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1. MINIMUM DISTANCE ESTIMATION
AND MINIMUM VARIANCE ESTIMATION

The Decomposition of the Sum of Squares

Ordinary least-squares regression entails the decomposition the vector y into two mu-
tually orthogonal components. These are the vector Py = X (X'X)1X’y = X3, which
estimates the systematic component of the regression equation, and the residual vector
e =y—X B, which estimates the disturbance vector €. The condition that e should be
orthogonal to the manifold of X in which the systematic component resides, such that
Xe=X'(y—X B) = 0, is the condition which is expressed by the normal equations, which
are written more commonly as X' X3 = X'y

Correspondmg to the decomposition of y, there is a decomposition of the sum of
squares y'y. To express the latter, let us write X ﬁ Pyande=y—X 5 (I—P)y. Then,
in consequence of the condition P = P’ = P? and the equivalent condition P'(I — P) = 0,
it follows that

y'y = {Py+ (I — Py} {Py+ (I - Py}
(1.1) =y Py+y' (I - Py
=3'X'XB+ce.

This is simply an instance of Pythagoras theorem; and the identity is expressed by saying
that the total sum of squares v’y is equal to the regression sum of squares B' X'X B plus
the residual or error sum of squares e’e. A geometric interpretation of the orthogonal
decomposition of y and of the resulting Pythagorean relationship is given in Figure 1.

It is clear from intuition that, by projecting y perpendicularly onto the manifold of
X, the distance between y and Py = X B is minimised. In order to establish this point
formally, imagine that v = Pg is an arbitrary vector in the manifold of X. Then the
Euclidean distance from y to v cannot be less than the distance from y to X /3 The square
of the former distance is

W—"'(y—7={y—XB)+ X8} {y—XB)+(XB-7)}

1.2
12) ={( =Py +Ply-9)}{(-Ply+Ply—-9)}

The properties of the projector P which have been used in simplifying equation (1), indicate
that

(y=—7)(w—")=9yT—-Py+(y—9)Ply—g)

(1.3) . ’
=ce+ (X3 —7)(XB—7).

Since the squared distance (X 5—~)’(X 3—~) is nonnegative, it follows that (y—~)'(y—~) >
e’e, where e = y — X 3; and this proves the assertion.
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Figure 1. The vector Py = X @ is formed by the orthogonal projection of the vector
y onto the subspace spanned by the columns of the matrix X.

Some Statistical Properties of the Estimator

The expectation or mean vector of B , and its dispersion matrix as well, may be found
from the expression

f=(X'X)"'X'(XB+¢)

(1.4)
=B+ (X'X) ' Xe.

On the assumption that the elements of X are nonstochastic, the expectation is given by

E(B) =B+ (X'X)'X'E(e)

(1.5) .

Thus, B is an unbiased estimator. The deviation of B from its expected value is B —
E(B) = (X'X)"1X’e. Therefore the dispersion matrix, which contains the variances and

covariances of the elements of (3, is

A A A A Ay
D) = E[{6 - E®)}{3- BB} |
(1.6) = (X'X) ' X'E(ee) X (X' X))
= (X' X)L
The Gauss—Markov theorem asserts that B is the unbiased linear estimator of least
dispersion. This dispersion is usually characterised in terms of the variance of an arbitrary

linear combination of the elements of B , although it may also be characterised in terms of
the determinant of the dispersion matrix D(3). Thus,
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(1.7) If 3 is the ordinary least-squares estimator of § in the classical linear re-
gression model, and if 3" is any other linear unbiased estimator of 3, then
V(q'8*) > V(q'B) where ¢ is any constant vector of the appropriate order.

Proof. Since f* = Ay is an unbiased estimator, it follows that E(8*) = AE(y) = AX( =
3, which implies that AX = I. Now set A = (X’X)"1X’ + G. Then AX = I implies that
GX = 0. Given that D(y) = D(g) = 021, it follows that

D(3") = AD(y)A’
= {(X'X)"' X'+ GHXX'X)"'+G'}
=} X' X)) +0*GG
= D(3) + o*GG.

(1.8)

Therefore, for any constant vector ¢ of order k, there is the identity

(1.9) V(¢B) = q’D(?q +02%¢GG'q

> ¢'D(B)a = V(d'B);
and thus the inequality V(¢’3*) > V(¢'(3) is established.

2. THE PARTITIONED REGRESSSION MODEL

Consider taking a regression equation in the form of

(2.1) y=[X1 Xa2] [gj +e=X101+XoB2 + €.

Here [X1, X3] = X and [1, 85]' = (8 are obtained by partitioning the matrix X and vector
(3 of the equation y = X 3+¢ in a conformable manner. The normal equations X' X3 = X'y

can be partitioned likewise. Writing the equations without the surrounding matrix braces
gives

(2.2) X1 X101 + X1 Xo02 = X1y,
(2.3) X5 X101 + X5X282 = Xoy.

To obtain an expression for Bg, we must eliminate 31 from equation (2.3). For this purpose,
we multiply equation (2.2) by X5X;(X|X1)™! to give

(2:4) X3Xa B+ XpXa (X1X0) 7 X[ X0y = Xp X4 (X1 X0) ' X1y,
When the latter is taken from equation (2.3), we get
(2.5) { X5 — X5 (X[X0) 71 XT X B2 = Xy — X5 (X[ X0) 7 Xy,
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On defining
(2.6) Po=X (X1 X)X, and Py = Xo(X5Xo) P X,

can we rewrite (2.5) as

(2.7) {Xé(f - Pl)X2}ﬁ2 = X5(I — P1)y,
whence
(2.8) By = {Xé([ - Pl)X2}1X§(I — Py

The analogous estimator for 5; may be obtained from (2.8) simply by interchanging the
subscripts 1 and 2. However, an alternative form of the estimator may be obtained directly
from (2.2). This is

(2.9) B = (X1X1) "X (y — Xof).

