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1. MINIMUM DISTANCE ESTIMATION
AND MINIMUM VARIANCE ESTIMATION

The Decomposition of the Sum of Squares

Ordinary least-squares regression entails the decomposition the vector y into two mu-
tually orthogonal components. These are the vector Py = X(X ′X)−1X ′y = Xβ̂, which
estimates the systematic component of the regression equation, and the residual vector
e =y−Xβ̂, which estimates the disturbance vector ε. The condition that e should be
orthogonal to the manifold of X in which the systematic component resides, such that
X ′e = X ′(y−Xβ̂) = 0, is the condition which is expressed by the normal equations, which
are written more commonly as X ′Xβ = X ′y.

Corresponding to the decomposition of y, there is a decomposition of the sum of
squares y′y. To express the latter, let us write Xβ̂ = Py and e = y−Xβ̂ = (I−P )y. Then,
in consequence of the condition P = P ′ = P 2 and the equivalent condition P ′(I −P ) = 0,
it follows that

(1.1)

y′y =
{
Py + (I − P )y

}′{
Py + (I − P )y

}
= y′Py + y′(I − P )y

= β̂′X ′Xβ̂ + e′e.

This is simply an instance of Pythagoras theorem; and the identity is expressed by saying
that the total sum of squares y′y is equal to the regression sum of squares β̂′X ′Xβ̂ plus
the residual or error sum of squares e′e. A geometric interpretation of the orthogonal
decomposition of y and of the resulting Pythagorean relationship is given in Figure 1.

It is clear from intuition that, by projecting y perpendicularly onto the manifold of
X, the distance between y and Py = Xβ̂ is minimised. In order to establish this point
formally, imagine that γ = Pg is an arbitrary vector in the manifold of X. Then the
Euclidean distance from y to γ cannot be less than the distance from y to Xβ̂. The square
of the former distance is

(1.2)
(y − γ)′(y − γ) =

{
(y − Xβ̂) + (Xβ̂ − γ)

}′{(y − Xβ̂) + (Xβ̂ − γ)
}

=
{
(I − P )y + P (y − g)

}′{(I − P )y + P (y − g)
}
.

The properties of the projector P which have been used in simplifying equation (1.1),
indicate that

(1.3)
(y − γ)′(y − γ) = y′(I − P )y + (y − g)′P (y − g)

= e′e + (Xβ̂ − γ)′(Xβ̂ − γ).

Since the squared distance (Xβ̂−γ)′(Xβ̂−γ) is nonnegative, it follows that (y−γ)′(y−γ) ≥
e′e, where e = y − Xβ̂; and this proves the assertion.
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Figure 1. The vector Py = Xβ̂ is formed by the orthogonal projection of the vector

y onto the subspace spanned by the columns of the matrix X .

Some Statistical Properties of the Estimator

The expectation or mean vector of β̂, and its dispersion matrix as well, may be found
from the expression

(1.4)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

On the assumption that the elements of X are nonstochastic, the expectation is given by

(1.5)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus, β̂ is an unbiased estimator. The deviation of β̂ from its expected value is β̂ −
E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains the variances and
covariances of the elements of β̂, is

(1.6)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.

The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator of least
dispersion. This dispersion is usually characterised in terms of the variance of an arbitrary
linear combination of the elements of β̂, although it may also be characterised in terms of
the determinant of the dispersion matrix D(β̂). Thus,
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(1.7) If β̂ is the ordinary least-squares estimator of β in the classical linear re-
gression model, and if β∗ is any other linear unbiased estimator of β, then
V (q′β∗) ≥ V (q′β̂), where q is any constant vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) = AE(y) = AXβ =
β, which implies that AX = I. Now set A = (X ′X)−1X ′ + G. Then AX = I implies that
GX = 0. Given that D(y) = D(ε) = σ2I, it follows that

(1.8)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′}

= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.

Therefore, for any constant vector q of order k, there is the identity

(1.9)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

2. THE PARTITIONED REGRESSSION MODEL

Consider taking a regression equation in the form of

(2.1) y = [X1 X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

Here, [X1, X2] = X and [β′
1, β

′
2]

′ = β are obtained by partitioning the matrix X and
vector β of the equation y = Xβ + ε in a conformable manner. The normal equations
X ′Xβ = X ′y can be partitioned likewise. Writing the equations without the surrounding
matrix braces gives

X ′
1X1β1 + X ′

1X2β2 = X ′
1y,(2.2)

X ′
2X1β1 + X ′

2X2β2 = X ′
2y.(2.3)

To obtain an expression for β̂2, we must eliminate β1 from equation (2.3). For this purpose,
we multiply equation (2.2) by X ′

2X1(X ′
1X1)−1 to give

(2.4) X ′
2X1β1 + X ′

2X1(X ′
1X1)−1X ′

1X2β2 = X ′
2X1(X ′

1X1)−1X ′
1y.

When the latter is taken from equation (2.3), we get

(2.5)
{

X ′
2X2 − X ′

2X1(X ′
1X1)−1X ′

1X2

}
β2 = X ′

2y − X ′
2X1(X ′

1X1)−1X ′
1y.
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On defining

(2.6) P1 = X1(X ′
1X1)−1X ′

1 and P2 = X2(X ′
2X2)−1X ′

2,

can we rewrite (2.5) as

(2.7)
{

X ′
2(I − P1)X2

}
β2 = X ′

2(I − P1)y,

whence

(2.8) β̂2 =
{

X ′
2(I − P1)X2

}−1

X ′
2(I − P1)y.

The analogous estimator for β1 may be obtained from (2.8) simply by interchanging the
subscripts 1 and 2. However, an alternative form of the estimator may be obtained directly
from (2.2). This is

(2.9) β̂1 = (X ′
1X1)−1X ′

1(y − X2β̂1).

Some Algebraic Indentities

We shall now create some further notation that will enable us to record some useful
algebraic identities. We may begin with the following:

Xβ̂ = X(X ′X)−1X ′y = Py(2.10)

X1β̂1 = X1

{
X ′

1(I − P2)X1

}−1

X ′
1(I − P2)y = P1/2y(2.11)

X2β̂2 = X2

{
X ′

2(I − P1)X2

}−1

X ′
2(I − P1)y = P2/1y.(2.12)

In these terms, the identity Xβ̂ = X1β̂1 + X2β̂2 becomes Py = P1/2y + P2/1y and, since
this holds for all values of y, we may record that

(2.13) P = P1/2 + P2/1.

