)−1X ′1y.

On defining

(7) P1 = X1(X ′1X1)−1X ′1,

can we rewrite (6) as

(8)
{

X ′2(I − P1)X2

}
β2 = X ′2(I − P1)y,
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whence

(9) β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y.

Let us now by investige the effect that a condition of orthogonality amongst
the regressors might have upon the ordinary least-squares estimates of the
regression parameters. Let us consider a partitioned regression model which
can be written as

(10) y = [X1, X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

We may assume that the variables in this equation are in deviation form. Let
us imagine that the columns of X1 are orthogonal to the columns of X2 such
that X ′1X2 = 0. This is the same as imagining that the empirical correlation
between variables in X1 and variables in X2 is zero.

To see the effect upon the ordinary least-squares estimator, we may exam-
ine the partitioned form of the formula β̂ = (X ′X)−1X ′y. Here we have

(11) X ′X =
[

X ′1
X ′2

]
[X1 X2 ] =

[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
=
[

X ′1X1 0
0 X ′2X2

]
,

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X ′X in the case of X ′1X2 = 0 is

(12) (X ′X)−1 =
[

X ′1X1 0
0 X ′2X2

]−1

=
[

(X ′1X1)−1 0
0 (X ′2X2)−1

]
.

We also have

(13) X ′y =
[

X ′1

X ′2

]
y =

[
X ′1y

X ′2y

]
.

On combining these elements, we find that

(14)

[
β̂1

β̂2

]
=
[

(X ′1X1)−1 0

0 (X ′2X2)−1

] [
X ′1y

X ′2y

]
=
[

(X ′1X1)−1X ′1y

(X ′2X2)−1X ′2y

]
.

In this special case, the coefficients of the regression of y on X = [X1, X2] can
be obtained from the separate regressions of y on X1 and y on X2.

We should make it clear that this result does not hold true in general. The
general formulae for β̂1 and β̂2 are those which we have given already under
(4) and (9):

(15)
β̂1 = (X ′1X1)−1X ′1(y −X2β̂2),

β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y, P1 = X1(X ′1X1)−1X ′1.
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We can easily confirm that these formulae do specialise to those under (14) in
the case of X ′1X2 = 0.

The purpose of including X2 in the regression equation when, in fact, our
interest is confined to the parameters of β1 is to avoid falsely attributing the
explanatory power of the variables of X2 to those of X1.

Let us investigate the effects of erroneously excluding X2 from the regres-
sion. In that case, our estimate will be

(16)

β̃1 = (X ′1X1)−1X ′1y

= (X ′1X1)−1X ′1(X1β1 + X2β2 + ε)

= β1 + (X ′1X1)−1X ′1X2β2 + (X ′1X1)−1X ′1ε.

On applying the expectations operator to these equations, we find that

(17) E(β̃1) = β1 + (X ′1X1)−1X ′1X2β2,

since E{(X ′1X1)−1X ′1ε} = (X ′1X1)−1X ′1E(ε) = 0. Thus, in general, we have
E(β̃1) 6= β1, which is to say that β̃1 is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X ′1X2 = 0 or
β2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of
such instruments are provided by interest rates, tax rates, exchange rates and
the like.

On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|x1, . . . , xk) which specifies the conditional expectation of y given
the values of x1, . . . , xn—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness the regression parameters does not arise.
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CHARACTERISTIC ROOTS AND VECTORS
OF A SYMMETRIC MATRIX

Let A be an n× n symmetric matrix such that A = A′, and imagine that
the scalar λ and the vector x satisfy the equation Ax = λx. Then λ is a
characteristic root of A and x is a corresponding characteristic vector. We also
refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(1) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2

with λ1 6= λ2, then x′1x2 = 0.

Proof. Premultiplying the defining equations by x′2 and x′1 respectively, gives
x′2Ax1 = λ1x

′
2x1 and x′1Ax2 = λ2x

′
1x2. But A = A′ implies that x′2Ax1 =

x′1Ax2, whence λ1x
′
2x1 = λ2x

′
1x2. Since λ1 6= λ2, it must be that x′1x2 = 0.

In x1 and x2 are two linearly independent vectors corresponding to the
same root λ, such that Ax1 = λx1 and Ax2 = λx2, then they span a two-
dimensional characteristic subspace. Within this subspace, it is possible to
find two mutually orthogonal vectors which can be added to the set of the
characteristic vectors of A.

More generally, if there exists a set x1, . . . , xp of p linearly independent
vectors such that Axi = λxi; i = 1, . . . , p, then λ is described as a characteristic
root of multiplicity p; and a set of p mutually orthogonal characteristic vectors
can be found which correspond to λ.

A characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a vector such that Ax = λx.
Then multiplying the equation by a scalar µ gives A(µx) = λ(µx) or Ay = λy;
so y = µx is another characteristic vector corresponding to λ.

(2) If P = P ′ = P 2 is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) =
P (λx) = λ2x = λx, which implies that λ = λ2. This is possible only when
λ = 0, 1.