Some Algebraic Indentities

we shall now create some further notation that will enable us to record some useful algebraic
identities. We may begin with the following

(2.10) X3=XX'X)"'X"y =Py
R —1

(2.11) X103 = Xl{X{(I _ PQ)Xl} X|(I - Py)y = Py oy
R —1

(2.12) Xofy = X2{X§(I _ Pl)XQ} X4(I = P)y = Pyyry.

In these terms, the identity XB = Xlﬁl + X2BQ becomes Py = Py oy + P51y and, since
this holds for all values of y, we may record that

(213) P:P1/2+P2/1.

Now consider using (2.9) to write X8, = Py (y — X203;). Using (2.11) and (2.12), this can
be written as Py oy = P1(I — P»/1)y and, since this holds for all values of y, we have

(214) P1/2:P1(I—P2/1):Pl—Plpg/]_.

Adding P,/; to both sides of this gives Py /o + Ps/1 = P = P1 + (I — P1)P,/;, from which
we get
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This identity may be written more explicitly as

(2.16) X(X'X)'X' - Xy (X/ X))\ X] = (I - Pl)XQ{Xg(I - Pl)XQ}_lXé(I —P).

Regression with an Intercept

We may use the expressions for 31, (> in (2.8) and (2.9) in order to find estimators
of the parameters 31, Bz of the regression model (y,i3; + Zf3.,02I). For this purpose,
we assimilate the equations y = i3; + Z(3z + € to the equations y = X131 + Xs3 + € by
setting X1 = i, X2 = Z, 51 = ﬂl and ﬁé = ﬁlZ

To assist us in finding the formulae for the estimators, let us consider the projector

(2.17) Py =P, =i(i'd) 'y =i’ )T.

Applying this to the vector y, we get

(2.18) Py =i(i'y/T) = i( Y w/T) = iy,

Applying it likewise to the matrix Z, we get
(2.19) PX =i [thg, . thk} T = i[o, ..., 74] = Z.

On substituting Z = X5 and i = X; in the formula for 8> = 37 in (2.8), and using

the identity (I — P;) = (I — P;)'(I — P;) and the notation § = Py, Z = P;Z, we obtain
Bz ={2'(1-P)Z}*Z'(I - P)y

(2.20) _, o .
={(Z-2)(Z2-2)}y(Z-2)'(y—9).

Thus the coefficients s, . . ., Br may be estimated by applying ordinary least-squares regres-
sion to data which has been adjusted by subtracting from each observation its respective
sample mean.

To find an estimate of the intercept term 3; = 31, we substitute i = X; and Z = X5
in the formula for 3; in (2.9) to get

By = (") Yy — ()W Z{Z2/ (I - P)ZY ' Z'(I - Py
= i'y/T —i'Z032/T

k
=7 Bz

=2

(2.21)
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Coefficients of Determination

To provide a summary measure of the extent to which the ordinary least-squares
regression accounts for the observed vector y, we may use the ordinary coefficient of de-
termination. This is defined by

'Py  BX'X[3
(2.22) R2(y,X):y,y:6 , b
vy vy

If y € M(X), then X3 = Py = y; and it follows that R2 = 1. The value of y is then
completely accounted for by the regression. If y is distributed continuously in R”, then the
event y € M(X) has a probability measure of zero unless M(X) = R”, in which case the
event is a certainty. The condition M(X) = R is equivalent to the condition Null(X) = 0
which means that X has full row rank which, in turn, implies that the number of rows
in X cannot exceed the number of columns. For the parameter vector # to be estimable,
the condition Null(X) = 0 must be fulfilled. Thus X must have full column rank, and the
number of columns must not exceed the number of rows. It follows that we can expect the
regression to yield both a coefficient of determination of unity and a uniquely determined
estimate 3 if and only if X is a non-singular square matrix comprising equal numbers of
variables and observations.

If y L M(X) or, equivalently, y € N(X), then Py = 0; and it follows that R? = 0.
Then the regression fails to account for any part of y. However, on the assumption that y
is distributed continuously in R”, the event y 1. M(X) has a probability measure of zero,
and thus we would never expect to find R? = 0 in practice.

The inequality 0 < R? < 1 also follows from the properties of cosines once we recognize
that R? is the cosine of the angle between the vectors y and Py.

We may also wish to measure the peculiar contribution of the variables in X; to the
explanation of y when y is regressed on X = [X;, X5]. To do so, we must remove from y
the component that is attributable to X5 by subtracting Poy to give (I — P2)y. We must
also find the components that are peculiar to X; by subtracting P> X; to give (I — P2)X;.
We can then obtain a measure of the contribution by finding the ordinary coefficient of
determination R?{(I—P,)y, (I —Py)X;} of the regression of (I —Py)y on (I —P,)X;. In the
context of the regression of y on X, this is called the partial coefficient of determination of
y and X5 given X; and is denoted by R?(y, X2|X1). Using the symmetry and idempotency
of I — P, and the identity of (16), we find that

y' (I — Pl)Xg{Xg(I — Pl)Xg}_lXé(I — Py
y(I—P)(I—-P)y

y'(P—P)y

y'(I— Py

R*(y, Xo|X;) =

(2.23)

In the case of the model (y,i3; + ZBz,0%I), which we also write as
(y, XB,02%I), where X = [i, Z] and 3’ = [3;, 8], it is conventional to measure the explana-
tory power of the regression in terms of the partial coefficient of determination R?(y, Z|i).
This practice is justified by the argument that the explanatory power of the vector i is
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given for free. Using the notations Py = y and P;Z = Z of (7.34) and (7.35) respectively,
we find from (7.40) that

y-9)(2Z-2){(2-2)(2-2)}"(2-2)'(y—y)

R2(y,Z|i) = Y, =
(2.24) | / ) (?/J Ay) (?{ )
_yPy—y'Py X XE-9Y
vy —P)y Yy =9y

The first equality shows that R?(y, Z|i) is the ordinary coefficient of determination
of the regression (7.36) wherein the variables are the deviations of the observations about
their sample means. The final term, which suggests a straightforward way of computing
the coefficient, has an interesting comparison with R2(y, X) = SX'X3/y'y defined in (22).