Now consider using (2.9) to write X1β̂1 = P1(y −X2β̂2). Using (2.11) and (2.12), this can
be written as P1/2y = P1(I − P2/1)y and, since this also holds for all values of y, we have

(2.14) P1/2 = P1(I − P2/1) = P1 − P1P2/1.

Adding P2/1 to both sides of this gives P1/2 + P2/1 = P = P1 + (I − P1)P2/1, from which
we get

(2.15) P − P1 = (I − P1)P2/1.
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This identity may be written more explicitly as

(2.16) X(X ′X)−1X ′ − X1(X ′
1X1)−1X ′

1 = (I − P1)X2

{
X ′

2(I − P1)X2

}−1

X ′
2(I − P1).

Regression with an Intercept

We may use the expressions for β̂1, β̂2 of (2.8) and (2.9) in order to find estimators
of the parameters β1, βZ of the regression model (y, iβi + Zβz, σ

2I). For this purpose,
we assimilate the equations y = iβi + ZβZ + ε to the equations y = X1β1 + X2β2 + ε by
setting X1 = i, X2 = Z, β1 = βi and β2 = βZ .

To assist us in finding the formulae for the estimators, let us consider the projector

(2.17) P1 = Pi = i(i′i)−1i′y = ii′/T.

Applying this to the vector y, we get

(2.18) Piy = i(i′y/T ) = i
( ∑

yt/T
)

= iȳ.

Applying it likewise to the matrix Z, we get

(2.19) PiZ = i
[∑

xt2, . . . ,
∑

xtk

]
/T = i[x̄2, . . . , x̄k] = Z̄.

On substituting Z = X2 and i = X1 in the formula for β̂2 = βZ in (2.8), and using
the identity (I − Pi) = (I − Pi)′(I − Pi) and the notation ȳ = Piy, Z̄ = PiZ, we obtain

(2.20)
β̂Z = {Z ′(I − Pi)Z}−1Z ′(I − Pi)y

= {(Z − Z̄)′(Z − Z̄)}−1(Z − Z̄)′(y − ȳ).

Thus, the coefficients β2, . . . , βk may be estimated by applying ordinary least-squares re-
gression to data which has been adjusted by subtracting from each observation its respec-
tive sample mean.

To find an estimate of the intercept term βi = β1, we substitute i = X1 and Z = X2

in the formula for β̂1 in (2.9) to get

(2.21)

β̂1 = (i′i)−1i′y − (i′i)−1i′Z{Z ′(I − Pi)Z}−1Z ′(I − Pi)y

= i′y/T − i′Zβ̂Z/T

= ȳ −
k∑

j=2

β̂j x̄j .
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Coefficients of Determination

To provide a summary measure of the extent to which the ordinary least-squares
regression accounts for the observed vector y, we may use the ordinary coefficient of
determination. This is defined by

(2.22) R2(y, X) =
y′Py

y′y
=

β̂X ′Xβ̂

y′y
.

If y ∈ M(X), then Xβ̂ = Py = y; and it follows that R2 = 1. The value of y is
then completely accounted for by the regression. If y is distributed continuously in RT ,
then the event y ∈ M(X) has a probability measure of zero unless M(X) = RT , in which
case the event is a certainty. The condition M(X) = RT is equivalent to the condition
Null(X ′) = 0, which means that X has full row rank which, in turn, implies that the
number of rows in X cannot exceed the number of columns. For the parameter vector β to
be estimable, the condition Null(X) = 0 must be fulfilled. Thus X must have full column
rank, and the number of columns must not exceed the number of rows. It follows that
we can expect the regression to yield both a coefficient of determination of unity and a
uniquely determined estimate β if and only if X is a non-singular square matrix comprising
equal numbers of variables and observations.

If y ⊥ M(X) or, equivalently, y ∈ N (X), then Py = 0; and it follows that R2 = 0.
Then the regression fails to account for any part of y. However, on the assumption that y
is distributed continuously in RT , the event y ⊥ M(X) has a probability measure of zero,
and thus we would never expect to find R2 = 0 in practice.

The inequality 0 ≤ R2 ≤ 1 also follows from the properties of cosines once we recognize
that R2 is the cosine of the angle between the vectors y and Py.

We may also wish to measure the peculiar contribution of the variables in X2 to the
explanation of y when y is regressed on X = [X1, X2]. To do so, we must remove from y
the component that is attributable to X1 by subtracting P1y to give (I − P1)y. We must
also find the components that are peculiar to X1 by subtracting P1X2 to give (I −P1)X2.
We can then obtain a measure of the contribution by finding the ordinary coefficient of
determination R2{(I−P1)y, (I−P1)X2} of the regression of (I−P1)y on (I−P1)X2. In the
context of the regression of y on X, this is called the partial coefficient of determination of
y and X2 given X1 and is denoted by R2(y, X2|X1). Using the symmetry and idempotency
of I − P1 and the identity of (2.16), we find that

(2.23)
R2(y, X2|X1) =

y′(I − P1)X2{X2(I − P1)X2}−1X ′
2(I − P1)y

y′(I − P1)′(I − P1)y

=
y′(P − P1)y
y′(I − P1)y

.

In the case of the model (y, iβi + ZβZ , σ2I), which we also write as
(y, Xβ, σ2I), where X = [i, Z] and β′ = [βi, β

′
Z ], it is conventional to measure the explana-

tory power of the regression in terms of the partial coefficient of determination R2(y, Z|i).
This practice is justified by the argument that the explanatory power of the vector i is
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given for free. Using the notations Piy = ȳ and PiZ = Z̄ of (2.18) and (2.19) respectively,
we find from (2.23) that

(2.24)
R2(y, Z|i) =

(y − ȳ)′(Z − Z̄){(Z − Z̄)′(Z − Z̄)}−1(Z − Z̄)′(y − ȳ)
(y − ȳ)′(y − ȳ)

=
y′Py − y′Piy

y′(I − Pi)y
=

β̂X ′Xβ̂ − ȳ′ȳ

y′y − ȳ′ȳ
.

