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1. CONDITIONAL EXPECTATIONS

Minimum-Mean-Square-Error Predictsion

Let y be a continuously distributed random variable whose probability
density function is f(y). If we wish to predict the value of y without the help
of any other information, then we might take its expected value which is defined
by

E(y) =
∫

yf(y)dy.

The expected value is a so-called minimum-mean-square-error (m.m.s.e.)
predictor. If π is the value of a prediction, then the mean-square error is given
by

(1.1)

M =
∫

(y − π)2f(y)dy

= E
{
(y − π)2

}
= E(y2)− 2πE(y) + π2;

and, using the methods of calculus, it is easy to show that this quantity is
minimised by taking π = E(y).

Now let us imagine that y is statistically related to another random variable
x whose value we have already observed. For the sake of argument, let us
assume that we know the form of the joint distribution of x and y which is
f(x, y). Then the minimum-mean-square-error prediction of y is given by the
conditional expectation

(1.2) E(y|x) =
∫

y
f(x, y)
f(x)

dy

wherein

(1.3) f(x) =
∫

f(x, y)dy

is the so-called marginal distribution of x. We may state this proposition
formally in a way which will assist us in proving it:

(1.4) Let ŷ = ŷ(x) be the conditional expectation of y given x which
is also expressed as ŷ = E(y|x). Then we have E{(y − ŷ)2} ≤
E{(y − π)2}, where π = π(x) is any other function of x.

Proof. Consider

(1.5)
E
{
(y − π)2

}
= E

[{
(y − ŷ) + (ŷ − π)

}2
]

= E
{
(y − ŷ)2

}
+ 2E

{
(y − ŷ)(ŷ − π)

}
+ E

{
(ŷ − π)2

}
.
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In the second term, there is

(1.6)

E
{
(y − ŷ)(ŷ − π)

}
=
∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫
x

{∫
y

(y − ŷ)f(y|x)∂y

}
(ŷ − π)f(x)∂x

= 0.

Here the second equality depends upon the factorisation f(x, y) = f(y|x)f(x)
which expresses the joint probability density function of x and y as the product
of the conditional density function of y given x and the marginal density func-
tion of x. The final equality depends upon the fact that

∫
(y − ŷ)f(y|x)∂y =

E(y|x) − E(y|x) = 0. Therefore E{(y − π)2} = E{(y − ŷ)2} + E{(ŷ − π)2} ≥
E{(y − ŷ)2}, and the assertion is proved.

We might note that the definition of the conditional expectation implies
that

(1.7)

E(xy) =
∫
x

∫
y

xyf(x, y)∂y∂x

=
∫
x

x

{∫
y

yf(y|x)∂y

}
f(x)∂x

= E(xŷ).

When the equation E(xy) = E(xŷ) is rewritten as

(1.8) E
{
x(y − ŷ)

}
= 0,

it may be described as an orthogonality condition. This condition indicates
that the prediction error y − ŷ is uncorrelated with x. The result is intuitively
appealing; for, if the error were correlated with x, then we should not be using
the information of x efficiently in forming ŷ.

Condtional Expectations and Linear Regression

If the joint distribution of x and y is a normal distribution, then we can
make rapid headway in finding an expression for the function E(y|x). In the
case of a normal distribution, we have

(1.9) E(y|x) = α + βx,

which is to say that the conditional expectation of y given x is a linear function
of x. Equation (1.9) is described as a linear regression equation; and we shall
explain this terminology later.
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The object is to find expressions for α and β which are in terms of the first-
order and second-order moments of the joint distribution. That is to say, we
wish to express α and β in terms of the expectations E(x), E(y), the variances
V (x), V (y) and the covariance C(x, y).

Admittedly, if we had already pursued the theory of the Normal distri-
bution to the extent of demonstrating that the regression equation is a linear
equation, then we should have already discovered these expressions for α and
β. However, our present purposes are best served by taking equation (1.9) as
our starting point; and we are prepared to regard the linearity of the regression
equation as an assumption in its own right rather than as a deduction from the
assumption of a normal distribution.

Let us begin by multiplying equation (1.9) throughout by f(x), and let us
proceed to integrate with respect to x. This gives us the equation

(1.10) E(y) = α + βE(x),

whence

(1.11) α = E(y)− βE(x).

Equation (1.10) shows that the regression line passes through the point
E(x, y) = {E(x), E(y)} which is the expected value of the joint distribution.

By putting (1.11) into (1.9), we find that

(1.12) E(y|x) = E(y) + β
{
x− E(x)

}
,

which shows how the conditional expectation of y differs from the unconditional
expectation in proportion to the error of predicting x by taking its expected
value.

Now let us multiply (1.9) by x and f(x) and then integrate with respect
to x to provide

(1.13) E(xy) = αE(x) + βE(x2).

Multiplying (1.10) by E(x) gives

(1.14) E(x)E(y) = αE(x) + β
{
E(x)

}2
,

whence, on taking (1.14) from (1.13), we get

(1.15) E(xy)− E(x)E(y) = β
[
E(x2)−

{
E(x)

}2
]
,
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which implies that

(1.16)

β =
E(xy)− E(x)E(y)

E(x2)−
{
E(x)

}2

=
E
[{

x− E(x)
}{

y − E(y)
}]

E
[{

x− E(x)
}2
]

=
C(x, y)
V (x)

.

Thus we have expressed α and β in terms of the moments E(x), E(y), V (x)
and C(x, y) of the joint distribution of x and y.

Example. Let x = ξ + η be an observed random variable which combines a
signal component ξ and a noise component η. Imagine that the two components
are uncorrelated with C(ξ, η) = 0, and let V (ξ) = σ2

ξ and V (η) = σ2
η. The

object is to extract the signal from the observation.
According to the formulae of (1.12) and (1.16), the expectation of the

signal conditional upon the observation is

(1.17) E(ξ|x) = E(ξ) +
C(x, ξ)
V (x)

{
x− E(x)

}
.