3. DIAGONALISATION OF A SYMMETRIC MATRIX

The Geometry of Quadratie Forms

The Circle. Let the coordinates of the points in the Cartersian plane be denoted by (z1, 22).
Then the equation of a circle of radius r centred on the origin is just

(3.1) 2425 =12

This follows immediately from Pythagorus. The so-called parametric equations for the
coordinates of the circle are

(3.2) z1 =rcos(w), and 29 =rsin(w).

The Ellipse. The equation of an ellipse whose principal axes are aligned with those of the
coordinate system in the (y1,y2) plane is

(3.3) Myt + Aays =17,

On setting A\1y? = 27 and \ay2 = 23, we can see that

“1 " 2 _ 7 sin(w).

N VY, v et hVs vV v

We can write equation (3.6) in matrix notation as

(3.4)

(3.5) "2 = [ yg]ﬁ; AOJ [yl} — 2+

This implies

(3. M
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and

57 BRR I

The Oblique Ellipse. An oblique ellipse is one whose principal axes are not aligned with
those of the coordinate system. Its general equation is

2 2 _ 2
(3.8) a1y + 2a120122 + agr; =

which is subject to the condition that aji1as2 — a%Q > 0. We can write this in matrix

notation:
22 (o1 o] cos@ sinf| [N O cos@ —sinf | |z
T2 6ing cos6 0 MXo| |sinf cos@ 9

_ A1 0 Y| _ 2 2
= [n ?JQ][O )\2] [m}—%"”?«é»

where 6 is the angle which the pincipcal axis of the ellipse makes with the horizontal. The
coefficients of the equation (3.8) are the elements of the matrix

(3.10) ain a2 | [A1cos? O+ g sin’ @ (A2 — A1) cos@siné
’ a1 azz| | (A2 — A1) cos@sin® A;sin?0 + Apcos?d |-

Notice that, if Ay = A2, which is to say that both axes are rescaled by the same factor,
then the equation is that of a circle of radius A;, and the rotation of the circle has no
effect.

The mapping from the ellipse to the circle is

(3.11) 2] [V 0 cos —sinf| |z _ VA1 (1 cos ) — x5 sin 6)
‘ 29 0 V2| |sin@ cosf T VA (21 8inf + x5 cosh) |

and the inverse mapping, from the circle to the ellipse, is

02 2] =t e ) 2]

We see from the latter that the circle is converted to an oblique ellipse via two oper-
ations. The first is an operation of scaling which produces an ellipse whose principal axes
are aligned with those of the coordinate system. The second operation is a rotation which
tilts the ellipse.

The vectors of the matrix that effects the rotation define the axes of the ellipse. They
have the property that, when they are mapped through the matrix A, their orientation is
preserved and only their length is altered. Thus

ailp ai2 cos 6
as1 Qa22 —sinf

(3.13) _ { cos 0 sin9] {/\1 0} {cose —sinq { cos 0 ]

(3.9)

—sinf cos@ 0 Ao sinf cosf —sinf
| cosf® sin@||A O 1] )\, | cos 0
| —sinf cos@ 0 M| |O| 71| —sing|"
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Such vectors are described as the characteristic vectors of the matrix, and the factors
A1 and Ao, by which their lengths are altered under the transformation, are described as
the corresponding characteristic roots.

Characteristic Roots and Characteristic Vectors

Let A be an n x n symmetric matrix such that A = A’, and imagine that the scalar
A and the vector x satisfy the equation Ax = Ax. Then A is a characteristic root of A and
x is a corresponding characteristic vector. We also refer to characteristic roots as latent
roots or eigenvalues. The characteristic vectors are also called eigenvectors.

(3.14) The characteristic vectors corresponding to two distinct characteristic roots
are orthogonal. Thus, if Axy = A\jz; and Axy = Aoxo with Ay #£ Ag, then
/
rix2 = 0.

Proof. Premultiplying the defining equations by z/, and z| respectively, gives b Az =
Mxhzy and xf Axg = Aexize. But A = A’ implies that 25, Az = x| Azy, whence \jxhz; =
Aoxixo. Since A1 # g, it must be that afzs = 0.

The characteristic vector corresponding to a particular root is defined only up to a
factor of proportionality. For let x be a characteristic vector of A such that Ax = Ax.
Then multiplying the equation by a scalar p gives A(ux) = AMpx) or Ay = \y; so y = ux
is another characteristic vector corresponding to A.

(3.15) If P = P' = P? is a symmetric idempotent matrix, then its characteristic
roots can take only the values of 0 and 1.

Proof. Since P = P? it follows that, if Px = Az, then P?z = \x or P(Pz) = P(\z) =
A2z = Az, which implies that A = A\?. This is possible only when \ = 0, 1.

Diagonalisation of a Symmetric Matrix

Let A be an n x n symmetric matrix, and let x1,...,x, be a set of n linearly inde-
pendent characteristic vectors corresponding to its roots A1,...,\,. Then we can form a
set of normalised vectors

which have the property that o
, { 0, ifi#j;
1, ifi=j.
The first of these reflects the condition that zix; = 0. It follows that C' = [¢1,...,¢,] is
an orthonormal matrix such that C'C = CC’ = I.