The first equality shows that R2(y, Z|i) is the ordinary coefficient of determination
of the regression (2.20) wherein the variables are the deviations of the observations about
their sample means. The final term, which suggests a straightforward way of computing the
coefficient, has an interesting comparison with R2(y, X) = β̂X ′Xβ̂/y′y defined in (2.22).

3. DIAGONALISATION OF A SYMMETRIC MATRIX

The Geometry of Quadratic Forms

The Circle. Let the coordinates of the points in the Cartersian plane be denoted by (z1, z2).
Then the equation of a circle of radius r centred on the origin is just

(3.1) z2
1 + z2

2 = r2.

This follows immediately from Pythagorus. The so-called parametric equations for the
coordinates of the circle are

(3.2) z1 = r cos(ω), and z2 = r sin(ω).

The Ellipse. The equation of an ellipse whose principal axes are aligned with those of the
coordinate system in the (y1, y2) plane is

(3.3) λ1y
2
1 + λ2y

2
2 = r2,

On setting λ1y
2
1 = z2

1 and λ2y
2
2 = z2

2 , we can see that

(3.4) y1 =
z1√
λ1

=
r√
λ1

cos(ω), y2 =
z2√
λ2

=
r√
λ2

sin(ω).

We can write equation (3.6) in matrix notation as

(3.5) r2 = [ y1 y2 ]
[

λ1 0
0 λ2

] [
y1

y2

]
= z2

1 + z2
2 .

This implies

(3.6)
[

z1

z2

]
=

[√
λ1 0
0

√
λ2

] [
y1

y2

]
7
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and

(3.7)
[

y1

y2

]
=

[
1/

√
λ1 0

0 1/
√

λ2

] [
z1

z2

]
.

The Oblique Ellipse. An oblique ellipse is one whose principal axes are not aligned with
those of the coordinate system. Its general equation is

(3.8) a11x
2
1 + 2a12x1x2 + a22x

2
2 = r2;

which is subject to the condition that a11a22 − a2
12 > 0. We can write this in matrix

notation:

(3.9)
r2 = [x1 x2 ]

[
cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
= [ y1 y2 ]

[
λ1 0
0 λ2

] [
y1

y2

]
= z2

1 + z2
2 ,

where θ is the angle which the pincipcal axis of the ellipse makes with the horizontal. The
coefficients of the equation (3.8) are the elements of the matrix

(3.10)
[

a11 a12

a21 a22

]
=

[
λ1 cos2 θ + λ2 sin2 θ (λ2 − λ1) cos θ sin θ
(λ2 − λ1) cos θ sin θ λ1 sin2 θ + λ2 cos2 θ

]
.

Notice that, if λ1 = λ2, which is to say that both axes are rescaled by the same factor,
then the equation is that of a circle of radius λ1, and the rotation of the circle has no
effect.

The mapping from the ellipse to the circle is

(3.11)
[

z1

z2

]
=

[√
λ1 0
0

√
λ2

] [
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
=

[√
λ1(x1 cos θ − x2 sin θ)√
λ2(x1 sin θ + x2 cos θ)

]
,

and the inverse mapping, from the circle to the ellipse, is

(3.12)
[

x1

x2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
1/

√
λ1 0

0 1/
√

λ2

] [
z1

z2

]
.

We see from the latter that the circle is converted to an oblique ellipse via two oper-
ations. The first is an operation of scaling which produces an ellipse whose principal axes
are aligned with those of the coordinate system. The second operation is a rotation which
tilts the ellipse.

The vectors of the matrix that effects the rotation define the axes of the ellipse. They
have the property that, when they are mapped through the matrix A, their orientation is
preserved and only their length is altered. Thus

(3.13)

[
a11 a12

a21 a22

] [
cos θ
− sin θ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ − sin θ
sin θ cos θ

] [
cos θ
− sin θ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
1
0

]
= λ1

[
cos θ
− sin θ

]
.

8



D.S.G. POLLOCK: Topis in Econometrics, Associate Students 2005

Such vectors are described as the characteristic vectors of the matrix, and the factors
λ1 and λ2, by which their lengths are altered under the transformation, are described as
the corresponding characteristic roots.

Characteristic Roots and Characteristic Vectors

Let A be an n × n symmetric matrix such that A = A′, and imagine that the scalar
λ and the vector x satisfy the equation Ax = λx. Then λ is a characteristic root of A and
x is a corresponding characteristic vector. We also refer to characteristic roots as latent
roots or eigenvalues. The characteristic vectors are also called eigenvectors.

(3.14) The characteristic vectors corresponding to two distinct characteristic roots
are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2 with λ1 �= λ2, then
x′

1x2 = 0.

Proof. Premultiplying the defining equations by x′
2 and x′

1 respectively, gives x′
2Ax1 =

λ1x
′
2x1 and x′

1Ax2 = λ2x
′
1x2. But A = A′ implies that x′

2Ax1 = x′
1Ax2, whence λ1x

′
2x1 =

λ2x
′
1x2. Since λ1 �= λ2, it must be that x′

1x2 = 0.

The characteristic vector corresponding to a particular root is defined only up to a
factor of proportionality. For let x be a characteristic vector of A such that Ax = λx.
Then, multiplying the equation by a scalar µ gives A(µx) = λ(µx) or Ay = λy; so y = µx
is another characteristic vector corresponding to λ.

(3.15) If P = P ′ = P 2 is a symmetric idempotent matrix, then its characteristic
roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) = P (λx) =
λ2x = λx, which implies that λ = λ2. This is possible only when λ = 0, 1.

Diagonalisation of a Symmetric Matrix

Let A be an n × n symmetric matrix, and let x1, . . . , xn be a set of n linearly inde-
pendent characteristic vectors corresponding to its roots λ1, . . . , λn. Then, we can form a
set of normalised vectors

c1 =
x1√
x′

1x1

, . . . , cn =
xn√
x′

nxn

,

which have the property that

c′icj =
{ 0, if i �= j;

1, if i = j.