Given that ξ and η are uncorrelated, it follows that

(1.18) V (x) = V (ξ + η) = σ2
ξ + σ2

η

and that

(1.19) C(x, ξ) = V (ξ) + C(ξ, η) = σ2
ξ .

Therefore

(1.20) E(ξ|x) = E(ξ) +
σ2
ξ

σ2
ξ + σ2

η

{
x− E(x)

}
.
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2. SIMULTANEOUS-EQUATIONS BIAS

Bias in the OLS Estiamation of the Consumption Function

In elementary macroeconomic theory, a simple model of the economy is
postulated which comprises two equations:

y = c + i,(2.1)

c = α + βy + ε.(2.2)

Here y stands for the gross product of the economy, which is also the income of
consumers, i stands for investment and c stands for consumption. An additional
identity s = y− c or s = i, where s is savings, is also entailed. The disturbance
term ε, which is omitted from the usual presentation in economics textbooks,
is assumed to be independent of the variable i.

On substituting the consumption function of (2.2) into the income identity
of (2.1) and rearranging the result, we find that

(2.3) y =
1

1− β

(
α + i + ε

)
,

from which

(2.4) yt − ȳ =
1

1− β

(
it − ī + εt − ε̄

)
.

The ordinary least-squares estimator of the parameter β, which is called
the marginal propensity to consume, gives rise to the following equation:

(2.5) β̂ = β +
∑

(yt − ȳ)εt∑
(yt − ȳ)2

.

Equation (2.3), which shows that y is dependent on ε, suggests that β̂ cannot
be a consistent estimator of β.

To determine the probability limit of the estimator, we must assess the
separate probability limits of the numerator and the denominator of the term
on the RHS of (2.5).

The following results are available:

(2.6)

lim
1
T

T∑
t=1

(it − ī)2 = mii = V (i),

plim
1
T

T∑
t=1

(yt − ȳ)2 =
mii + σ2

(1− β)2
= V (y),

plim
1
T

T∑
t=1

(yt − ȳ)εt =
σ2

1− β
= C(y, ε).
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y = c + i

c = α + βy

c  + i1

c  + i2

Figure 1. If the only source of variation in y is the variation in i, then

the observations on y and c will delineate the consumption function.

45o
α
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c
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c = y  − i

c = α + βy

c = α + βy  + ε

Figure 2. If the only source of variation in y are the disturbances

to c, then the observations on y and c will line along a 45◦ line.
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The results indicate that

(2.7)
plim β̂ = β +

σ2(1− β)
mii + σ2

=
βmii + σ2

mii + σ2
;

and it can be seen that the limiting value of β̂ has an upward bias which
increases as the ratio σ2/mii increases.

On the assumption that the model is valid, it is easy to understand why
the parameter of the regression of c on y exceeds the value of the marginal
propensity to consume. We can do so by considering the extreme cases.

Imagine, first, that σ2 = V (ε) = 0. Then the only source of variation in y
and c is the variation in i. In that case, the parameter of the regression of c on
y will coincide with β. This is illustrated in Figure 1. Now imagine, instead,
that i is constant and that the only variations in c and y are due ε which is
disturbs consumption. Then the expected value of consumption is provided by
the equation c = y− i in which the coefficient associated with y is unity. Figure
2 illustrates this case. Assuming now that both mii > 0 and σ2 > 0, it follows
that the value of the regression parameter must lie somewhere in the interval
[β, 1].

Although it may be inappropriate for estimating the structural parameter
β, the direct regression of c on y does provide the conditional expectation
E(c|y); and this endows it with a validity which it retains even if the Keynesian
model of (2.1) and (2.2) is misspecified.

In fact, the simple Keynesian model of (2.1) and (2.2) is more an epigram
than a serious scientific theory. Common sense dictates that we should give
more credence to the estimate of the conditional expectation E(c|y) than to
a putative estimate of the marginal propensity to consume devised within the
context of a doubtful model.

3. THE CONCEPT OF EXOGENEITY

Exogeneity

As the etymology suggests, the term exogenenous variables are generated
outside the system or the equation of interest. The dependent variables, that
are generated within the system, are described as endogenous.

In so far as their values affect those of the dependent variables, the exoge-
nous variables are apt to be described as explanatory variables or regressors.
The concept of exogeneity is appropriate to circumstances where regression
equations correspond to components of the economy that can be regarded as
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structural entities embodying causal relationships running from the explana-
tory variables to the dependent variables.

The parameters of a structural regression equation are its intrinsic prop-
erties; and they are expected to be invariant in respect of any changes in the
circumstances affecting the generation of the exogenous variables. Moreover,
the validity of the ordinary methods of regression analysis are dependent upon
the truth of the assumption that the disturbance term is uncorrelated with the
explanatory variables that are regarded as exogenous.

There are also circumstances where regression equations represent a sta-
tistical relationships that corresponds neither to a structural relationship nor
to a causal connection. The parameters of such a regression equation are a
reflection of the joint distribution of the variables comprised by the equation.
They are expected to remain constant only in so far as the joint distribution is
unchanged.

In the case of a purely statistical regression equation, it is generally inap-
propriate to categorise the variables as exogenous or endogenous. Moreover,
the role of the disturbance term of the structural regression equation, which is
deemed to represent the aggregate effect of the omitted exogenous variables, is
taken by the prediction error, which, by construction, is uncorrelated with the
regressors.

The concept of exogeneity has been analysed and elaborated in an influ-
ential article of Engle, Hendry and Richard (1983). Their analysis is concerned
primarily with structural regression equations. Nevertheless, it goes some way
towards bridging the gap that exists between the structural and the statistical
interpretations. It must be said that, in the process, the authors have altered
the meaning of the word exogeneity to the extent that they are prepared to
find so-called conditions of weak exogeneity in equations that are devoid of any
structural or behavioural interpretation.

The discussion of exogeneity tends to be heavily burdened by special def-
initions and by neologisms, but we shall attempt to convey the basic ideas in
the simple of terms and within the context of bivariate relationships.