The Diagonalisation of a Symmetric Matrix

Let A be an n×n symmetric matrix, and let x1, . . . , xn be a set of n linearly
independent characteristic vectors corresponding to its roots λ1, . . . , λn. Then
we can form a set of normalised vectors

(3) c1 =
x1√
x′1x1

, . . . , cn =
xn√
x′nxn

,
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which have the property that

(4) c′icj =
{ 0, if i 6= j;

1, if i = j.

The first of these reflects the condition that x′ixj = 0. It follows that C =
[c1, . . . , cn] is an orthonormal matrix such that C ′C = CC ′ = I.

Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn] which can also
be written as AC = CΛ where Λ = Diag{λ1, . . . , λn} is the matrix with λi as
its ith diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C ′ gives ACC ′ = A = CΛC ′; and premultiplying
by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′ and C ′AC = Λ; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/
√

λi so that
D′D = Λ−1 and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′

and postmultiplying it by D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where
T = D′C ′. Also, T ′T = CDD′C ′ = CΛ−1C ′ = A−1. Thus we have shown that

(5) For any symmetric matrix A = A′, there exists a matrix T such
that TAT ′ = I and T ′T = A−1.

COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(1)
y = Xβ̂ + (y −Xβ̂) and

y −Xβ = (Xβ̂ −Xβ) + (y −Xβ̂),

where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in
terms of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I−P )y =
y−Xβ̂ = e. Using the definition ε = y−Xβ within the second of the equations,
we have

(2)
y = Py + (I − P )y and

ε = Pε + (I − P )ε.

The reason for rendering the equation in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
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using the fact that P = P ′ = P 2 and the fact that P ′(I − P ) = 0, it can be
established that

(3)
ε′ε = ε′Pε + ε′(I − P )ε or

ε′ε = (Xβ̂ −Xβ)′(Xβ̂ −Xβ) + (y −Xβ̂)′(y −Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I − P )ε
as the vertical side and ε as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is β0. To test this notion, we
compare the value of Xβ0 with the estimated mean vector Xβ̂. The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This would be given by
ε′Pε = (Xβ̂−Xβ0)′(Xβ̂−Xβ0) if the hypothesis were true. If the hypothesis
is untrue and if Xβ0 is remote from the true value of Xβ, then the distance is
liable to be excessive. The distance can only be assessed in comparison with
the variance σ2 of the disturbance term or with an estimate thereof. Usually,
one has to make do with the estimate of σ2 which is provided by

(4)
σ̂2 =

(y −Xβ̂)′(y −Xβ̂)
T − k

=
ε′(I − P )ε

T − k
.

The numerator of this estimate is simply the squared length of the vector
e = (I − P )y = (I − P )ε which constitutes the vertical side of the right-angled
triangle.

The test uses the result that

(5) If y ∼ N(Xβ, σ2I) and if β̂ = (X ′X)−1X ′y, then

F =

{
(Xβ̂ −Xβ)′(Xβ̂ −Xβ)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

is distributed as an F (k, T − k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:
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(6) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and
identically distributed elements. Also let P = X(X ′X)−1X ′ be a
symmetric idempotent matrix, such that P = P ′ = P 2, which is
constructed from a matrix X of order T × k with Rank(X) = k.
Then

ε′Pε

σ2
+

ε′(I − P )ε
σ2

=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents
the sum of two independent chi-square variates ε′Pε/σ2 ∼ χ2(k)
and ε′(I −P )ε/σ2 ∼ χ2(T − k) of k and T − k degrees of freedom
respectively.

To prove this result, we begin by finding an alternative expression for the
projector P = X(X ′X)−1X ′. First consider the fact that X ′X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation
T such that T (X ′X)T ′ = I and T ′T = (X ′X)−1. Therefore P = XT ′TX ′ =
C1C

′
1, where C1 = XT ′ is a T × k matrix comprising k orthonormal vectors

such that C ′1C1 = Ik is the identity matrix of order k.
Now define C2 to be a complementary matrix of T−k orthonormal vectors.

Then C = [C1, C2] is an orthonormal matrix of order T such that

(7)

CC ′ = C1C
′
1 + C2C

′
2 = IT and

C ′C =
[

C ′1C1 C ′1C2

C ′2C1 C ′2C2

]
=
[

Ik 0
0 IT−k

]
.

The first of these results allows us to set I − P = I − C1C
′
1 = C2C

′
2. Now,

if ε ∼ N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT ,
then it follows that C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C ′ε, we find
that

(8)
[

C ′1ε
C ′1ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2It−k

])
,

which is to say that C ′1ε ∼ N(0, σ2Ik) and C ′2ε ∼ N(0, σ2IT−k) are indepen-
dently distributed normal vectors. It follows that

(9)

ε′C1C
′
1ε

σ2
=

ε′Pε

σ2
∼ χ2(k) and

ε′C2C
′
2ε

σ2
=

ε′(I − P )ε
σ2

∼ χ2(T − k)
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are independent chi-square variates. Since C1C
′
1 +C2C

′
2 = IT , the sum of these

two variates is

(10)
ε′C1C

′
1ε

σ2
+

ε′C2C
′
2ε

σ2
=

ε′ε

σ2
∼ χ2(T );

and thus the theorem is proved.
The statistic under (5) can now be expresed in the form of

(11) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
.