The first of these reflects the condition that x′
ixj = 0. It follows that C = [c1, . . . , cn] is

an orthonormal matrix such that C ′C = CC ′ = I.
Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn], which can also be written

as AC = CΛ, where Λ = Diag{λ1, . . . , λn} is the matrix with λi as its ith diagonal element
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and with zeros in the non-diagonal positions. Postmultiplying the equation by C ′ gives
ACC ′ = A = CΛC ′; and premultiplying by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′

and C ′AC = Λ; and C is effective in diagonalising A.
Let D be a diagonal matrix whose ith diagonal element is 1/

√
λi so that D′D = Λ−1

and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′ and postmultiplying it by
D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where T = D′C ′. Also, T ′T = CDD′C ′ =
CΛ−1C ′ = A−1. Thus we have shown that

(3.16) For any symmetric matrix A = A′, there exists a matrix T such that TAT ′ =
I and T ′T = A−1.

4. COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem. Consider the
decomposition of the vector y into the systematic component and the residual vector. This
gives

(4.1)
y = Xβ̂ + (y − Xβ̂) and

y − Xβ = (Xβ̂ − Xβ) + (y − Xβ̂),

where the second equation comes from subtracting the unknown mean vector Xβ from
both sides of the first. These equations can also be expressed in terms of the projector
P = X(X ′X)−1X ′, which gives Py = Xβ̂ and (I−P )y = y−Xβ̂ = e. Using the definition
ε = y − Xβ within the second of the equations, we have

(4.2)
y = Py + (I − P )y and

ε = Pε + (I − P )ε.

The reason for rendering the equations in this notation is that it enables us to envisage
more clearly the Pythagorean relationship between the vectors. Thus, from the condition
that P = P ′ = P 2, which is equivalent to the condition that P ′(I − P ) = 0, it can be
established that

(4.3)
ε′ε = ε′Pε + ε′(I − P )ε or

ε′ε = (Xβ̂ − Xβ)′(Xβ̂ − Xβ) + (y − Xβ̂)′(y − Xβ̂).

The terms in these expressions represent squared lengths; and the vectors themselves form
the sides of a right-angled triangle with Pε at the base, (I − P )ε as the vertical side and
ε as the hypotenuse.

The usual test of an hypothesis regarding the elements of the vector β is based on
the foregoing relationships. Imagine that the hypothesis postulates that the true value of

10
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the parameter vector is β0. To test this notion, we compare the value of Xβ0 with the
estimated mean vector Xβ̂. The test is a matter of assessing the proximity of the two
vectors which is measured by the square of the distance which separates them. This is
given by ε′Pε = (Xβ̂−Xβ0)′(Xβ̂−Xβ0). If the hypothesis is untrue and if Xβ0 is remote
from the true value of Xβ, then the distance is liable to be excessive. The distance can
only be assessed in comparison with the variance σ2 of the disturbance term or with an
estimate thereof. Usually, one has to make do with the estimate of σ2 which is provided
by

(4.4)
σ̂2 =

(y − Xβ̂)′(y − Xβ̂)
T − k

=
ε′(I − P )ε

T − k
.

The numerator of this estimate is simply the squared length of the vector e = (I − P )y =
(I − P )ε which constitutes the vertical side of the right-angled triangle.

The test uses the result that

(4.5) If y ∼ N(Xβ, σ2I) and if β̂ = (X ′X)−1X ′y, then

F =

{
(Xβ̂ − Xβ)′(Xβ̂ − Xβ)

k

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

is distributed as an F (k, T − k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition of a chi-
square random variate. The following is a statement of the theorem which is attuned to
our present requirements:

(4.6) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and identically
distributed elements. Also let P = X(X ′X)−1X ′ be a symmetric idempotent
matrix, such that P = P ′ = P 2, which is constructed from a matrix X of
order T × k with Rank(X) = k. Then

ε′Pε

σ2
+

ε′(I − P )ε
σ2

=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents the sum of
two independent chi-square variates ε′Pε/σ2 ∼ χ2(k) and ε′(I − P )ε/σ2 ∼
χ2(T − k) of k and T − k degrees of freedom respectively.

To prove this result, we begin by finding an alternative expression for the projector P =
X(X ′X)−1X ′. First consider the fact that X ′X is a symmetric positive-definite matrix.
It follows that there exists a matrix transformation T such that T (X ′X)T ′ = I and
T ′T = (X ′X)−1. Therefore P = XT ′TX ′ = C1C

′
1, where C1 = XT ′ is a T × k matrix

comprising k orthonormal vectors such that C ′
1C1 = Ik is the identity matrix of order k.

11
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Now define C2 to be a complementary matrix of T − k orthonormal vectors. Then
C = [C1, C2] is an orthonormal matrix of order T such that

(4.7)

CC ′ = C1C
′
1 + C2C

′
2 = IT and

C ′C =
[

C ′
1C1 C ′

1C2

C ′
2C1 C ′

2C2

]
=

[
Ik 0
0 IT−k

]
.

The first of these results allows us to set I − P = I − C1C
′
1 = C2C

′
2. Now, if ε ∼

N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT , then it follows that
C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed random vector with a density
function which is centred on zero and which has spherical contours, and if C is the matrix
of a rotation, then nothing is altered by applying the rotation to the random vector. On
partitioning C ′ε, we find that

(4.8)
[

C ′
1ε

C ′
2ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2IT−k

])
,

which is to say that C ′
1ε ∼ N(0, σ2Ik) and C ′

2ε ∼ N(0, σ2IT−k) are independently dis-
tributed normal vectors. It follows that

(4.9)

ε′C1C
′
1ε

σ2
=

ε′Pε

σ2
∼ χ2(k) and

ε′C2C
′
2ε

σ2
=

ε′(I − P )ε
σ2

∼ χ2(T − k)

are independent chi-square variates. Since C1C
′
1+C2C

′
2 = IT , the sum of these two variates

is

(4.10)
ε′C1C

′
1ε

σ2
+

ε′C2C
′
2ε

σ2
=

ε′ε

σ2
∼ χ2(T );

and thus the theorem is proved.
The statistic under (4.5) can now be expressed in the form of

(4.11) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
.

This is manifestly the ratio of two chi-square variates divided by their respective degrees
of freedom; and so it has an F distribution with these degrees of freedom. This result
provides the means for testing the hypothesis concerning the parameter vector β.