We should begin by noting that there is nothing inherent is the structure
of a bivariate distribution to indicate which of the variables is the dependent
variable and which is the explanatory variable. The two variables are appointed
to play these roles by choosing one or other of the available factorisations that
depict the joint distribution as the product of a marginal distribution and a
conditional distribution:

(3.1) f(x, y) = f(y|x)f(x) = f(x|y)f(y).

We shall choose y as the dependent variable and x as the regressor. In
that case, it is the conditional distribution f(y|x) that embodies the regression
equation. If x qualifies as a (weakly) exogenous variable, then we are in a
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position to ignore the details of the marginal distribution f(x) when making
inferences about the parameters of the conditional distribution.

In terms of the existing notation, we have

(3.2)
E(y|x) = µy|x = α + βx,

E(x) = µx,

where

(3.3) β =
σxy
σxy

=
ρσy
σx

and α = µy − βµx.

We may also define the disturbance terms of the conditional and the marginal
distributions, which are

(3.4) yt − µy|x = εt ∼ N(0, σ2) and xt − µx = νt ∼ N(0, σ2
x).

By construction, these are statistically independent with C(εt, νt) = 0. There
is also a specification for V (εt) = σ2:

(3.5) σ2 = σ2
y(1− ρ2) = σyy −

σ2
xy

σxx
.

The factorisation of the bivariate distribution has entailed the replacement
of the parameter set Φ = {µy, µx, σ2

x, σ
2
y, ρ} by two parameter sets, which are

Λ1 = {α, β, σ2} and Λ2 = {µx, σ2
x}. To show the dependence of the distribu-

tions upon the parameters, we may write the chosen factorisation as

(3.6) f(xt, yt; Φ) = f(yt|xt; Λ1)f(xt; Λ2).

We define the parameters of interest to be a function Ψ = g(Λ1) of the param-
eters of the conditional distribution.

We are now in a position to supply the central definition of Engle et al.:

(3.7) The variable xt is said to be weakly exogenous for Ψ = g(Λ1) if
and only if the factorisation of (3.6) generates a parameter space
Λ = Λ1 × Λ2 = {(λ1, λ2)} in which the elements λ1 ∈ Λ1 and
λ2 ∈ Λ2 are free to vary independently of each other.

This definition is concerned essentially with the efficiency of estimation.
Thus, a variable xt is defined to be weakly exogenous for the purposes of esti-
mating the parameters of interest if it entails no loss of information to confine
ones attention to the conditional distribution of yt given xt and to disregard
the marginal distribution of xt.
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The definition would normally allow us to describe the argument xt of the
marginal distribution f(xt), as well as the argument yt of f(yt), as an exogenous
variable when there is no structural information regarding the parameters of Λ1

and Λ2 to constrain their independent variation. However, the full implications
of the definition are best understood in the context of a simple example.

Example. Consider the so-called cobweb model that depicts an agricultural
market in which the price is determined in consequence of the current supply
and in which the supply has been determined by the price of the previous
period. The resulting structural equations are

pt = βqt + εt, where εt ∼ N(0, σ2),(3.8)

qt = πqpt−1 + νqt, where νqt ∼ N(0, σ2
q ).(3.9)

Here, pt and qt are the logarithms of price and quantity respectively, which
have been adjusted by subtracting the sample means in order to eliminate the
intercept terms from the equations. They are in place of yt and xt respectively.
The value of 1/β is the price elasticity of demand, and that of πq is the price
elasticity of supply.

It is assumed that C(εt, νqt) = 0, which reflects the fact that the circum-
stances in which the agricultural product is created are remote from those in
which it is marketed. It follows that C(qt, νqt) = 0, which guarantees that qt is
exogenous with respect to equation (3.8) in the conventional sense. However,
in view of the feedback that runs from (3.8) to (3.9), we choose to describe qt
as a predetermined variable rather than an exogenous variable.

The variables pt and qt also have a purely statistical joint distribution with
constant mean values, which gives rise to what are described as the reduced-
form equations:

pt = πppt−1 + νpt, where νpt ∼ N(0, σ2
p),(3.10)

qt = πqpt−1 + νqt, where νqt ∼ N(0, σ2
q ).(3.11)

It is assumed that C(νpt, νqt) = σpq 6= 0.
From the conditional distribution of pt given pt, we obtain

(3.12)
E(pt|qt) = E(pt) +

C(pt, qt)
V (qt)

{qt − E(qt)}

= πppt−1 +
σpq
σqq
{qt − πqpt−1},

from which

(3.13) pt = (πp − βπq)pt−1 + βqt + εt.
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Here, εt is, by construction, uncorrelated with νqt.
The comparison of equation (3.13) with equation (3.8) makes it clear that

the cobweb model embodies the restriction that πp− βπq = 0. (Notice that, in
the absence of the condition C(εt, νqt) = 0 affecting equations (3.8) and (3.9),
equation (3.13) could not be identified with (3.8).)

Imagine that β ∈ Λ1 alone is the parameter of interest. Then the restriction
that excludes pt−1 from equation (3.8) will make qt weakly exogenous for β.

There is, however, the matter of the dynamic stability of the system to
be considered. It is natural to assume that the disturbances to the cobweb
system will give rise to damped cycles in the prices and quantities. This neces-
sitates that the coefficient of equation (3.10) obeys the condition that |πp| < 1.
Substitution of equation (3.9) into equation (3.8) gives

(3.14) pt = βπqpt−1 + (εt + βνqt).

This is an alternative rendering of equation (3.10) which shows again that
πp = βπq.

When the stability of the system is taken into account, there is a connec-
tion between the parameters β ∈ Λ1 and πq ∈ Λ2 of the conditional and the
marginal distributions, such that their values are inversely related. Knowing
the value of πq will enable one to delimit the permissible values of β. Thus,
in circumstances where the dynamic stability of the system is a necessary as-
sumption, the variable xt is no longer weakly exogenous for β according to the
definition of (3.7).