This is manifestly the ratio of two chi-sqaure variates divided by their respec-
tive degrees of freedom; and so it has an F distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector β.

DYNAMIC REGRESSION MODELS: TRANSFER FUNCTIONS

Consider a simple dynamic model of the form

(1) y(t) = φy(t− 1) + x(t)β + ε(t).

With the use of the lag operator, we can rewrite this as

(2) (1− φL)y(t) = βx(t) + ε(t)

or, equivalently, as

(3) y(t) =
β

1− φL
x(t) +

1
1− φL

ε(t).

The latter is the so-called rational transfer-function form of the equation. We
can replace the operator L within the transfer functions or filters associated
with the signal sequence x(t) and disturbance sequence ε(t) by a complex num-
ber z. Then, for the transfer function associated with the signal, we get

(4)
β

1− φz
= β

{
1 + φz + φ2z2 + · · ·

}
,

where the RHS comes from a familiar power-series expansion.
The sequence {β, βφ, βφ2, . . .} of the coefficients of the expansion consti-

tutes the impulse response of the transfer function. That is to to say, if we
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imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(5) x(t) = {. . . , 0, 1, 0, 0, . . .},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(6) r(t) = {. . . , 0, β, βφ, βφ2, . . .}.

Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(7) x(t) = {. . . , 0, 1, 1, 1, . . .}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(8) s(t) = {. . . , 0, β, β + βφ, β + βφ + βφ2, . . .}

whose elements, from the point when the step occurs in x(t), are simply the
partial sums of the impulse-response sequence.

This sequence of partial sums {β, β +βφ, β +βφ+βφ2, . . .} is described as
the step response. Given that |φ| < 1, the step response converges to a value

(9) γ =
β

1− φ

which is described as the steady-state gain or the long-term multiplier of the
transfer function.

These various concepts apply to models of any order. Consider the equa-
tion

(10) α(L)y(t) = β(L)x(t) + ε(t),

where

(11)

α(L) = 1 + α1L + · · ·+ αpL
p

= 1− φ1L− · · · − φpL
p,

β(L) = 1 + β1L + · · ·+ βkL
k

10
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are polynomials of the lag operator. The transfer-function form of the model
is simply

(12) y(t) =
β(L)
α(L)

x(t) +
1

α(L)
ε(t),

The rational function associated with x(t) has a series expansion

(13)
β(z)
α(z)

= ω(z)

=
{
ω0 + ω1z + ω2z

2 + · · ·
}
;

and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

(14) γ =
β(1)
α(1)

=
β0 + β1 + · · ·+ βk
1 + α1 + · · ·+ αp

.

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

(15)
β0 + β1z

1− φ1z − φ2z2
=
{
ω0 + ω1z + ω2z

2 + · · ·
}
.

We rewrite this equation as

(16) β0 + β1z =
{
1− φ1z − φ2z

2
}{

ω0 + ω1z + ω2z
2 + · · ·

}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(17)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

By examining this scheme, we are able to distinguish between the different roles
which are played by the numerator parameters β0, β1 and the denominator pa-
rameters φ1, φ2. The parameters of the numerator serve as initial conditions
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for the process which generates the impulse response. The denominator pa-
rameters determine the dynamic nature of the impulse response.

Consider the case where the impulse response takes the form a damped
sinusoid. This case arises when the roots of the equation α(z) = 1−φz−φ2z

2 =
0 are a pair of conjugate complex numbers falling outside the unit circle—
as they are bound to do if the response is to be a damped one. Then the
parameters β0 and β1 are jointly responsible for the initial amplitude and for
the phase of the sinusoid. The phase is the time lag which displaces the peak
of the sinusoid so that it occurs after the starting time t = 0 of the response,
which is where the peak of an undisplaced cosine response would occur.

The parameters φ1 and φ2, on the other hand, serve to determine the
period of the sinusoidal fluctuations and the degree of damping, which is the
rate at which the impulse response converges to zero.

It seems that all four parameters ought to be present in a model which
aims at capturing any of the dynamic responses of which a second-order system
is capable. To omit one of the numerator parameters of the model would be a
mistake unless, for example, there is good reason to assume that the impulse
response attains its maximum value at the starting time t = 0. We are rarely
in the position to make such an assumption.

FIRST-ORDER AUTOREGRESSIVE DISTURBANCES
IN THE CLASSICAL LINEAR REGRESSION MODEL

In the classical linear regression model, it is assumed that the disturbances
constitute a sequence ε(t) = {εt; t = 0,±1,±2, . . .} of independently and iden-
tically distributed random variables such that

(1) E(εtεs) =

{
σ2, if t = s;

0, if t 6= s.