12
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5. TESTING HYPOTHESES CONCERNING THE
CLASSICAL LINEAR REGRESSION MODEL

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vector ε within
the regression equations y = Xβ+ε are distributed independently and identically according
to a normal law. Under this assumption, the sampling distributions of the estimates may
be derived and various hypotheses relating to the underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean of E(x) = µ
and a dispersion matrix of D(x) = Σ, we shall write x ∼ N(µ,Σ). A vector z ∼ N(0, I)
with a mean of zero and a dispersion matrix of D(z) = I is described as a standard normal
vector. Any normal vector x ∼ N(µ,Σ) can be standardised:

(5.1) If T is a transformation such that TΣT ′ = I and T ′T = Σ−1, then T (x−µ) ∼
N(0, I).

Associated with the normal distribution are a variety of so-called sampling distribu-
tions which occur frequently in problems of statistical inference. Amongst these are the
chi-square distribution, the F distribution and the t distribution.

If z ∼ N(0, I) is a standard normal vector of n elements, then the sum of squares of
its elements has a chi-square distribution of n degrees of freedom; and this is denoted by
z′z ∼ χ2(n). With the help of the standardising transformation, it can be shown that,

(5.2) If x ∼ N(µ,Σ) is a vector of order n, then (x − µ)′Σ−1(x − µ) ∼ χ2(n).

The sum of any two independent chi-square variates is itself a chi-square variate whose
degrees of freedom equal the sum of the degrees of freedom of its constituents. Thus,

(5.3) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates of m and
n degrees of freedom respectively, then (u + v) ∼ χ2(m + n) is a chi-square
variate of m + n degrees of freedom.

The ratio of two independent chi-square variates divided by their respective degrees of
freedom has a F distribution which is completely characterised by these degrees of freedom.
Thus,

(5.4) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates, then the
variate F = (u/m)/(v/n) has an F distribution of m and n degrees of freedom;
and this is denoted by writing F ∼ F (m, n).

The sampling distribution which is most frequently used is the t distribution. A t
variate is a ratio of a standard normal variate and the root of an independent chi-square
variate divided by its degrees of freedom. Thus,

(5.5) If z ∼ N(0, 1) and v ∼ χ2(n) are independent variates, then t = z/
√

(v/n)
has a t distribution of n degrees of freedom; and this is denoted by writing
t ∼ t(n).

It is clear that t2 ∼ F (1, n).

13
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Hypothesis Concerning the Coefficients

A linear function of a normally distributed vector is itself normally distributed. Thus,
it follows that, if y ∼ N(Xβ, σ2I), then

(5.6) β̂ ∼ Nk{β, σ2(X ′X)−1}.

On applying the result under (5.2) to (5.6), we find that

(5.7) σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k).

The distribution of the residual vector e = y − Xβ̂ is degenerate in the sense that
the mapping e = {I − X(X ′X)−1X ′}y = {I − P}ε, where P = X(X ′X)−1X ′, which is
from the disturbance vector ε to the residual vector e, entails a singular transformation.
Nevertheless, it is possible to obtain a factorisation of the transformation in the form of
I − P = C2C

′
2, where C2 is matrix of order T × (T − k) comprising T − k orthonormal

columns which are orthogonal to the columns of X such that C ′
2X = 0. Now, C ′

2C2 = IT−k;
so it follows that, on premultiplying y ∼ NT (Xβ, σ2I) by C ′

2, we get C ′
2y ∼ NT−k(0, σ2I).

Hence

(5.8) σ−2y′C2C
′
2y = σ−2(y − Xβ̂)′(y − Xβ̂) ∼ χ2(T − k).

The vectors Xβ̂ = Py and y − Xβ̂ = (I − P )y have a zero-valued covariance matrix.
That is

(5.9) C(e, Xβ̂) = (I − P )D(y)P ′ = σ2(I − P )P ′ = 0,

since D(y) = σ2I and (I − P )P ′ = (I − P )P = 0. If two normally distributed random
vectors have a zero covariance matrix, then they are statistically independent. Therefore,
it follows that

(5.10)
σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k) and

σ−2(y − Xβ̂)′(y − Xβ̂) ∼ χ2(T − k)

are mutually independent chi-square variates. From this, it can be deduced that

(5.11)
F =

{
(β̂ − β)′X ′X(β̂ − β)

k

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
1

σ̂2k
(β̂ − β)′X ′X(β̂ − β) ∼ F (k, T − k).

To test an hypothesis specifying that β = β�, we simply insert this value in the above
statistic and compare the resulting value with the critical values of an F distribution of k
and T − k degrees of freedom. If a critical value is exceeded, then the hypothesis is liable
to be rejected.

14
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The test is readily intelligible, since it is based on a measure of the distance between
the hypothesised value Xβ� of the systematic component of the regression and the value
Xβ̂ which is suggested by the data. If the two values are remote from each other, then we
may suspect that the hypothesis is at fault.

Hypothesis Concerning Subsets of the Coefficients

Consider a set of linear restrictions on the vector β of a classical linear regression
model N(y;Xβ, σ2I) which take the form of

(5.11) Rβ = r,

where R is a matrix of order j × k and of rank j, which is to say that the j restrictions
are independent of each other and are fewer in number than the parameters within β.
We know that the ordinary least-squares estimator of β is a normally distributed vector
β̂ ∼ N{β, σ2(X ′X)−1}. It follow that

(5.12) Rβ̂ ∼ N
{
Rβ = r, σ2R(X ′X)−1R′};

and, from this, we can immediately infer that

(5.13)
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

σ2
∼ χ2(j).

We have already established the result that

(5.14)
(T − k)σ̂2

σ2
=

(y − Xβ̂)′(y − Xβ̂)
σ2

∼ χ2(T − k)

is a chi-square variate which is statistically independent of the chi-square variate

(5.55)
(β̂ − β)′X ′X(β̂ − β)

σ2
∼ χ2(k)

derived from the estimator of the regression parameters. The variate of (5.14) must also
be independent of the chi-square of (5.13); and it is straightforward to deduce that

(5.16)

F =

{
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

j

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
(Rβ̂ − r)′

{
R(X ′X)−1R′}−1(Rβ̂ − r)

σ̂2j
∼ F (j, T − k),

which is to say that the ratio of the two independent chi-square variates is an F statistic.
This statistic, which embodies only know and observable quantities, can be used in testing
the validity of the hypothesised restrictions Rβ = r.
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A specialisation of the statistic under (5.16) can also be used in testing an hypothesis
concerning a subset of the elements of the vector β. Let β′ = [β′

1, β
′
2]

′. Then the condition
that the subvector β1 assumes the value of β∗

1 can be expressed via the equation

(5.17) [Ik1 , 0]
[

β1

β2

]
= β∗

1 .