The foregoing example can be used to illustrate two further definitions
that have been cited by Engle et al.:

(3.15) The variable qt is said to be predetermined in equation (3.8) if and
only if C(qt, εt+i) = 0 for all i ≥ 0, whereas it is said to be strictly
exogenous in (3.8) if and only if C(qt, εt+i) = 0 for all i.

These are, in fact, the conventional definitions of exogenous and predetermined
variables. It is notable that they make reference only to the equation in question
and not to the parameters of interest therein.

For the condition of strict exogeneity to be satisfied in equation (3.8), it
would be necessary to eliminate the feedback to equation (3.9). This would
suggest that the producers have no regard to previous or current prices.
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4. DIAGONALISATION OF A SYMMETRIC MATRIX

Characteristic Roots and Characteristic Vectors

Let A be an n× n symmetric matrix such that A = A′, and imagine that
the scalar λ and the vector x satisfy the equation Ax = λx. Then λ is a
characteristic root of A and x is a corresponding characteristic vector. We also
refer to characteristic roots as latent roots or eigenvalues. The characteristic
vectors are also called eigenvectors.

(4.1) The characteristic vectors corresponding to two distinct character-
istic roots are orthogonal. Thus, if Ax1 = λ1x1 and Ax2 = λ2x2

with λ1 6= λ2, then x′1x2 = 0.

Proof. Premultiplying the defining equations by x′2 and x′1 respectively, gives
x′2Ax1 = λ1x

′
2x1 and x′1Ax2 = λ2x

′
1x2. But A = A′ implies that x′2Ax1 =

x′1Ax2, whence λ1x
′
2x1 = λ2x

′
1x2. Since λ1 6= λ2, it must be that x′1x2 = 0.

The characteristic vector corresponding to a particular root is defined only
up to a factor of proportionality. For let x be a characteristic vector of A such
that Ax = λx. Then multiplying the equation by a scalar µ gives A(µx) =
λ(µx) or Ay = λy; so y = µx is another characteristic vector corresponding to
λ.

(4.2) If P = P ′ = P 2 is a symmetric idempotent matrix, then its
characteristic roots can take only the values of 0 and 1.

Proof. Since P = P 2, it follows that, if Px = λx, then P 2x = λx or P (Px) =
P (λx) = λ2x = λx, which implies that λ = λ2. This is possible only when
λ = 0, 1.

Diagonalisation of a Symmetric Matrix

Let A be an n×n symmetric matrix, and let x1, . . . , xn be a set of n linearly
independent characteristic vectors corresponding to its roots λ1, . . . , λn. Then
we can form a set of normalised vectors

c1 =
x1√
x′1x1

, . . . , cn =
xn√
x′nxn

,

which have the property that

c′icj =
{ 0, if i 6= j;

1, if i = j.
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The first of these reflects the condition that x′ixj = 0. It follows that C =
[c1, . . . , cn] is an orthonormal matrix such that C ′C = CC ′ = I.

Now consider the equation A[c1, . . . , cn] = [λ1c1, . . . , λncn] which can also
be written as AC = CΛ where Λ = Diag{λ1, . . . , λn} is the matrix with λi as
its ith diagonal elements and with zeros in the non-diagonal positions. Post-
multiplying the equation by C ′ gives ACC ′ = A = CΛC ′; and premultiplying
by C ′ gives C ′AC = C ′CΛ = Λ. Thus A = CΛC ′ and C ′AC = Λ; and C is
effective in diagonalising A.

Let D be a diagonal matrix whose ith diagonal element is 1/
√

λi so that
D′D = Λ−1 and D′ΛD = I. Premultiplying the equation C ′AC = Λ by D′

and postmultiplying it by D gives D′C ′ACD = D′ΛD = I or TAT ′ = I, where
T = D′C ′. Also, T ′T = CDD′C ′ = CΛ−1C ′ = A−1. Thus we have shown that

(4.3) For any symmetric matrix A = A′, there exists a matrix T such
that TAT ′ = I and T ′T = A−1.

The Geometry of Quadratice Forms

The Circle. Let the coordinates of the points in the Cartersian plane be denoted
by (z1, z2). Then the equation of a circle of radius r centred on the origin is
just

(4.4) z2
1 + z2

2 = r2.

This follows immediately from Pythagorus. The so-called parametric equations
for the coordinates of the circle are

(4.5) z1 = r cos(ω), and z2 = r sin(ω).

The Ellipse. The equation of an ellipse whose principal axes are aligned with
those of the coordinate system in the (y1, y2) plane is

(4.6) λ1y
2
1 + λ2y

2
2 = r2,

On setting λ1y
2
1 = z2

1 and λ2y
2
2 = z2

2 , we can see that

(4.7) y1 =
z1√
λ1

=
r√
λ1

cos(ω), y2 =
z2√
λ2

=
r√
λ2

sin(ω).

We can write equation (4.6) in matrix notation as

(4.8) r2 = [ y1 y2 ]
[

λ1 0
0 λ2

] [
y1

y2

]
= z2

1 + z2
2 .
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This implies

(4.9)
[

z1

z2

]
=
[√

λ1 0
0

√
λ2

] [
y1

y2

]
and

(4.10)
[

y1

y2

]
=
[

1/
√

λ1 0
0 1/

√
λ2

] [
z1

z2

]
.

The Oblique Ellipse. An oblique ellipse is one whose principal axes are not
aligned with those of the coordinate system. Its general equation is

(4.11) a11x
2
1 + 2a12x1x2 + a22x

2
2 = r2;

which is subject to the condition that a11a22 − 2a12 > 0. We can write this in
matrix notation:

(4.12)
r2 = [x1 x2 ]

[
cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
= [ y1 y2 ]

[
λ1 0
0 λ2

] [
y1

y2

]
= z2

1 + z2
2 ,

where θ is the angle which the pincipcal axis of the ellipse makes with the
horizontal. The coefficients of the equation (4.11) are the elements of the
matrix

(4.13)
[

a11 a12

a21 a22

]
=
[

λ1 cos2 θ + λ2 sin2 θ (λ2 − λ1) cos θ sin θ
(λ2 − λ1) cos θ sin θ λ1 sin2 θ + λ2 cos2 θ

]
.