The process which generates such disturbances is often called a white-noise
process.

Our task is to find models for the disturbance process which are more
in accordance with the circumstances of economics where the variables tend
to show a high degree of inertia. In econometrics the traditional means of
representing the inertial properties of the disturbance process has been to adopt
a simple first-order autoregressive model, or AR(1) model, whose equation takes
the form of

(2) ηt = φηt−1 + εt, where φ ∈ (−1, 1).

Here it continues to be assumed that εt is generated by a white-noise
process with E(εt) = 0. In many econometric applications, the value of φ falls
in the more restricted interval [0, 1).

12
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According to this model, the conditional expectation of ηt given ηt−1 is
E(ηt|ηt−1) = φηt−1. That is to say, the expectation of the current disturbance
is φ times the value of the previous disturbance. This implies that, for a value of
φ which is closer to unity that to zero, there will be a high degree of correlation
amongst successive elements of the sequence η(t) = {ηt; t = 0,±1,±2, . . .}.
This result is illustrated in figure 2 which gives a sequence of 50 observation on
an AR(1) process with φ = 0.9

We can show that the covariance of two elements of the sequence η(t)
which are separated by τ time periods is given by

(3) C(ηt−τ , ηt) = γτ = σ2 φτ

1− φ2
.

It follows that variance of the process, which is formally the autocovariance of
lag τ = 0, is given by

(4) V (ηt) = γ0 =
σ2

1− φ2
.

As φ tends to unity, the variance increases without bound. In fact, the se-
quences in figures 1 and 2 share the same underlying white noise-process which
has a unit variance; and it is evident that the autocorrelated sequence of figure
2 has the wider dispersion.

To find the correlation of two elements from the autoregressive sequence,
we note that

(5) Corr(ηt−τ , ηt) =
C(ηt−τ , ηt)√
V (ηt−τ )V (ηt)

=
C(ηt−τ , ηt)

V (ηt)
=

γτ
γ0

.

This implies that the correlation of the two elements separated by τ periods is
just φτ ; and thus, as the temporal separation increases, the correlation tends
to zero in the manner of a convergent geometric progression.

To demonstrate these results, let us consider substituting for ηt−1 =
φηt−2 + εt−1 in the equation under (2) and then substituting for ηt−2 =
φηt−3 + εt−2, and so on indefinitely. By this process, we find that

(6)

ηt = φηt−1 + εt

= φ2ηt−2 + εt + φεt−1

...
=
{
εt + φεt−1 + φ2εt−1 + · · ·

}
=
∞∑
i=0

φiεt−i.

13
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Here the final expression is justified by the fact that φn → 0 as n → ∞ in
consequence of the restriction that |φ| < 1. Thus we see that ηt is formed as a
geometrically declining weighted average of all past values of the sequence ε(t).

Using this result, we can now write

(7)

γτ = C(ηt−τ , ηt) = E(ηt−τηt)

= E

({ ∞∑
i=0

φiεt−τ−i
}{ ∞∑

j=0

φjεt−j
})

=
∞∑
i=0

∞∑
j=0

φiφjE(εt−τ−iεt−j).

But the assumption that ε(t) is a white-noise process with zero-valued autoco-
variances at all nonzero lags implies that

(8) E(εt−τ−iεt−j) =

{
σ2, if j = τ + i;

0, if j 6= τ + i.

Therefore, on using the above conditions in (7) and on setting j = τ + i, we
find that

(9)

γτ = σ2
∞∑
i

φiφi+τ = σ2φτ
∞∑
i

φ2i

= σ2φτ
{
1 + φ2 + φ4 + φ6 + · · ·

}
= σ2 φτ

1− φ2
.

This establishes the result under (4).
Now let us imagine a linear regression model in the form of

(10) yt = xt1β1 + xt2β2 + · · ·+ xtkβk + ηt,

where ηt follows a first-order autoregressive process. A set of T instances of
the relationship would be written as y = Xβ + η, where y and η are vectors
of T elements and X is a matrix or order T × k. The variance–covariance
or dispersion matrix of the vector η = [η1, η2, η3, . . . ηT ]′ takes the form of
[γ|i−j|] = σ2

εQ, where

(11) Q =
1

1− φ2


1 φ φ2 . . . φ3

φ 1 φ . . . φ2

φ2 φ 1 . . . φ
...

...
...

. . .
...

φ3 φ2 φ . . . 1

 ;

14
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and it can be confirmed directly that

(12) Q−1 =


1 −φ 0 . . . 0
−φ 1 + φ2 −φ . . . 0
0 −φ 1 + φ2 . . . 0
...

...
...

. . .
...

0 0 0 −φ 1

 .

This is a matrix of three nonzero diagonal bands. The elements of principal
diagonal, apart from the first and the last, have the value of 1 + φ2. The first
and last elements are units. The elements of the supradiagonal band and of
the subdiagonal band have the value of φ.