This can be construed as a case of the equation Rβ = r where R = [Ik1 , 0] and r = β∗
1 .

In order to discover the specialised form of the requisite test statistic, let us consider
the following partitioned form of an inverse matrix:

(5.18)

(X ′X)−1 =
[

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2

]−1

=

[
{X ′

1(I − P2)X1}−1 − {X ′
1(I − P2)X1}−1X ′

1X2(X ′
2X2)−1

−{X ′
2(I − P1)X2}−1X ′

2X1(X ′
1X1)−1 {X ′

2(I − P1)X2}−1

]
,

Then, with R = [I, 0], we find that

(5.19) R(X ′X)−1R′ =
{
X ′

1(I − P2)X1

}−1

It follows in a straightforward manner that the specialised form of the F statistic of (5.16)
is

(5.20)

F =

{
(β̂1 − β∗

1)′
{
X ′

1(I − P2)X1

}
(β̂1 − β∗

1)
k1

/
(y − Xβ̂)′(y − Xβ̂)

T − k

}

=
(β̂1 − β∗

1)′
{
X ′

1(I − P2)X ′
1

}
(β̂1 − β∗

1)
σ̂2k1

∼ F (k1, T − k).

A limiting case of the F statistic concerns the test of an hypothesis affecting a single
element βi within the vector β. By specialising the expression under (5.16), a statistic
may be derived in the form of

(5.21) F =
(β̂i − βi�)2

σ̂2wii
,

wherein wii stands for the ith diagonal element of (X ′X)−1. If the hypothesis is true,
then this will be distributed according to the F (1, T − k) law. However, the usual way of
assessing such an hypothesis is to relate the value of the statistic

(5.18) t =
β̂i − βi�√
(σ̂2wii)
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to the tables of the t(T − k) distribution. The advantage of the t statistic is that it shows
the direction in which the estimate of βi deviates from the hypothesised value as well as
the size of the deviation.

6. RESTRICTED LEAST-SQUARES REGRESSION

Sometimes, we find that there is a set of a priori restrictions on the elements of the
vector β of the regression coefficients which can be taken into account in the process of
estimation. A set of j linear restrictions on the vector β can be written as Rβ = r, where
r is a j × k matrix of linearly independent rows, such that Rank(R) = j, and r is a vector
of j elements.

To combine this a priori information with the sample information, we adopt the
criterion of minimising the sum of squares (y−Xβ)′(y−Xβ) subject to the condition that
Rβ = r. This leads to the Lagrangean function

(6.1)
L = (y − Xβ)′(y − Xβ) + 2λ′(Rβ − r)

= y′y − 2y′Xβ + β′X ′Xβ + 2λ′Rβ − 2λ′r.

On differentiating L with respect to β and setting the result to zero, we get the following
first-order condition ∂L/∂β = 0:

(6.2) 2β′X ′X − 2y′X + 2λ′R = 0,

whence, after transposing the expression, eliminating the factor 2 and rearranging, we have

(6.3) X ′Xβ + R′λ = X ′y.

When these equations are compounded with the equations of the restrictions, which are
supplied by the condition ∂L/∂λ = 0, we get the following system:

(6.4)
[

X ′X R′

R 0

] [
β
λ

]
=

[
X ′y
r

]
.

For the system to have a unique solution, that is to say, for the existence of an estimate
of β, it is not necessary that the matrix X ′X should be invertible—it is enough that the
condition

(6.5) Rank
[

X
R

]
= k

should hold, which means that the matrix should have full column rank. The nature of
this condition can be understood by considering the possibility of estimating β by applying
ordinary least-squares regression to the equation

(6.6)
[

y
r

]
=

[
X
R

]
β +

[
ε
0

]
,
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which puts the equations of the observations and the equations of the restrictions on an
equal footing. It is clear that an estimator exits on the condition that (X ′X + R′R)−1

exists, for which the satisfaction of the rank condition is necessary and sufficient.
Let us simplify matters by assuming that (X ′X)−1 does exist. Then equation (6.3)

gives an expression for β in the form of

(6.7)
β∗ = (X ′X)−1X ′y − (X ′X)−1R′λ

= β̂ − (X ′X)−1R′λ,

where β̂ is the unrestricted ordinary least-squares estimator. Since Rβ∗ = r, premultiply-
ing the equation by R gives

(6.8) r = Rβ̂ − R(X ′X)−1R′λ,

from which

(6.9) λ = {R(X ′X)−1R′}−1(Rβ̂ − r).

On substituting this expression back into equation (6.7), we get

(6.10) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

This formula is more intelligible than it might appear to be at first, for it is simply an
instance of the prediction-error algorithm whereby the estimate of β is updated in the
light of the information provided by the restrictions. The error, in this instance, is the
divergence between Rβ̂ and E(Rβ̂) = r. Also included in the formula are the terms
D(Rβ̂) = σ2R(X ′X)−1R′ and C(β̂, Rβ̂) = σ2(X ′X)−1R′.

The sampling properties of the restricted least-squares estimator are easily established.
Given that E(β̂ − β) = 0, which is to say that β̂ is an unbiased estimator, it follows that
E(β∗ − β) = 0, so that β∗ is also unbiased.

Next consider the expression

(6.11)
β∗ − β = [I − (X ′X)−1R′{R(X ′X)−1R′}−1R](β̂ − β)

= (I − PR)(β̂ − β),

where

(6.12) PR = (X ′X)−1R′{R(X ′X)−1R′}−1R.

The expression comes from taking β from both sides of (6.10) and from recognising that
Rβ̂ − r = R(β̂ − β). We may observe that PR is an idempotent matrix which is subject to
the conditions that

(6.13) PR = P 2
R, PR(I − PR) = 0 and P ′

RX ′X(I − PR) = 0.

18
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From equation (6.11), we deduce that

(6.14)

D(β∗) = (I − PR)E{(β̂ − β)(β̂ − β)′}(I − PR)

= σ2(I − PR)(X ′X)−1(I − PR)

= σ2[(X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1].