Notice that, if λ1 = λ2, which is to say that both axes are rescaled by the
same factor, then the equation is that of a circle of radius λ1, and the rotation
of the circle has no effect.

The mapping from the ellipse to the circle is
(4.14)[

z1

z2

]
=
[√

λ1 0
0

√
λ2

] [
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
=
[√

λ1(x1 cos θ − x2 sin θ)√
λ2(x1 sin θ + x2 cos θ)

]
,

and the inverse mapping, from the circle to the ellipse, is

(4.15)
[

x1

x2

]
=
[

cos θ sin θ
− sin θ cos θ

] [
1/
√

λ1 0
0 1/

√
λ2

] [
z1

z2

]
.
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We see from the latter that the circle is converted to an oblique ellipse via
two operations. The first is an operation of scaling which produces an ellipse
whose principal axes are aligned with those of the coordinate system. The
second operation is a rotation which tilts the ellipse.

The vectors of the matrix that effects the rotation define the axes of the
ellipse. They have the property that, when they are mapped through the matrix
A, their orientation is preserved and only their length is altered. Thus

(4.16)

[
a11 a12

a21 a22

] [
cos θ
− sin θ

]
=
[

cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ − sin θ
sin θ cos θ

] [
cos θ
− sin θ

]
=
[

cos θ sin θ
− sin θ cos θ

] [
λ1 0
0 λ2

] [
1
0

]
= λ1

[
cos θ
− sin θ

]
.

Such vectors are described as the characteristic vectors of the matrix, and
the factors λ1 and λ2, by which their lengths are altered under the transforma-
tion, are described as the corresponding characteristic roots.

5. THE STATISTICAL PROPERTIES OF THE OLS
ESIMATOR: UNBIASEDNESS AND EFFICIENCY

Some Statistical Properties of the Estimator

The expectation or mean vector of β̂, and its dispersion matrix as well,
may be found from the expression

(5.1)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

The expectation is

(5.2)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus β̂ is an unbiased estimator. The deviation of β̂ from its expected value is
β̂ −E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains the
variances and covariances of the elements of β̂, is

(5.3)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.

15
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The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of β̂, although it
may also be characterised in terms of the determinant of the dispersion matrix
D(β̂). Thus

(5.4) If β̂ is the ordinary least-squares estimator of β in the classical
linear regression model, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂) where q is any constant
vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β which implies that AX = I. Now let us write A =
(X ′X)−1X ′ + G. Then AX = I implies that GX = 0. It follows that

(5.5)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′

}
= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.

Therefore, for any constant vector q of order k, there is the identity

(5.6)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

Estimating the Variance of the Disturbance

The principle of least squares does not, of its own, suggest a means of
estimating the disturbance variance σ2 = V (εt). However it is natural to esti-
mate the moments of a probability distribution by their empirical counterparts.
Given that et = yt − xt.β̂ is an estimate of εt, it follows that T−1

∑
t e

2
t may

be used to estimate σ2. However, it transpires that this is biased. An unbiased
estimate is provided by

(5.7)
σ̂2 =

1
T − k

T∑
t=1

e2
t

=
1

T − k
(y −Xβ̂)′(y −Xβ̂).

16
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The unbiasedness of this estimate may be demonstrated by finding the
expected value of (y − Xβ̂)′(y − Xβ̂) = y′(I − P )y. Given that (I − P )y =
(I − P )(Xβ + ε) = (I − P )ε in consequence of the condition (I − P )X = 0, it
follows that

(5.8) E
{
(y −Xβ̂)′(y −Xβ̂)

}
= E(ε′ε)− E(ε′Pε).

The value of the first term on the RHS is given by

(5.9) E(ε′ε) =
T∑
t=1

E(e2
t ) = Tσ2.

The value of the second term on the RHS is given by

(5.10)

E(ε′Pε) = Trace
{
E(ε′Pε)

}
= E

{
Trace(ε′Pε)

}
= E

{
Trace(εε′P )

}
= Trace

{
E(εε′)P

}
= Trace

{
σ2P

}
= σ2Trace(P )

= σ2k.

The final equality follows from the fact that Trace(P ) = Trace(Ik) = k. Putting
the results of (5.9) and (5.10) into (5.8), gives

(5.11) E
{
(y −Xβ̂)′(y −Xβ̂)

}
= σ2(T − k);

and, from this, the unbiasedness of the estimator in (5.7) follows directly.

A Note on Matrix Traces

The trace of a square matrix A = [aij ; i, j = 1, . . . , n] is just the sum of its
diagonal elements:

(5.12) Trace(A) =
n∑
i=1

aii.

Let A = [aij ] be a matrix of order n ×m and let B = [bk`] a matrix of order
m× n. Then

(5.13)

AB = C = [ci`] with ci` =
m∑
j=1

aijbj` and

BA = D = [dkj ] with dkj =
n∑
`=1

bk`a`j .

17
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Now,

(5.14)

Trace(AB) =
n∑
i=1

m∑
j=1

aijbji and

Trace(BA) =
m∑
j=1

n∑
`=1

bj`a`j =
n∑
`=1

m∑
j=1

a`jbj`.

But, apart from a minor change of notation, where ` replaces i, the expressions
on the RHS are the same. It follows that Trace(AB) = Trace(BA). The
result can be extended to cover the cyclic permutation of any number of matrix
factors. In the case of three factors A, B, C, we have

(5.15) Trace(ABC) = Trace(CAB) = Trace(BCA).

A further permutation would give Trace(BCA) = Trace(ABC), and we should
be back where we started.