Given its sparcity, the matrix Q−1 could be used directly in implementing
the generalised least-squares estimator for which the formula is

(13) β∗ = (XQ−1X)−1XQ−1y.

However, by exploiting the factorisation Q−1 = T ′T , we are able to to im-
plement the estimator by applying an ordinary least-squares procedure to the
transformed data W = TX and g = Ty. The following equation demonstrates
the equivalence of the procedures:

β∗ = (W ′W )−1W ′g(14)
= (XT ′TX)−1XT ′Ty

= (XQ−1X)−1XQ−1y

The factor T of the matrix Q−1 = T ′T takes the form of

(15) T =



√
1− φ2 0 0 . . . 0
−φ 1 0 . . . 0
0 −φ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

this effect a very simple transformation the data. Thus, for example, the
elementy1 within the vector y = [y1, y2, Y3, . . . , yT ]′ is replaced y1

√
1− φ2

whilst yt is replaced by yt − φyt−1, for all t > 1.
Consider, for example, the simple regression model

(16) yt = xtβ + ηt with ηt = φηt−1 + εt.

The transformation gives the equation

(17) yt − φyt−1 = (xt − φxt−1β + εt,

15
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which represents a model that fulfils the classical assumptions and for which
ordinary least squares regression is the appropriate method of estimation.

THE CLASSICAL SIMULTANEOUS-EQUATION MODEL AND
THE 2SLS ESTIMATION OF A STRUCTURAL EQUATION

The classical simultaneous-equation model of econometrics is a system of M
structural equations which can may be compiled to give the following equation:

(1)
[yt1, yt2, . . . , ytM ][γ.1, γ.2, . . . , γ.M ] + xt.[β.1, β.2, . . . , β.M ]

+ [εt1, εt2, . . . , εtM ] = [0, 0, . . . , 0],

This can be written in summary notation as

(2) yt.Γ + xt.B + εt. = 0,

where Γ = [γ.1, γ.2, . . . , γ.j ]. The elements of the vector εt. = [εt1, εt2, . . . , εtM ],
of the M structural disturbances are assumed to be distributed independently
of time such that, for every t, there are

(3) E(εt.) = 0 and D(εt.) = E(ε′t.εt.) = Σεε.

It is also assumed that the structural disturbances are distributed indepen-
dently of the exogenous variables so that C(εt., xs.) = 0 for all t and s.

The reduced form of the system is obtained from equation (2) by postmul-
tiplying it by the inverse of the matrix Γ. This gives

(6) yt. = xt.Π + ηt. with Π = −BΓ−1 and ηt. = −εt.Γ−1.

It follows that the vector ηt. = −εt.Γ−1 of reduced-form disturbances has

(7) E(ηt.) = 0 and D(ηt.) = Γ′−1D(εt.)Γ−1 = Γ′−1ΣεεΓ−1 = Ω.

It is assumed that the statistical properties of the data can be described
completely in terms of its first and second moments. The dispersion matrices of
xt. and yt.can be denoted by D(xt.) = Σxx and D(yt.) = Σyy and their covari-
ance matrix by C(xt., yt.) = Σxy. By combining the reduced-form regression
relationship of (6) with a trivial identity in xt., we get the following system:

(8) [ yt. xt. ]
[

I 0
−Π I

]
= [ ηt. xt. ] .

Given the assumptions that D(ηt.) = Ω and that C(ηt., xt.) = 0, it follows that

(9)
[

I −Π′

0 I

] [
Σyy Σyx
Σxy Σxx

] [
I 0
−Π I

]
=
[

Ω 0
0 Σxx

]
.

16
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Premultiplying this system by the inverse of the leading matrix gives an equiv-
alent equation in the form of

(10)

[
Σyy Σyx
Σxy Σxx

] [
I 0
−Π I

]
=
[

I Π′

0 I

] [
Ω 0
0 Σxx

]
=
[

Ω Π′Σxx
0 Σxx

]
.

From this system, the equations Σyy − ΣyxΠ = Ω and Σxy − ΣxxΠ = 0 may
be extracted, from which are obtained the parameters that characterise the
reduced-from relationship:

(11) Π = Σ−1
xxΣxy and Ω = Σyy − ΣyxΣ−1

xxΣxy.

These parameters can be estimated provided that the empirical counterparts
of the moment matrices Σxx, Σyy and Σxy are available in the form of Mxx =
T−1

∑
t x
′
t.xt., Myy = T−1

∑
t y
′
t.yt. and Mxy = T−1

∑
t x
′
t.yt..

Now consider combining the structural equation of (2) with a trivial iden-
tity to form the counterpart of equation (8). This is the equation

(12) [ yt. xt. ]
[

Γ 0
B I

]
= [ εt. xt. ] .

Given that D(ε) = Σεε and that C(ε, x) = 0, it follow that

(13)
[

Γ′ B′

0 I

] [
Σyy Σyx
Σxy Σxx

] [
Γ 0
B I

]
=
[

Σεε 0
0 Σxx

]
,

and, from this, an equivalent expression can be obtained the form of

(14)

[
Σyy Σyx
Σxy Σxx

] [
Γ 0
B I

]
=
[

Γ′−1 Π′

0 I

] [
Σεε 0
0 Σxx

]
=
[

ΩΓ Π′Σxx
0 Σxx

]
.