Now consider the equation Alcy,...,c,] = [Ac1,. .., Anc,] which can also be written
as AC' = CA where A = Diag{\q,..., A\, } is the matrix with \; as its ¢th diagonal elements

9
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and with zeros in the non-diagonal positions. Postmultiplying the equation by C’ gives
ACC" = A = CAC’; and premultiplying by C’ gives C'AC = C'CA = A. Thus A = CAC’
and C'AC = A; and C'is effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/1/A; so that D'D = A~}
and D’AD = I. Premultiplying the equation C'AC = A by D’ and postmultiplying it by
D gives D'C'"ACD = D'AD =1 or TAT' = I, where T = D'C’. Also, T'T = CDD'C’ =
CA~'C" = A~'. Thus we have shown that

(3.16) For any symmetric matrix A = A’, there exists a matrix 7" such that TAT" =
Iand T'T = A~ L.

4. COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector ( in the model
N(y; X3,02I) entails a multi-dimensional version of Pythagoras’ Theorem. Consider the
decomposition of the vector y into the systematic component and the residual vector. This
gives

y=XB+(y—Xp) and

(4.1) . X
y—XB=(XB-XB)+(y—Xp),

where the second equation comes from subtracting the unknown mean vector X3 from
both sides of the first. These equations can also be expressed in terms of the projector
P = X(X'X)"'X' which gives Py = X3 and (I — P)y = y— X3 = e. Using the definition
¢ =y — X[ within the second of the equations, we have

y=Py+ (I —-P)y and

(4.2)

e =Pe+ (I — P)e.
The reason for rendering the equations in this notation is that it enables us to envisage
more clearly the Pythagorean relationship between the vectors. Thus, from the condition
that P = P’ = P?, which is equivalent to the condition that P'(I — P) = 0, it can be
established that

ge=¢ePe+e'(I—P)e  or

(4.3) . . . .
ele=(XB—XB)(XB—XB)+ (y—XB) (y — XP).
The terms in these expressions represent squared lengths; and the vectors themselves form
the sides of a right-angled triangle with Pe at the base, (I — P)e as the vertical side and
¢ as the hypotenuse.
The usual test of an hypothesis regarding the elements of the vector [ is based on
the foregoing relationships. Imagine that the hypothesis postulates that the true value of

10
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the parameter vector is By. To test this notion, we compare the value of X3y with the
estimated mean vector X B The test is a matter of assessing the proximity of the two
vectors which is measured by the square of the distance which separates them. This is
given by &’ Pe = (XB — Xﬁo)’(XB — X o). If the hypothesis is untrue and if X /3 is remote
from the true value of X3, then the distance is liable to be excessive. The distance can
only be assessed in comparison with the variance o2 of the disturbance term or with an
estimate thereof. Usually, one has to make do with the estimate of o2 which is provided
by

s2_ W—XB)'(y— XP)

(I P)e
Tk

The numerator of this estimate is simply the squared length of the vector e = (I — P)y =
(I — P)e which constitutes the vertical side of the right-angled triangle.
The test uses the result that

(4.5) If y ~ N(X3,0%I) and if 3 = (X’X)"' X"y, then

b { (X3 - XB)(XB - XB) / (y—XB)'(y— XB) }
k T—k

is distributed as an F'(k,T — k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition of a chi-
square random variate. The following is a statement of the theorem which is attuned to
our present requirements:

(4.6) Let € ~ N(0,0%Ir) be a random vector of T independently and identically
distributed elements. Also let P = X (X’X)~!X’ be a symmetric idempotent

matrix, such that P = P’ = P2, which is constructed from a matrix X of
order T' x k with Rank(X) = k. Then

e'Pe €' (I—-Pe ¢e
+ -

2 2

o o

which is a chi-square variate of T' degrees of freedom, represents the sum of
two independent chi-square variates ¢’ Pe/o? ~ x?(k) and ¢'(I — P)e/o? ~
X2(T — k) of k and T — k degrees of freedom respectively.

To prove this result, we begin by finding an alternative expression for the projector P =
X(X'X)71X’. First consider the fact that X’'X is a symmetric positive-definite matrix.
It follows that there exists a matrix transformation 7" such that T(X'X)T" = I and
T'T = (X'X)~1. Therefore P = XT'TX' = C1Cy, where C; = XT" is a T x k matrix
comprising k orthonormal vectors such that C7Cy = I} is the identity matrix of order k.

11
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Now define C5 to be a complementary matrix of T — k orthonormal vectors. Then
C = [Cy,C5] is an orthonormal matrix of order T such that

CC' = C,C) +CyCh =Ty and

(4.7) ofel c;CQ]Z[Jk 0 ]

/

ce= {cgcl Loy | =10 I

The first of these results allows us to set I — P = I — C1C] = CyC%. Now, if ¢ ~
N(0,0%Ir) and if C is an orthonormal matrix such that C'C = Ir, then it follows that
C'e ~ N(0,0%Ir). In effect, if € is a normally distributed random vector with a density
function which is centred on zero and which has spherical contours, and if C' is the matrix
of a rotation, then nothing is altered by applying the rotation to the random vector. On
partitioning C’e, we find that

(4.8) {gﬂ NN(B} ! {Jzolk a2IOT_kD’

which is to say that Cie ~ N(0,02I;) and Che ~ N(0,0%Ir_}) are independently dis-
tributed normal vectors. It follows that

e'C1Cle €' Pe

2 = o ™ x*(k) and
(49) e'CyChe  &'(I — P)e
= (T k)

are independent chi-square variates. Since C1C|+C2C’ = I, the sum of these two variates
is

e'C1Cle  €'CyCle e
5+ 2 -

(4.10)

g g

and thus the theorem is proved.
The statistic under (4.5) can now be expressed in the form of

) e'Pe [T~ P)e
" o fer: faum)

This is manifestly the ratio of two chi-square variates divided by their respective degrees
of freedom; and so it has an F' distribution with these degrees of freedom. This result
provides the means for testing the hypothesis concerning the parameter vector J3.