6. THE PARTITIONED REGRESSSION MODEL

Consider taking a regression equation in the form of

(6.1) y = [X1 X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

Here [X1, X2] = X and [β′1, β
′
2]
′ = β are obtained by partitioning the matrix X

and vector β of the equation y = Xβ +ε in a conformable manner. The normal
equations X ′Xβ = X ′y can be partitioned likewise. Writing the equations
without the surrounding matrix braces gives

X ′1X1β1 + X ′1X2β2 = X ′1y,(6.2)

X ′2X1β1 + X ′2X2β2 = X ′2y.(6.3)

From (6.2), we get the equation X ′1X1β1 = X ′1(y − X2β2) which gives an
expression for the leading subvector of β̂ :

(6.4) β̂1 = (X ′1X1)−1X ′1(y −X2β̂2).

To obtain an expression for β̂2, we must eliminate β1 from equation (6.3). For
this purpose, we multiply equation (6.2) by X ′2X1(X ′1X1)−1 to give

(6.5) X ′2X1β1 + X ′2X1(X ′1X1)−1X ′1X2β2 = X ′2X1(X ′1X1)−1X ′1y.
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When the latter is taken from equation (6.3), we get

(6.6)
{

X ′2X2 −X ′2X1(X ′1X1)−1X ′1X2

}
β2 = X ′2y −X ′2X1(X ′1X1)−1X ′1y.

On defining

(6.7) P1 = X1(X ′1X1)−1X ′1,

can we rewrite (6.6) as

(6.8)
{

X ′2(I − P1)X2

}
β2 = X ′2(I − P1)y,

whence

(6.9) β̂2 =
{

X ′2(I − P1)X2

}−1

X ′2(I − P1)y.

Now let us investigate the effect that conditions of orthogonality amongst
the regressors have upon the ordinary least-squares estimates of the regression
parameters. Consider a partitioned regression model, which can be written as

(6.10) y = [X1, X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

It can be assumed that the variables in this equation are in deviation form.
Imagine that the columns of X1 are orthogonal to the columns of X2 such that
X ′1X2 = 0. This is the same as assuming that the empirical correlation between
variables in X1 and variables in X2 is zero.

The effect upon the ordinary least-squares estimator can be seen by exam-
ining the partitioned form of the formula β̂ = (X ′X)−1X ′y. Here we have

(6.11) X ′X =
[

X ′1
X ′2

]
[X1 X2 ] =

[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
=
[

X ′1X1 0
0 X ′2X2

]
,

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X ′X in the case of X ′1X2 = 0 is

(6.12) (X ′X)−1 =
[

X ′1X1 0
0 X ′2X2

]−1

=
[

(X ′1X1)−1 0
0 (X ′2X2)−1

]
.

We also have

(6.13) X ′y =
[

X ′1

X ′2

]
y =

[
X ′1y

X ′2y

]
.
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On combining these elements, we find that

(6.14)

[
β̂1

β̂2

]
=
[

(X ′1X1)−1 0

0 (X ′2X2)−1

] [
X ′1y

X ′2y

]
=
[

(X ′1X1)−1X ′1y

(X ′2X2)−1X ′2y

]
.

In this special case, the coefficients of the regression of y on X = [X1, X2] can
be obtained from the separate regressions of y on X1 and y on X2.

It should be understood that this result does not hold true in general. The
general formulae for β̂1 and β̂2 are those which we have given already under
(6.4) and (6.9):

(6.15)
β̂1 = (X ′1X1)−1X ′1(y −X2β̂2),

β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y, P1 = X1(X ′1X1)−1X ′1.

It can be confirmed easily that these formulae do specialise to those under
(6.14) in the case of X ′1X2 = 0.

The purpose of including X2 in the regression equation when, in fact,
interest is confined to the parameters of β1 is to avoid falsely attributing the
explanatory power of the variables of X2 to those of X1.

Let us investigate the effects of erroneously excluding X2 from the regres-
sion. In that case, the estimate will be

(6.16)

β̃1 = (X ′1X1)−1X ′1y

= (X ′1X1)−1X ′1(X1β1 + X2β2 + ε)

= β1 + (X ′1X1)−1X ′1X2β2 + (X ′1X1)−1X ′1ε.

On applying the expectations operator to these equations, we find that

(6.17) E(β̃1) = β1 + (X ′1X1)−1X ′1X2β2,

since E{(X ′1X1)−1X ′1ε} = (X ′1X1)−1X ′1E(ε) = 0. Thus, in general, we have
E(β̃1) 6= β1, which is to say that β̃1 is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X ′1X2 = 0 or
β2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
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the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of
such instruments are provided by interest rates, tax rates, exchange rates and
the like.

On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|x1, . . . , xk) which specifies the conditional expectation of y given
the values of x1, . . . , xn—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness the regression estimates does not arise.

7. COCHRANE’S THEOREM:
THE DECOMPOSITION OF A CHI-SQUARE

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(7.1)
y = Xβ̂ + (y −Xβ̂) and

y −Xβ = (Xβ̂ −Xβ) + (y −Xβ̂),

where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in
terms of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I−P )y =
y−Xβ̂ = e. Using the definition ε = y−Xβ within the second of the equations,
we have

(7.2)
y = Py + (I − P )y and

ε = Pε + (I − P )ε.

The reason for rendering the equations in this notation is that it enables us to
envisage more clearly the Pythagorean relationship between the vectors. Thus,
from the condition that P = P ′ = P 2, which is equivalent to the condition that
P ′(I − P ) = 0, it can be established that

(7.3)
ε′ε = ε′Pε + ε′(I − P )ε or

ε′ε = (Xβ̂ −Xβ)′(Xβ̂ −Xβ) + (y −Xβ̂)′(y −Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I − P )ε
as the vertical side and ε as the hypotenuse.
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The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is β0. To test this notion, we
compare the value of Xβ0 with the estimated mean vector Xβ̂. The test is
a matter of assessing the proximity of the two vectors which is measured by
the square of the distance which separates them. This is given by ε′Pε =
(Xβ̂−Xβ0)′(Xβ̂−Xβ0). If the hypothesis is untrue and if Xβ0 is remote from
the true value of Xβ, then the distance is liable to be excessive. The distance
can only be assessed in comparison with the variance σ2 of the disturbance term
or with an estimate thereof. Usually, one has to make do with the estimate of
σ2 which is provided by

(7.4)
σ̂2 =

(y −Xβ̂)′(y −Xβ̂)
T − k

=
ε′(I − P )ε

T − k
.