This identity provides the fundamental equations that relate the structural
parameters Γ, B to the moment matrices of the data variables:

(15)
[

0
0

]
=
[

Π′Σxy Π′Σxx
Σxy Σxx

] [
Γ
B

]
.

By setting Π′ = ΣyxΣ−1
xx , we can express the matrix of the second equation in

terms of the data moments alone.
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Equation (15) is the basis from which the values the structural param-
eters Γ and B must be inferred. As it stands, the system contains insuf-
ficient information for the purpose. In particular, the constituent equation
Π′ΣxxΓ + Π′ΣyxB = 0 is a transformation of its companion ΣxxΓ + ΣyxB = 0;
and, therefore, it contains no additional information. In order for the parame-
ters of the structrural equations to be identifiable, sufficient prior information
regarding the structure must be available.

In practice, the prior information commonly takes the form of normalisa-
tion rules that set the diagonal elements of Γ to−1 and the exclusion restrictions
that set certain of the elements of Γ and B to zeros. If none of restrictions affect
more than one equation, then it is possible to treat each equation in isolation.

If the restrictions on the parameters of the jth equation are in the form of
exclusion restrictions and a normalisation rule, then they can be represented
by the equation

(17)
[

R′¦ 0
0 R′∗

] [
γ.j
β.j

]
=
[

rj
0

]
or

[
R′¦ 0
0 R′∗

] [
γ.j + ej

β.j

]
=
[

0
0

]
,

where R∗ comprises a selection of columns from the identity matrix IK of
order K, R¦ comprises, likewise, a set of columns from the identity matrix IM
of order M , and rj is a vector containing zeros and an element of minus one
corresponding to the normalisation rule. The vector ej is the jth column of IM
whose unit cancels with the normalised element of γ.j .

The general solution to these restrictions is

(18)
[

γ.j
β.j

]
=
[

S¦ 0
0 S∗

] [
γ¦j
β∗j

]
−
[

ej
0

]
,

where γ¦j and β∗j are composed of the Mj and Kj unrestricted elements of γ.j
and β.j respectively, and where S¦ and S∗ are the complements of R¦ and R∗
within IM and IK respectively.

On substituting the solution of (18) into the equation Σxyγ.j+Σxxβ.j = 0,
which is from the jth equation of (16), we get

(19) ΣxyS¦γ¦j + ΣxxS∗β∗j = Σxyej .

This is a set of K equations in Mj + Kj unknowns; and, given that the matrix
[Σxy , Σxx] is of full rank, it follows that the necessary and sufficient condition
for the identifiability of the parameters of the jth equation is that K ≥Mj+Kj .

If this condition is fulfilled, then any subset of Mj + Kj of the equations
of (19) will serve to determine γ¦j and β∗j . However, we shall be particularly
interested in a set of Mj + Kj independent equations in the form of

(20)
[

P ′¦Π
′ΣxyS¦ S′¦Π

′ΣxxS∗
S′∗ΣxyS¦ S′∗ΣxxS∗

] [
γ¦j

β∗j

]
=
[

S′¦Π
′Σxyej

S′∗Σxyej

]
,

18
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which are derived by premultiplying equation (19) by the matrix [ΠS¦, S∗]′.
The so-called two stage least-square estimates are derived from these equa-

tion by substituting the empirical moments Mxx, Mxy and the estimate Π̂ =
M−1
xx Mxy in place of Sxx, Sxy and Π = S−1

xx Sxy repectively and solving the
resulting equations for γ¦j and β∗j .

Two-Stage Least Squares and Instrumental Variables Estimation

The 2SLS estimating equations were derived independently by Theil and
by Basmann, who followed a different line of reasoning from the one which
we have pursued above. Their approach was to highlight the reason for the
failure of ordinary least-squares regression to deliver consistent estimates of
the parameters of a structural equation.

The failure is due to the violation of an essential condition of regression
analysis which is that the disturbances must be uncorrelated with the ex-
planatory variables on the RHS of the equation. Within the equation yj =
Y¦γ¦j + X∗β∗j + εj , there is a direct dependence of Y¦ on the structural dis-
turbances of ε. However, the disturbances are independent of the exogenous
variables in X∗.

The original derivations of the 2SLS estimator were inspired by the idea
that, if it were possible to purge the variables of Y¦ of their dependence on ε,
then ordinary least-squares regression would become the appropriate method
of estimation. Thus, if XΠX¦ were available, then this could be put in place
of Y¦; and the problem of dependence would be overcome.

Although XΠX¦ is an unknown quantity, a consistent estimate of it is
available in the form of Ŷ¦ = XΠ̂X¦. Finding the estimate Π̂X¦ represents the
first stage of the 2SLS procedure. Applying ordinary least-squares regression
to the equation yj = Ŷ¦γ¦j + X∗β∗j + e is the second stage.