7. THE REGRESSION MODEL WITH FIRST
ORDER AUTOREGRESSIVE DISTURBANCES

In the classical linear regression model, it is assumed that the disturbances constitute a
sequence ε(t) = {εt; t = 0,±1,±2, . . .} of independently and identically distributed random
variables such that

(7.1) E(εtεs) =

{
σ2, if t = s;

0, if t �= s.

The process which generates such disturbances is often called a white-noise process.
Our task is to find models for the disturbance process which are more in accordance

with the circumstances of economics where the variables tend to show a high degree of
inertia. In econometrics, the traditional means of representing the inertial properties of
the disturbance process has been to adopt a simple first-order autoregressive model, or
AR(1) model, whose equation takes the form of

(7.2) ηt = φηt−1 + εt, where φ ∈ (−1, 1).

Here it continues to be assumed that εt is generated by a white-noise process with
E(εt) = 0. In many econometric applications, the value of φ falls in the more restricted
interval [0, 1).

According to this model, the conditional expectation of ηt given ηt−1 is E(ηt|ηt−1) =
φηt−1. That is to say, the expectation of the current disturbance is φ times the value of the
previous disturbance. This implies that, for a value of φ which is closer to unity that to
zero, there will be a high degree of correlation amongst successive elements of the sequence
η(t) = {ηt; t = 0,±1,±2, . . .}.

We can show that the covariance of two elements of the sequence η(t) which are
separated by τ time periods is given by

(7.3) C(ηt−τ , ηt) = γτ = σ2 φτ

1 − φ2
.

It follows that variance of the process, which is formally the autocovariance of lag τ = 0,
is given by

(7.4) V (ηt) = γ0 =
σ2

1 − φ2
.

19



D.S.G. POLLOCK: Topis in Econometrics, Associate Students 2005

As φ tends to unity, the variance increases without bound.
To find the correlation of two elements from the autoregressive sequence, we note that

(7.5) Corr(ηt−τ , ηt) =
C(ηt−τ , ηt)√
V (ηt−τ )V (ηt)

=
C(ηt−τ , ηt)

V (ηt)
=

γτ

γ0
.

This implies that the correlation of the two elements separated by τ periods is just φτ ; and
thus, as the temporal separation increases, the correlation tends to zero in the manner of
a convergent geometric progression.

To demonstrate these results, let us consider substituting for ηt−1 =
φηt−2 + εt−1 in the equation under (6.2) and then substituting for ηt−2 = φηt−3 + εt−2,
and so on indefinitely. By this process, we find that

(7.6)

ηt = φηt−1 + εt

= φ2ηt−2 + εt + φεt−1

...
=

{
εt + φεt−1 + φ2εt−1 + · · ·

}
=

∞∑
i=0

φiεt−i.

Here the final expression is justified by the fact that φn → 0 as n → ∞ in consequence
of the restriction that |φ| < 1. Thus we see that ηt is formed as a geometrically declining
weighted average of all past values of the sequence ε(t).

Using this result, we can now write

(7.7)

γτ = C(ηt−τ , ηt) = E(ηt−τηt)

= E

({ ∞∑
i=0

φiεt−τ−i

}{ ∞∑
j=0

φjεt−j

})

=
∞∑

i=0

∞∑
j=0

φiφjE(εt−τ−iεt−j).

But the assumption that ε(t) is a white-noise process with zero-valued autocovariances at
all nonzero lags implies that

(7.8) E(εt−τ−iεt−j) =

{
σ2, if j = τ + i;

0, if j �= τ + i.

Therefore, on using the above conditions in (6.7) and on setting j = τ + i, we find that

(7.9)

γτ = σ2
∞∑
i

φiφi+τ = σ2φτ
∞∑
i

φ2i

= σ2φτ
{
1 + φ2 + φ4 + φ6 + · · ·

}
= σ2 φτ

1 − φ2
.
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This establishes the result under (6.3).
Now let us imagine a linear regression model in the form of

(7.10) yt = xt1β1 + xt2β2 + · · · + xtkβk + ηt,

where ηt follows a first-order autoregressive process. A set of T instances of the relationship
would be written as y = Xβ + η, where y and η are vectors of T elements and X is
a matrix or order T × k. The variance–covariance or dispersion matrix of the vector
η = [η1, η2, η3, . . . ηT ]′ takes the form of [γ|i−j|] = σ2

εQ, where

(7.11) Q =
1

1 − φ2


1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

φ2 φ 1 . . . φT−3

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1

 ;

and it can be confirmed directly that

(7.12) Q−1 =



1 −φ 0 . . . 0 0
−φ 1 + φ2 −φ . . . 0 0
0 −φ 1 + φ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + φ2 −φ
0 0 0 . . . −φ 1

 .

This is a matrix of three nonzero diagonal bands. The elements of principal diagonal,
apart from the first and the last, have the value of 1 + φ2. The first and last elements
are units. The elements of the supradiagonal band and of the subdiagonal band have the
value of −φ.

Given its sparcity, the matrix Q−1 could be used directly in implementing the gener-
alised least-squares estimator for which the formula is

(7.13) β∗ = (X ′Q−1X)−1X ′Q−1y.

However, by exploiting the factorisation Q−1 = T ′T , we are able to to implement the
estimator by applying an ordinary least-squares procedure to the transformed data W =
TX and g = Ty. The following equation demonstrates the equivalence of the procedures:

β∗ = (W ′W )−1W ′g(14)
= (X ′T ′TX)−1X ′T ′Ty

= (X ′Q−1X)−1X ′Q−1y
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The factor T of the matrix Q−1 = T ′T takes the form of

(7.15) T =



√
1 − φ2 0 0 . . . 0
−φ 1 0 . . . 0
0 −φ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

This effects a very simple transformation the data. Thus, for example, the element y1

within the vector y = [y1, y2, y3, . . . , yT ]′ is replaced y1

√
1 − φ2 whilst yt is replaced by

yt − φyt−1, for all t > 1.
Consider, for example, the simple regression model

(7.16) yt = xtβ + ηt with ηt = φηt−1 + εt.

For t > 1, the transformation gives the equation

(7.17) yt − φyt−1 = (xt − φxt−1)β + εt,

which represents a model that fulfils the classical assumptions and for which ordinary least
squares regression is the appropriate method of estimation.