The numerator of this estimate is simply the squared length of the vector
e = (I − P )y = (I − P )ε which constitutes the vertical side of the right-angled
triangle.

The test uses the result that

(7.5) If y ∼ N(Xβ, σ2I) and if β̂ = (X ′X)−1X ′y, then

F =

{
(Xβ̂ −Xβ)′(Xβ̂ −Xβ)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

is distributed as an F (k, T − k) statistic.

This result depends upon Cochrane’s Theorem concerning the decomposition
of a chi-square random variate. The following is a statement of the theorem
which is attuned to our present requirements:

(7.6) Let ε ∼ N(0, σ2IT ) be a random vector of T independently and
identically distributed elements. Also let P = X(X ′X)−1X ′ be a
symmetric idempotent matrix, such that P = P ′ = P 2, which is
constructed from a matrix X of order T × k with Rank(X) = k.
Then

ε′Pε

σ2
+

ε′(I − P )ε
σ2

=
ε′ε

σ2
∼ χ2(T ),

which is a chi-square variate of T degrees of freedom, represents
the sum of two independent chi-square variates ε′Pε/σ2 ∼ χ2(k)
and ε′(I −P )ε/σ2 ∼ χ2(T − k) of k and T − k degrees of freedom
respectively.
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To prove this result, we begin by finding an alternative expression for the
projector P = X(X ′X)−1X ′. First consider the fact that X ′X is a symmetric
positive-definite matrix. It follows that there exists a matrix transformation
T such that T (X ′X)T ′ = I and T ′T = (X ′X)−1. Therefore P = XT ′TX ′ =
C1C

′
1, where C1 = XT ′ is a T × k matrix comprising k orthonormal vectors

such that C ′1C1 = Ik is the identity matrix of order k.
Now define C2 to be a complementary matrix of T−k orthonormal vectors.

Then C = [C1, C2] is an orthonormal matrix of order T such that

(7.7)

CC ′ = C1C
′
1 + C2C

′
2 = IT and

C ′C =
[

C ′1C1 C ′1C2

C ′2C1 C ′2C2

]
=
[

Ik 0
0 IT−k

]
.

The first of these results allows us to set I − P = I − C1C
′
1 = C2C

′
2. Now,

if ε ∼ N(0, σ2IT ) and if C is an orthonormal matrix such that C ′C = IT ,
then it follows that C ′ε ∼ N(0, σ2IT ). In effect, if ε is a normally distributed
random vector with a density function which is centred on zero and which has
spherical contours, and if C is the matrix of a rotation, then nothing is altered
by applying the rotation to the random vector. On partitioning C ′ε, we find
that

(7.8)
[

C ′1ε
C ′2ε

]
∼ N

([
0
0

]
,

[
σ2Ik 0

0 σ2IT−k

])
,

which is to say that C ′1ε ∼ N(0, σ2Ik) and C ′2ε ∼ N(0, σ2IT−k) are indepen-
dently distributed normal vectors. It follows that

(7.9)

ε′C1C
′
1ε

σ2
=

ε′Pε

σ2
∼ χ2(k) and

ε′C2C
′
2ε

σ2
=

ε′(I − P )ε
σ2

∼ χ2(T − k)

are independent chi-square variates. Since C1C
′
1 +C2C

′
2 = IT , the sum of these

two variates is

(7.10)
ε′C1C

′
1ε

σ2
+

ε′C2C
′
2ε

σ2
=

ε′ε

σ2
∼ χ2(T );

and thus the theorem is proved.
The statistic under (7.5) can now be expressed in the form of

(7.11) F =

{
ε′Pε

k

/
ε′(I − P )ε

T − k

}
.
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This is manifestly the ratio of two chi-square variates divided by their respec-
tive degrees of freedom; and so it has an F distribution with these degrees of
freedom. This result provides the means for testing the hypothesis concerning
the parameter vector β.

8. TESTING HYPOTHESES CONCERNING THE
CLASSICAL LINEAR REGRESSION MODEL

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vec-
tor ε within the regression equations y = Xβ + ε are distributed independently
and identically according to a normal law. Under this assumption, the sampling
distributions of the estimates may be derived and various hypotheses relating
to the underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean
of E(x) = µ and a dispersion matrix of D(x) = Σ, we shall write x ∼ N(µ,Σ).
A vector z ∼ N(0, I) with a mean of zero and a dispersion matrix of D(z) = I
is described as a standard normal vector. Any normal vector x ∼ N(µ,Σ) can
be standardised:

(8.1) If T is a transformation such that TΣT ′ = I and T ′T = Σ−1, then
T (x− µ) ∼ N(0, I).

Associated with the normal distribution are a variety of so-called sam-
pling distributions which occur frequently in problems of statistical inference.
Amongst these are the chi-square distribution, the F distribution and the t
distribution.

If z ∼ N(0, I) is a standard normal vector of n elements, then the sum
of squares of its elements has a chi-square distribution of n degrees of free-
dom; and this is denoted by z′z ∼ χ2(n). With the help of the standardising
transformation, it can be shown that,

(8.2) If x ∼ N(µ,Σ) is a vector of order n, then (x− µ)′Σ−1(x− µ) ∼
χ2(n).

The sum of any two independent chi-square variates is itself a chi-square
variate whose degrees of freedom equal the sum of the degrees of freedom of its
constituents. Thus,

(8.3) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates of
m and n degrees of freedom respectively, then (u+v) ∼ χ2(m+n)
is a chi-square variate of m + n degrees of freedom.