An alternative approach which leads to the same 2SLS estimator is via the
method of instrumental-variables estimation. The method depends upon find-
ing a set of variables which are correlated with the regressors yet uncorrelated
with the disturbances.

In the case of the structural equation, the appropriate instrumental vari-
ables are the exogenous variables of the system as a whole which are contained
in the matrix X. Premultiplying the structural equation by X ′ gives

(21) X ′yj = X ′Y¦γ¦j + X ′X∗β∗j + X ′ε.

Within this system, the cross products correspond to a set of moment matrices
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which have the following limiting values:

(22)

plim(T−1X ′yj) = Σxyej ,

plim(T−1X ′Y¦) = ΣxyS¦,

plim(T−1X ′X∗) = ΣxxS∗,

plim(T−1X ′ε) = 0.

When the moment matrices are replaced by their limiting values, we obtain the
equation

(23) Σxyej = ΣxyS¦γ¦j + ΣxxS∗β∗j ,

which has been presented already as equation (19). In this system, there are
K equations in M¦ + K∗ parameters. We may assume that [Σxy,Σxy] is of
full rank. In that case, the necessary condition for the indentifiablity of the
parameters γ¦j and β∗j is that K ≥M¦+ K∗, which is to say that the number
of exogenous variables in the system as a whole must be no less that the number
of structural parameters that need to be estimated.

The empircal counterpart of (23) is the equation

(24) X ′yj = X ′Y¦γ¦j + X ′X∗β∗j .

If K = M¦ + K∗, then this equation can be solved directly to provide the esti-
mates. However, if K > M¦+K∗, then the equation is bound to be algebraically
inconsistent and the parameters are said to be overidentified. To resolve the
inconsistency, we may apply to (21) the method of generalised least-squares
regression. The disturbance term in (21), which is X ′ε, had a dispersion ma-
trix D(X ′ε) = σ2X ′X. When this is used in the context of the generalised
least-squares estimator, we obtain, once again, the 2SLS estimates.

LEONTIEFF’S INPUT–OUTPUT ANALYSIS.

According to the postulate of Leontieff, the value xij of goods shipped from
the ith sector of the economy to the jth sector is proportional to the activity
level xj of the latter: xij = aijxj . Also, the activity level of the ith sector is
reckoned as the sum of (the values of) the output, xii, consumed within that
sector, the goods, xij ; j = 1, . . . , n, shipped to other sectors, and the goods, yi,
consumed in final demand.

Imagine a closed economy of three sectors which is characterised by the
following activity levels and trade flows:
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x2

x3

 =

 100
200
100

 ,

x11 x12 x13

x21 x22 x23

x31 x32 x33

 =

 10 30 10
30 50 20
10 20 20

 ,

 y1

y2

y3

 =

 50
100
50

 .

Construct the complete input–output table including a row for the value
added to each sector by factor services, and confirm that the various accounting
identities have been observed in the construction of the table.

Calculate the matrix A = [aij ] of input–output coefficients. Use the
method of Gaussian elimination and the method of back-substitution to solve
the equation (I − A)x = y to find the vector x = [x1, x2, x3]′ of the activ-
ity levels in the three sectors when the levels of final demand are given by
y = [y1, y2, y3]′ = [60, 120, 60]′.

Answer. The trade flows, the activity levels and the final demands are dis-
played in the following input–output table:

Final Total
Sector 1 Sector 2 Sector 3 Demand Demand

Sector 1 10 30 10 50 100
Sector 2 30 50 20 100 200
Sector 3 10 20 20 50 100
Factors 50 100 50 200

Activity Level 100 200 100

The matrix A of input–output coefficients and the Leontieff matrix I −A
are

A =

 0.1 0.15 0.1
0.3 0.25 0.2
0.1 0.1 0.2

 , I −A =

 0.9 −0.15 −0.1
−0.3 0.75 −0.2
−0.1 −0.1 0.8

 .

Imagine that the vector of final demands becomes y = [y1, y2, y3]′ =
[60, 120, 60]′. Then, to find the corresponding activity levels in x = [x1, x2, x3]′,
we must solve the system (I −A)x = y. We have 0.9 −0.15 −0.1
−0.3 0.75 −0.2
−0.1 −0.1 0.8

x1

x2

x3

 =

 60
120
60

⇐⇒
 0.9 −0.15 −0.1
−0.9 2.25 −0.6
−0.9 −0.9 7.2

x1

x2

x3

 =

 60
360
540

 .

Adding the first row to the second row and to the third gives 0.9 −0.15 −0.1
0.0 2.1 −0.7
0.0 −1.05 7.1

x1

x2

x3

 =

 60
420
600

⇐⇒
 0.9 −0.15 −0.1

0.0 2.1 −0.7
0.0 −2.1 14.2

x1

x2

x3

 =

 60
420
1200

 .
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Adding the second row of the final expression to the third row gives the following
triangular system:  0.9 −0.15 −0.1

0.0 2.1 −0.7
0.0 0.0 13.5

x1

x2

x3

 =

 60
420
1620

 .