8. ORDINARY LEAST-SQUARES REGRESSION

AND NONSPHERICAL DISTURBANCES

In cases where the structure of the dispersion matrix of the regression disturbances is
known to depend on a small set of parameters, it will be possible to estimate the regression
parameter β in the model (y;Xβ, σ2Q) via a method of feasible generalised least squares.
This uses an estimate Ω∗ of the dispersion matrix of the disturbances within the formula
β∗ = (X ′Ω∗−1X)−1X ′Ω∗−1y. In other cases, where there is no knowledge of the structure
of the dispersion matrix, we may have to use the ordinary least-squares (OLS) estimator
β̂ = (X ′X)−1X ′y.

The OLS estimator will be unbiased and, subject to certain restrictions limiting the
serial dependence of the disturbances, it will also be consistent. However, the dispersion
matrix of the estimator will differ from that which obtains in the case of the OLS estimator
of the classical model (y;Xβ, σ2I), which is D(β̂) = σ2(X ′X)−1. In fact, the dispersion
matrix of the OLS estimator of β in the model (y;Xβ, σ2Q) is given by

(8.1)
D(β̂) = (X ′X)−1X ′D(y)X(X ′X)−1

= (X ′X)−1{σ2X ′ΩX}(X ′X)−1,

which is commonly referred to as the sandwich formula. Here, D(y) = E(εε′) = σ2Ω = Σ
is a symmetric matrix of order T , which cannot be estimated on the basis of a sample
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of size T , unless there are sufficient restrictions on its structure. However, in order to
implement the sandwich formula, what is required is an estimate of the matrix

(8.2) W = σ2X ′ΩX = X ′ΣX,

which is of the order k, which is the number of explanatory variables in X.
To reveal the structure of this matrix, let us consider the elements of the matrices

W = [wij ], X = [xtj ], X ′ = [xsi]′ and Σ = [σst]. Then, there is

(8.3)

wij =
∑

t

∑
s

xsiσstxtj

=
∑

t

∑
s

xsiE(εsεt)xtj ;

and the matrix as a whole is given by W =
∑

t

∑
s x′

s•E(εsεt)xt•, in a more summary
notation. For this to be estimable, some further restrictions are necessary. The restriction
that removes the serial dependence from the disturbances, but which allows them to be
heteroskedastic, sets

(8.4) E(εsεt) =

{
σ2

t , if t = s;

0, if t �= s.

Then, there is

(8.5) wij =
∑

t

σ2
t xtixtj

and W =
∑

t σ2
t x′

t•xt•. There are still as many parameters within the matrix Σ =
diag{σ2

1 , . . . , σ2
T } as there are observations. Therefore, it cannot be estimated consis-

tently. Nevertheless, under certain assumptions, the product T−1W = T−1X ′ΣX can be
estimated consistently via

(8.6)
1
T

ŵij =
1
T

∑
t

e2
t xtixtj

which is obtained by replacing σ2 = E(ε2
t ) by the squared residual e2

t . This is the
heteroskedasticity-consistent estimator of White (1982).

To demonstrate the consistency, we note that, if β̂ → β as T → ∞, then e2
t → ε2

t .
Therefore, it is sufficient to consider the limiting behaviour of

(8.7)

1
T

T∑
t=1

ε2
t xtixtj =

1
T

T∑
t=1

(σ2
t + νt)xtixtj

=
1
T

T∑
t=1

σ2
t xtixtj +

1
T

T∑
t=1

νtxtixtj .
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In the second term on the LHS, there is a random variable νt, representing the deviation
of ε2

t from its expected value E(ε2
t ) = σ2

t , which has E(νt) = 0 and which is independent
of the elements xti and xtj . We can expect the second term to converge to zero. Since
e2
t → ε2

t , it follows that T−1ŵij = T−1
∑

t e2
t xtixtj converges to T−1wij .

The restriction that eliminates the serial dependence of the disturbances is much
stronger than it need be. Given that the matrix W is of a constant order k, whereas the
sample size T may grow indefinitely, there is hope of estimating W consistently in most
practical circumstances. Consider the writing the matrix T−1W = T−1X ′E(εε′)X as

(8.8)

1
T

W =
T∑

s=1

T∑
t=1

1
T

x′
s•E(εsεt)xt•

=
T−1∑

j=1−T

{ 1
T

T∑
t=j+1

x′
t•E(εtεt−j)x[t−j]•

}
.

The elements that are subject to these summations may be assigned to a square matrix
of order T of which the rows and columns are indexed by s, t = 1, . . . , T . In the first ex-
pression, the summation runs across each of the matrix rows in succession. In the second
expression, it runs along the NE–SW diagonals of the matrix, beginning in the bottom
left corner and rising through the principal diagonal to the top right corner. The disper-
sion matrix of a stationary stochastic process has constant values along these diagonals.
Therefore, the second expression is appropriate to cases where both the data and the
disturbances are generated by stationary processes.

The second equality of (8.8) can be written as

(8.9)
1
T

W =
T−1∑

j=1−T

Γj = Γ0 +
T−1∑
j=1

(Γj + Γ′
j),

where Γj is the expression within the braces. The empirical counterpart of this matrix is

(8.10) Gj =
1
T

T∑
t=j+1

x′
t•etet−jx[t−j]•.

If the number j is small in comparison with T , then we can expect Gj to be an adequate
estimate of Γj . Moreover, for a fixed j, we can expect Gj → Γj as T → ∞.

Replacing Γj by Gj in (8.9) for all j results in the matrix T−1X ′ee′X, which does
not constitute a viable estimator. The difficulty lies in the estimates Gj when j is close
to T . In that case, the estimate will comprise a limited amount of information from T − j
sample points. Various recourses for avoiding the problem are available. The simplest of
these is to limit the range of the index j such that its absolute value does not exceed some
threshold value p. Then, we obtain the estimator of Hansen (1982), which is

(8.11) WH =
p∑

j=p

Gj = G0 +
p∑

j=1

(Gj + G′
j).
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An alternative estimator, which is due to Newey and West (1987), applies a gradual
discount to the matrices Gj as j increases. It takes the form of

(8.12) WN = G0 +
p∑

j=1

(
1 − j

p + 1

)
(Gj + G′

j).
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