The ratio of two independent chi-square variates divided by their respective
degrees of freedom has a F distribution which is completely characterised by
these degrees of freedom. Thus,
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(8.4) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates,
then the variate F = (u/m)/(v/n) has an F distribution of m and
n degrees of freedom; and this is denoted by writing F ∼ F (m, n).

The sampling distribution which is most frequently used is the t distribu-
tion. A t variate is a ratio of a standard normal variate and the root of an
independent chi-square variate divided by its degrees of freedom. Thus,

(8.5) If z ∼ N(0, 1) and v ∼ χ2(n) are independent variates, then t =
z/
√

(v/n) has a t distribution of n degrees of freedom; and this is
denoted by writing t ∼ t(n).

It is clear that t2 ∼ F (1, n).

Hypothesis Concerning the Coefficients

A linear function of a normally distributed vector is itself normally dis-
tributed. Thus, it follows that, if y ∼ N(Xβ, σ2I), then

(8.6) β̂ ∼ Nk{β, σ2(X ′X)−1}.

Likewise, the marginal distributions of β̂1, β̂2 within β̂′ = [β̂1, β̂2] are given by

β̂1 ∼ Nk1

(
β1, σ

2{X ′1(I − P2)X1}−1
)
,(8.7)

β̂2 ∼ Nk2

(
β2, σ

2{X ′2(I − P1)X2}−1
)
,(8.8)

where P1 = X1(X ′1X1)−1X ′1 and P2 = X2(X ′2X2)−1X ′2. On applying the result
under (8.2) to (8.6), we find that

(8.9) σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k).

Similarly, it follows from (8.7) and (8.8) that

σ−2(β̂1 − β1)′X ′1(I − P2)X1(β̂1 − β1) ∼ χ2(k1),(8.10)

σ−2(β̂2 − β2)′X ′2(I − P1)X2(β̂2 − β2) ∼ χ2(k2).(8.11)

The distribution of the residual vector e = y − Xβ̂ is degenerate in the
sense that the mapping e = {I − X(X ′X)−1X ′}y = {I − P}ε, where P =
X(X ′X)−1X ′, which is from the disturbance vector ε to the residual vector
e, entails a singular transformation. Nevertheless, it is possible to obtain a
factorisation of the transformation in the form of I − P = CC ′, where C is
matrix of order T × (T − k) comprising T − k orthonormal columns which
are orthogonal to the columns of X such that C ′X = 0. Now, C ′C = IT−k;
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so it follows that, on premultiplying y ∼ NT (Xβ, σ2I) by C ′, we get C ′y ∼
NT−k(0, σ2I). Hence

(8.12) σ−2y′CC ′y = σ−2(y −Xβ̂)′(y −Xβ̂) ∼ χ2(T − k).

The vectors Xβ̂ = Py and y−Xβ̂ = (I−P )y have a zero-valued covariance
matrix. That is

(8.13) C(e, Xβ̂) = (I − P )D(y)P ′ = σ2(I − P )P ′ = 0,

since D(y) = σ2I and (I − P )P ′ = (I − P )P = 0. If two normally distributed
random vectors have a zero covariance matrix, then they are statistically inde-
pendent. Therefore, it follows that

(8.14)
σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k) and

σ−2(y −Xβ̂)′(y −Xβ̂) ∼ χ2(T − k)

are mutually independent chi-square variates. From this, it can be deduced
that

(8.15)
F =

{
(β̂ − β)′X ′X(β̂ − β)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

=
1

σ̂2k
(β̂ − β)′X ′X(β̂ − β) ∼ F (k, T − k).

To test an hypothesis specifying that β = β¦, we simply insert this value in the
above statistic and compare the resulting value with the critical values of an F
distribution of k and T − k degrees of freedom. If a critical value is exceeded,
then the hypothesis is liable to be rejected.

The test is readily intelligible, since it is based on a measure of the dis-
tance between the hypothesised value Xβ¦ of the systematic component of the
regression and the value Xβ̂ which is suggested by the data. If the two values
are remote from each other, then we may suspect that the hypothesis is at
fault.

It is usual to suppose that a subset of the elements of the parameter vector
β are zeros. This represents an instance of a class of hypotheses which specify
values for a subvector β2 within the partitioned model y = X1β1 + Xβ2 + ε
without asserting anything about the values of the remaining elements in the
subvector β1. The appropriate test statistic for testing the hypothesis that
β2 = β2¦ is

(8.16) F =
1

σ̂2k2
(β̂2 − β2¦)′X ′2(I − P1)X2(β̂2 − β2¦).
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This will have an F (k2, T − k) distribution if the hypothesis is true.
We are unlikely to propose that β = 0 as a whole. Even if we suppose

that none of the explanatory variables in a regression model are relevant in
explaining the values of the dependent variable, we are likely, nevertheless, to
suppose that they have a nonzero mean, which is to say that intercept term
is supposed to be nonzero. To test the hypothesis that βz = 0 in the model
(y; ια + Zβz, σ

2I), we could use a statistic in the form of (8.16) with β2 = βz
and X2 = Z and where P1 = Pι = T−1ιι′ is the averaging operator.

Of course, the intercept term would be eliminated by taking the variables
in deviation form. The hypothesis that βz = 0 in the deviations model, which
proposes that all of the model’s regression coefficients are zero, is the same as
the hypothesis that α alone in nonzero in the original model; and the relevant
test statistics are identical.

A limiting case of the F statistic concerns the test of an hypothesis affecting
a single element βi within the vector β. By specialising the expression under
(8.16), a statistic may be derived in the form of

(8.17) F =
(β̂i − βi¦)2

σ̂2wii
,

wherein wii stands for the ith diagonal element of (X ′X)−1. If the hypothesis
is true, then this will be distributed according to the F (1, T −k) law. However,
the usual way of assessing such an hypothesis is to relate the value of the
statistic

(8.18) t =
β̂i − βi¦√
(σ̂2wii)

to the tables of the t(T − k) distribution. The advantage of the t statistic
is that it shows the direction in which the estimate of βi deviates from the
hypothesised value as well as the size of the deviation.
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