12
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5. TESTING HYPOTHESES CONCERNING THE
CLASSICAL LINEAR REGRESSION MODEL

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vector € within
the regression equations y = X 3+¢ are distributed independently and identically according
to a normal law. Under this assumption, the sampling distributions of the estimates may
be derived and various hypotheses relating to the underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean of F(z) = p
and a dispersion matrix of D(z) = X, we shall write z ~ N(u,X). A vector z ~ N(0,1)
with a mean of zero and a dispersion matrix of D(z) = I is described as a standard normal
vector. Any normal vector x ~ N(u,Y) can be standardised:

(5.1) If T is a transformation such that TXT" = I and T'T = X1, then T'(x — ) ~
N(0,1).

Associated with the normal distribution are a variety of so-called sampling distribu-
tions which occur frequently in problems of statistical inference. Amongst these are the
chi-square distribution, the F' distribution and the ¢ distribution.

If z ~ N(0,7) is a standard normal vector of n elements, then the sum of squares of
its elements has a chi-square distribution of n degrees of freedom; and this is denoted by
2’z ~ x?(n). With the help of the standardising transformation, it can be shown that,

(5.2) If z ~ N(u,X) is a vector of order n, then (z — )Y~ (z — p) ~ x3(n).

The sum of any two independent chi-square variates is itself a chi-square variate whose
degrees of freedom equal the sum of the degrees of freedom of its constituents. Thus,

(5.3) If u ~ x%(m) and v ~ x?(n) are independent chi-square variates of m and
n degrees of freedom respectively, then (u + v) ~ x?(m + n) is a chi-square
variate of m + n degrees of freedom.

The ratio of two independent chi-square variates divided by their respective degrees of
freedom has a F' distribution which is completely characterised by these degrees of freedom.
Thus,

(5.4) If u ~ x?(m) and v ~ x?(n) are independent chi-square variates, then the
variate F' = (u/m)/(v/n) has an F' distribution of m and n degrees of freedom;
and this is denoted by writing F' ~ F(m,n).

The sampling distribution which is most frequently used is the ¢ distribution. A ¢
variate is a ratio of a standard normal variate and the root of an independent chi-square
variate divided by its degrees of freedom. Thus,

(5.5) If 2 ~ N(0,1) and v ~ x?(n) are independent variates, then t = z/+/(v/n)
has a t distribution of n degrees of freedom; and this is denoted by writing
t ~t(n).

It is clear that t2 ~ F(1,n).

13
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Hypothesis Concerning the Coefficients

A linear function of a normally distributed vector is itself normally distributed. Thus,
it follows that, if y ~ N(X3,0%I), then

(5.6) B~ N8, 0% (X' X)),

Likewise, the marginal distributions of 3;, 32 within 3 = [Bl, 52] are given by
(5.7) B1 ~ Ny, (B1,0*{X{(I = P) X1} 1),

(5.8) B ~ Ny, (B2, 0*{X5(I — P1) X2} 1),

where P, = X;(X(X1) 7 'X] and P, = X5(X5X5) 71X, On applying the result under
(5.2) to (5.6), we find that

(5.9) o (B = B)X'X(B - B) ~ x*(k).
Similarly, it follows from (5.7) and (5.8) that

(5.10) 0_2(31 - 61)' X1(I - P2)X1(5Al — B1) ~ x*(k1),
(5.11) o72(Ba — B2)' X4(I — P)Xo(B2 — Ba) ~ x*(k2).

The distribution of the residual vector e = y — X B is degenerate in the sense that
the mapping e = {I — X(X'X) 1 X'}y = {I — P}e, where P = X(X'X)"' X’ which is
from the disturbance vector € to the residual vector e, entails a singular transformation.
Nevertheless, it is possible to obtain a factorisation of the transformation in the form of
I — P = CC’', where C is matrix of order T x (T — k) comprising T' — k orthonormal
columns which are orthogonal to the columns of X such that C’X = 0. Now, C'C = I1_y;
so it follows that, on premultiplying y ~ Np(X3,0%I) by C’, we get C'y ~ Np_(0,021).
Hence

~

(5.12) o2 OCYy = 2(y— XB) (y — XB) ~ x*(T — k).

The vectors X3 = Py and y — X3 = (I — P)y have a zero-valued covariance matrix.
That is

(5.13) Cle,XB3) = (I — P)D(y)P' = o*(I — P)P' =0,

since D(y) = 0%l and (I — P)P' = (I — P)P = 0. If two normally distributed random
vectors have a zero covariance matrix, then they are statistically independent. Therefore,
it follows that

o 2(B-B)X'X(B - B) ~x*(k) and
o2y — XB) (y — XB) ~ x*(T — k)

14
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are mutually independent chi-square variates. From this, it can be deduced that

<F:{@—BﬂWX@—ﬁD/@—Xﬁﬂy—X@}

k T—k
(5.15)

= 3 (B VXX (B~ ) ~ F(E,T — ).

To test an hypothesis specifying that § = (,, we simply insert this value in the above
statistic and compare the resulting value with the critical values of an F' distribution of k&
and T — k degrees of freedom. If a critical value is exceeded, then the hypothesis is liable
to be rejected.

The test is readily intelligible, since it is based on a measure of the distance between
the hypothesised value X3, of the systematic component of the regression and the value
X B which is suggested by the data. If the two values are remote from each other, then we
may suspect that the hypothesis is at fault.