The solution of this system is

x3 = 120, x2 = 240, x1 = 120.
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Answer THREE questions in TWO HOURS

1. What do you understand by the omitted-variables bias?

Derive explicit expressions for the ordinary least-squares estimators of β1

and β2 in the partitioned model (y;X1β1 + X2β2, σ
2I) and compare these

with the estimators of β1 and β2 which are obtained by regressing y on X1

and X2 separately. Under what conditions would the different estimators
of β1 and β2 be equal?

2. Prove that the characteristic vectors x1, . . . , xn of an n×n symmetric matrix
corresponding to n distinct roots λ1, . . . , λn are mutually orthogonal.

Show how we can reduce a symmetric matrix to a diagonal matrix using
an orthonormal matrix, and thence prove that, for any symmetric matrix
Q, there exists a matrix T such that TQT ′ = I and T ′T = Q−1. Using the
latter result, show how the generalised least-squares estimator of β in the
model (y;Xβ, σ2Q) may be obtained as the ordinary least-squares estimator
of the regression parameters of a transformed model.

3. Let P = X(X ′X)−1X ′, where X is the matrix of explanatory variables
within the regression equation y = Xβ + ε which comprises a vector ε ∼
N(0, σ2I) of normally distributed disturbances. Demonstrate that

ε′ε

σ2
=

ε′Pε

σ2
+

ε′(I − P )ε
σ2

represents the decomposition of a chi-square variate ε′ε/σ2 ∼ χ2(T ) into a
pair of independent chi-square variates ε′Pε/σ2 ∼ χ2(k) and ε′(I − P )ε/σ2

∼ χ2(T − k). What is the practical use of this result?
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4. Demonstrate the unbiasedness of the estimators β̂ = (X ′X)−1X ′y and σ̂2 =
(y −Xβ̂)′(y −Xβ̂)/(T − k) in the classical regression model (y;Xβ, σ2I).

Prove that V (q′β̂) ≤ V (q′β∗) where β∗ is any other linear unbiased estima-
tor of β and q is an arbitrary nonstochastic vector.

5. Imagine that the temporal regression equation

y(t) = x(t)β + η(t)

embodies a disturbance sequence η(t) which follows a first-order autoregres-
sive process such that

η(t) = φη(t− 1) + ε(t),

where ε(t) is a white-noise sequence of independently and identically dis-
tributed random variables. Show that the covariance of any two elements
of the disturbance process which are separated by τ time periods is given
by

C(ηt, ηt−τ ) = σ2
ε

φτ

1− φ2
.

What is the variances covariance matrix of a vector η = [η0, . . . , ηT−1]′ of T
elements of the process and what is the form of the inverse of this matrix.
How should one attempt to estimate the parameters φ and β.

6. Demonstrate that a dynamic econometric equation in the form of

y(t) = φ1y(t− 1) + · · ·+ φpy(t− p) + β0x(t) + · · ·+ βkx(t− k) + ε(t)

can be rewritten as

∇y(t) = λ
{
γx(t)− y(t− 1)

}
+
p−1∑
i=1

ρi∇y(t− i) +
k−1∑
i=0

δi∇x(t− i) + ε(t),

where γ = (β0 + · · ·+ βk)/(1−φ1− · · · −φp) is the steady state gain of the
transfer function from x(t) to y(t). What is the customary interpretation
of the second equation?

Describe how you would estimate the dynamic equation (a) in the case
where x(t) is generated by a stationary stochastic process and (b) in the
case where x(t) is generated by a nonstationary unit-root process.
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7. Explain what is mean by the phase, the amplitude, the damping and the pe-
riod of a complex impulse response generated by a rational transfer function
in the form of

ω(z) =
β0 + β1z

1− φ1z − φ2z2
.

Explain why all four coefficients β0, β1, φ1 and φ2 must be present if the
transfer function is to provide a sufficiently flexible means of representing
complex dynamic behaviour.

Show how the coefficients of the series expansion of ω(z) may be obtained,
and find the first four coefficients in the case where β0 = 1, β2 = 3, φ1 =
−0.5 and φ2 = 0.9. Is this response complex or not and is it damped or
explosive?

8. Consider the model
y(t) = y(t− 1)β + η(t)

wherein
η(t) = ρη(t− 1) + ε(t)

is a sequence of disturbances generated by a first-order autoregressive pro-
cess which is driven by a white-noise sequence ε(t) of independently and
identically distributed random variables. Show that the estimate of β, ob-
tained by applying the ordinary least-squares procedure, would tend to the
value of (β + ρ)/(1 + ρβ) as the size of the sample increases.

Imagine that the model

y(t) = β1y(t− 1) + β2y(t− 2) + ε(t)

is fitted to the data via the ordinary least-squares procedure. What values
would you expect to obtain for β1 and β2 in the limit, as the size of the
sample increases indefinitely
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