It is usual to suppose that a subset of the elements of the parameter vector 3 are zeros.
This represents an instance of a class of hypotheses which specify values for a subvector
B2 within the partitioned model y = X;3; + X 32 + ¢ without asserting anything about
the values of the remaining elements in the subvector ;. The appropriate test statistic
for testing the hypothesis that gy = fBa is

(B2 = Boo) X3(I = PO X (B2 — o).
g k}g
This will have an F(ky,T — k) distribution if the hypothesis is true.

We are unlikely to propose that 3 = 0 as a whole. Even if we suppose that none of
the explanatory variables in a regression model are relevant in explaining the values of the
dependent variable, we are likely, nevertheless, to suppose that they have a nonzero mean,
which is to say that intercept term is supposed to be nonzero. To test the hypothesis that
B, = 0 in the model (y;ta + Z3.,0°%I), we could use a statistic in the form of (5.16) with
B2 = 3, and X3 = Z and where P, = P, = T4/ is the averaging operator.

Of course, the intercept term would be eliminated by taking the variables in deviation
form. The hypothesis that 3, = 0 in the deviations model, which proposes that all of
the model’s regression coefficients are zero, is the same as the hypothesis that « alone in
nonzero in the original model; and the relevant test statistics are identical.

A limiting case of the F' statistic concerns the test of an hypothesis affecting a single
element [3; within the vector 3. By specialising the expression under (5.16), a statistic may
be derived in the form of

(5.16) F =

(Bz B 610)2
62wy

(5.17) F =

wherein w;; stands for the ith diagonal element of (X’X)~!. If the hypothesis is true,
then this will be distributed according to the F'(1,7T — k) law. However, the usual way of
assessing such an hypothesis is to relate the value of the statistic

_ Bz - ﬁio
\/ZOA'Q’U)ZJ
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to the tables of the ¢(1T"— k) distribution. The advantage of the ¢ statistic is that it shows
the direction in which the estimate of 3; deviates from the hypothesised value as well as
the size of the deviation.

6. THE REGRESSION MODEL WITH FIRST
ORDER AUTOREGRESSIVE DISTURBANCES

In the classical linear regression model, it is assumed that the disturbances constitute a
sequence e(t) = {e4;t = 0,+1,42,...} of independently and identically distributed random
variables such that

o?, ift=s;

(6.1) E(etes) { 0, itts
The process which generates such disturbances is often called a white-noise process.

Our task is to find models for the disturbance process which are more in accordance
with the circumstances of economics where the variables tend to show a high degree of
inertia. In econometrics, the traditional means of representing the inertial properties of
the disturbance process has been to adopt a simple first-order autoregressive model, or
AR(1) model, whose equation takes the form of

(6.2) N = ¢m—1 + e, where ¢ € (—1,1).

Here it continues to be assumed that e; is generated by a white-noise process with
E(g;) = 0. In many econometric applications, the value of ¢ falls in the more restricted
interval [0, 1).

According to this model, the conditional expectation of n; given n;_1 is E(n|ni—1) =
¢n¢—1. That is to say, the expectation of the current disturbance is ¢ times the value of the
previous disturbance. This implies that, for a value of ¢ which is closer to unity that to
zero, there will be a high degree of correlation amongst successive elements of the sequence
n(t) = {n;t =0,£1,+2,...}.

We can show that the covariance of two elements of the sequence 7(t) which are
separated by 7 time periods is given by

(6.3) CNt—ry ) = V7 = 02%&-

It follows that variance of the process, which is formally the autocovariance of lag 7 = 0,
is given by

0.2

(6.4) V(ne) =0 = W

As ¢ tends to unity, the variance increases without bound.

16
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To find the correlation of two elements from the autoregressive sequence, we note that

C(nt—‘ra 7715) _ C(Tlt—m nt) — 7_T
V(ne—-)V(ne) V() Yo'

This implies that the correlation of the two elements separated by 7 periods is just ¢”; and
thus, as the temporal separation increases, the correlation tends to zero in the manner of
a convergent geometric progression.

To demonstrate these results, let wus consider substituting for n_; =
¢Nt—2 + €¢—1 in the equation under (6.2) and then substituting for n;_o = ¢ni_3 + €42,
and so on indefinitely. By this process, we find that

(6.5) Corr(np—r,mt) =

Nt = PNe—1 + ¢
= ¢27lt—2 + e+ pera

6.6 '
(6.6) :{€t+¢€t—1+¢25t—1+"'}

o0
= Z Prer—i.
i=0

Here the final expression is justified by the fact that ¢ — 0 as n — oo in consequence
of the restriction that |¢| < 1. Thus we see that 7, is formed as a geometrically declining
weighted average of all past values of the sequence €(t).

Using this result, we can now write

Yr = C(M—rymt) = E(e—rnt)

(6.7 ) <{ iwet”_i}{éwg“j})

But the assumption that €(¢) is a white-noise process with zero-valued autocovariances at
all nonzero lags implies that

o2, ifj=1+1;
(68) E(gt—T—iEt—j) = o )
0, ifj#71+1.

Therefore, on using the above conditions in (6.7) and on setting j = 7 + 4, we find that

Ny = 0_2 Z¢z¢z+7’ — O_2¢T Z¢22

(6.9) =0 {1+¢*+¢* +¢5+--}
2 9"
1— ¢

=0

17



D.S.G. POLLOCK: Topis in Econometrics, Associate Students 2004

This establishes the result under (6.3).
Now let us imagine a linear regression model in the form of

(6.10) Yt =z + ;202 + -+ xS + Ny

where 7; follows a first-order autoregressive process. A set of T" instances of the relationship
would be written as y = X3 + n, where y and n are vectors of T elements and X is
a matrix or order T' x k. The variance—covariance or dispersion matrix of the vector
n = [m,n2,m3,...n7]’ takes the form of [y;_;] = 02Q, where

1 é o ... ¢T!
, ¢ 1 ¢ ... ¢T2
2 T-3
(6.11) Q= 1_7& ¢ ¢ 1 ¢ | )
¢f—1 ¢f—2 qu'—?) 1

and it can be confirmed directly that

! —¢ 0O ... 0 0 7

—¢ 1+¢* —¢ ... 0 0

612) o1 0 —¢ 1+¢* ... 0 0
0 0 0 ..14¢® o
L 0 0 o ... —¢ 1

This is a matrix of three nonzero diagonal bands. The elements of principal diagonal,
apart from the first and the last, have the value of 1 4+ ¢2. The first and last elements
are units. The elements of the supradiagonal band and of the subdiagonal band have the
value of —¢.

Given its sparcity, the matrix Q~! could be used directly in implementing the gener-
alised least-squares estimator for which the formula is

(6.13) 8= (X'Q7'X)"'X'Q .
However, by exploiting the factorisation Q~! = T'T, we are able to to implement the

estimator by applying an ordinary least-squares procedure to the transformed data W =
TX and g = Ty. The following equation demonstrates the equivalence of the procedures:

(14) B =(W'W)" "Wy
= (X'T'TX) ' X'"T'Ty
— (X/Q—lX)—lX/Q—ly

18
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The factor T of the matrix Q' = T'T takes the form of

[J1—¢2 0 0 ... 0]

—¢ 1 0 ... 0

(6.15) T = 0 —¢ 1 ... 0
0 0 0 ... 1

This effects a very simple transformation the data. Thus, for example, the element

within the vector y = [y1,¥2,¥s,...,yr] is replaced y14/1 — ¢? whilst y; is replaced by
Yt — ¢yt—1; for all ¢t > 1.
Consider, for example, the simple regression model

(6.16) ye=xf+mn  with n = on1 + e

For ¢ > 1, the transformation gives the equation

(6.17) Yt — QY1 = (x4 — ¢x4—1)0 + &4,

which represents a model that fulfils the classical assumptions and for which ordinary least
squares regression is the appropriate method of estimation.

7. THE ALMON LAG

A useful way of reducing the number of parameters to be estimated in the distributed-lag
model

k

(7.1) y(t) = Bja(t —i) +<(t)

=0

is to assume that the k + 1 coefficients of 3 = [(y,..., k], can be represented by the
ordinates of a polynomial P (i) of a degree ¢ which is less than k. Thus it may be specified
that

q
(7.2) Bi=Pi)=>Y i’ for i=0,... k.
j=0

Let IT = [i’] and let v = [y0,71,---,7]- Then the equations of equation (7.2) can be be
compiled as 3 = IIv, which can be written more explicitly as

Bo r1 1 - 1 Yo
b1 1 2 4 - 20 |m
(7.3) ol =1 3 9 - 37| |7
By 1k K - k1] LA,

19
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On substituting (7.2) into (7.1), we get

k q
y(t) =Y Y it —i) +e(t)

i=0 j=0

(7.4) .
= 752(t) + &),
j=0

where z;(t) = Zf::o Pt — ). Given a set of T observations (x1,¥y1),...,
(xr,yr), we can form the variables zo;, ... zq for t = 1,...,T. Then, by using the method
of ordinary least squares to regress y; on these variables, we can find estimates of the
polynomial parameters 7, ..., 7,. By substituting these estimates into the equation (7.2),
we can find estimates of the lag coefficients (3, ..., Ok.

If the equation of (7.1) were written in matrix form as y = X/ + ¢, then setting
B = Iy would give

(7.5) y=Xlly+e=2Zy+e.

From the estimate 4 = (Z'Z)~1Z'y we should find 3 = I15.

In her original exposition, Almon employed an alternative form of the gth-degree
polynomial P(i). This takes account of the fact that, if 7p,...,7, are any ¢ + 1 points
in the domain of P(7), then the polynomial is completely specified by knowing the values
po = P(19),...,pq = P(7,). Taking these values as our parameters, we can write the
alternative representation as

(7.6) P(r) = ij5j(7),

wherein

_ HZ;AJ'(T — T¢)

& 5i7) = T

is a polynomial of degree ¢ with the property that 0;(7;) = 1 and 6;(7) = 0 for all £ # j.
The functions d,(7);7 = 0,...,q are called Lagrangean interpolation polynomials; and
together they form a basis for the set of all polynomials of degrees less than or equal to q.
A complete array of the ¢ + 1 basis function can be represented as follows:

(T —m)(r=72)-- (T = 74)

o) = =)= ) (=)
78 ) = G = ) =2
() = T =) (T =T

(Tg = 10)(Tg = T1) - (Tg — Tg—1)

20
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If, instead of (7.2), we substitute into (7.1) the expression
q
(7.9) Bi = P(i) =Y p;d;(i),
j=0

then we obtain the equation

k q
y(t) =3 > " pio;(i)alt — i) +&(t)

i=0 j=0

(7.10) )
= piz(t) +e(t),
5=0

where z;(t) = >3 0;(i)z(t —4). Given a set of T observations, we can estimate the lag

coefficients in the same way a before.

First, we choose values 79,...,7,. These should be a sequence of rising values in
the vicinity of the interval [0, k], which is the range of the index of tithe coefficients {£;}.
Then, having formed the associated Lagrangean interpolation polynomials, we can find the
T values of the transformed variables zp, ..., zq:. Next, the estimates of the polynomial
parameters po,...,p, are found by using the method of ordinary least squares to regress
y; on the transformed variables. Finally, the estimates of the lag coefficients (o, ..., 3, can
be obtained from equation (7.9) by putting the estimates of the polynomial parameters in
place of the unknown values.

The Lagrangean polynomials have the advantage that they enable us to tie down the
sequence of coefficients [y, ..., B at either end by ensuring that f_; = P(—1) = 0 and
Br+1 = P(k+1) = 0. This is achieved by setting 7o = —1 and 7, = k+1 and by specifying
that P(m9) = 0 and P(7,;) = 0. With these values in place, only ¢ —1 ordinates p1, ..., ps—1
need to be estimated since equation (7.8) reduces to

q
(7.11) B = P(i) = ijdj(Tj) where =0,...,k.
j=2

The polynomial P(i) can be expressed as a linear combination of other sets of basis
polynomials. Although the choice of the Lagrangean interpolation polynomials as a basis
renders the problem of incorporating certain types of a prior: information particularly
tractable, it may be less useful for incorporating other types of information.

8. TRANSFER FUNCTIONS

Consider a simple dynamic model of the form

(8.1) y(t) = oyt —1) + x(t)B +e(t).
With the use of the lag operator, we can rewrite this as
(82) (1 —oL)y(t) = fz(t) +£(t)

21



D.S.G. POLLOCK: Topis in Econometrics, Associate Students 2004

or, equivalently, as

3 1
Py AU Oy

(8.3) y(t) = e(t).

The latter is the so-called rational transfer-function form of the equation. We can replace
the operator L within the transfer functions or filters associated with the signal sequence
x(t) and disturbance sequence €(t) by a complex number z. Then, for the transfer function
associated with the signal, we get

g

(8.4) T

Bll+dz+¢%2% + -},

where the RHS comes from a familiar power-series expansion.

The sequence {3, 8¢, 362, ...} of the coefficients of the expansion constitutes the im-
pulse response of the transfer function. That is to to say, if we imagine that, on the input
side, the signal is a unit-impulse sequence of the form

(8.5) 2(t) ={...,0,1,0,0,...},

which has zero values at all but one instant, then its mapping through the transfer function
would result in an output sequence of

(8.6) r(t) ={...,0,8, B¢, 3%, ...}.

Another important concept is the step response of the filter. We may imagine that
the input sequence is zero-valued up to a point in time when it assumes a constant unit
value:

(8.7) z(t)=1{...,0,1,1,1,...}.

The mapping of this sequence through the transfer function would result in an output
sequence of

(8.8) s(t) ={...,0,8,8+ 8¢, 5+ B + Be?,.. .}

whose elements, from the point when the step occurs in x(t), are simply the partial sums
of the impulse-response sequence.

This sequence of partial sums {3, 3 + B¢, 8 + B¢ + B2, ...} is described as the step
response. Given that |¢| < 1, the step response converges to a value

(8.9) =12

which is described as the steady-state gain or the long-term multiplier of the transfer
function.
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These various concepts apply to models of any order. Consider the equation
(8.10) a(L)y(t) = B(L)x(t) +&(b),
where
a(l)=14+oaL+---+apLP
(8.11) =1l—¢1L—---—¢pL7,
BL)=1+AL+ -+ (Lt

are polynomials of the lag operator. The transfer-function form of the model is simply

(8.12) y(t) = —=x(t) +

The rational function associated with x(t) has a series expansion

B(z)
(8.13) a(z)

=w(z)
= {w0+w12+w222+---};

and the sequence of the coefficients of this expansion constitutes the impulse-response
function. The partial sums of the coefficients constitute the step-response function. The
gain of the transfer function is defined by

B(1)  Bo+pBi+-+ B

8.14 _ _ _
(8.14) 7 a(l) l+a1 4+

The method of finding the coefficients of the series expansion of the transfer function
in the general case can be illustrated by the second-order case:

Bo + Bz
1—¢12— ¢222

We rewrite this equation as

(8.15) ={wo +wiz+we2® + - }.

(8.16) Bo+ Bz ={1— 12 — ¢22° Hwo +wiz +waz® + - }.

Then, by performing the multiplication on the RHS, and by equating the coefficients of
the same powers of z on the two sides of the equation, we find that

Bo = wo, wo = Bo,
p1 = w1 — ¢1wo, w1 = B + drwo,
(8.17) 0 =ws — grw1 — Pawo, wo = P1w1 + Pawo,
0=wp — Prwn—1 — Pawp_2, Wp = Q1Wp—1 + Powp—2.
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By examining this scheme, we are able to distinguish between the different roles which are
played by the numerator parameters 3y, 1 and the denominator parameters ¢1, ¢o. The
parameters of the numerator serve as initial conditions for the process which generates
the impulse response. The denominator parameters determine the dynamic nature of the
impulse response.

Consider the case where the impulse response takes the form a damped sinusoid. This
case arises when the roots of the equation a(z) = 1 — ¢z — ¢222 = 0 are a pair of conjugate
complex numbers falling outside the unit circle—as they are bound to do if the response is
to be a damped one. Then the parameters 3y and (; are jointly responsible for the initial
amplitude and for the phase of the sinusoid. The phase is the time lag which displaces the
peak of the sinusoid so that it occurs after the starting time ¢ = 0 of the response, which
is where the peak of an undisplaced cosine response would occur.

The parameters ¢; and ¢o, on the other hand, serve to determine the period of the
sinusoidal fluctuations and the degree of damping, which is the rate at which the impulse
response converges to zero.

It seems that all four parameters ought to be present in a model which aims at
capturing any of the dynamic responses of which a second-order system is capable. To omit
one of the numerator parameters of the model would be a mistake unless, for example,
there is good reason to assume that the impulse response attains its maximum value at
the starting time ¢ = 0. We are rarely in the position to make such an assumption.
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