
CHAPTER 10

The Theory of Inference

This chapter summarises some results in the classical theory of statistical inference
which depends heavily on the method of maximum-likelihood estimation.

One of the attractions of the method is that, granted the fulfilment of the
assumptions on which it is based, it can be shown that the resulting estimates
have optimal properties. Thus, the estimates are statistically consistent and their
asymptotic distributions have the least possible variance.

Springing from the asymptotic theory of maximum-likelihood estimation is a
powerful theory of hypothesis testing which makes use of a collection of alterna-
tive, but asymptotically equivalent, test statistics which are the Wald statistic, the
likelihood-ratio statistic and the Lagrangean multiplier statistic.

The practical virtue of the method of maximum likelihood is that it often
leads directly to a set of estimating equations which could have been derived more
laboriously and more doubtfully from other principles of estimation. In other words,
the method can be used as a vehicle for reaching the objectives of estimation.

When the estimating equations are in hand, one is often inclined to discard
some of the original assumptions which have been used in their derivation. The
assumptions might be unrealistic and that they might not be crucial to the validity
of the estimation procedure. In that case, one is inclined to describe the estimates
as quasi maximum-likelihood estimates.

Principles of Estimation

Let Y ′ = [y1, . . . , yT ] be a data matrix comprising T realisations of a random
vector y whose marginal probability density function f(y; θ) is characterised by the
parameter vector θ = [θ1, . . . , θk]′. Then any function θ̂ = θ̂(Y ) of the data which
purports to provide a useful approximation to parameter vector is called a point
estimator.

The joint probability density function of the elements of Y can be expressed
as the product

(25.1)

L(Y ; θ) = f(yT |yT−1, . . . , y1) · · · f(y2|y1)f(y1)

= f(y1)
T∏
t=2

f(yt|yt−1, . . . , y1),

where f(yt|yt−1, . . . , y1) is the conditional probability density function of yt given
the preceeding values yt−1, . . . , y1 and f(y1) is the marginal probability density
function of the initial vector y1. In classical theory, the vectors of the sequence
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y1, . . . , yT are assumed to be independently and identically distributed, which en-
ables us to write

(25.2)

L(Y ; θ) = f(yT ) · · · f(y2)f(y1)

=
T∏
t=1

f(yt)

in place of (25.1).
The set S comprising all possible values of the data matrix Y is called the

sample space, and the set A of all values of θ which conform to whatever restrictions
have been postulated is called the admissible parameter space. A point estimator
is therefore a function which associates with every value Y in S a unique value θ̂
in A.

There are numerous principles which can be used in constructing estimators.
The principle of maximum-likelihood estimation is a fundamental one. The idea is
that we should estimate θ by choosing the value which maximises the probability
measure attributed to Y . Thus

(25.3) A maximum-likelihood estimate θ̂ = θ̂(Y ) is an element of the admis-
sible parameter space for which L(Y ; θ̂) ≥ L(Y ; θ) for every θ ∈ A.

Another common principle of estimation is the method of moments. In many
cases, it will be possible to estimate the moments of the density function f(y) in
a straightforward manner. If the parameter vector θ is expressible as a function of
these moments, then an estimator can be constructed which uses the same function
and which replaces the moments by their estimates.

We shall concentrate primarily on the method of maximum likelihood which
is widely applicable, and we shall demonstrate that maximum-likelihood estima-
tors have certain optimal properties. Usually, we are able to justify the estimators
which are derived from other principles by showing that, as the size of the data sam-
ple increases, they tend to approximate to the corresponding maximum-likelihood
estimators with increasing accuracy.

Identifiability

Before examining the properties of maximum-likelihood estimators in detail, we
should consider some preconditions which must be satisfied before any reasonable
inferences can be made about the parameter θ. We can estimate θ only if its
particular value is somehow reflected in the realised value of Y . Therefore, a basic
requirement is that distinct values of θ should lead to distinct probability density
functions. Thus we may declare that

(25.4) The parameter values in A are identifiable if, for any two distinct
values θ1, θ2 ∈ A, we have L(Y ; θ1) 6= L(Y ; θ2) for all Y in a subset of
S which has a nonzero probability measure in respect of either of the
distributions implied by θ1, θ2.
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There are numerous ways of comparing the values L(Y ; θ1) and L(Y ; θ2) over
the set S. However, the requirement of (25.4) would certainly be fulfilled if the
measure

(25.5)
∫
S

{
logL(Y ; θ1)− logL(Y ; θ2)

}
L(Y ; θ2)dY

were nonzero for all values of θ1, θ2 which are distinct.
A concept which may sometimes serve in place of identifiability is that of

unbiased estimability. We say that

(25.6) The parameter θ is unbiasedly estimable if and only if there exists
some function θ̂ = θ̂(Y ) such that E(θ̂) = θ.

A parameter which is unbiasedly estimable is certainly identifiable according
to the criterion previous criterion (25.4); for if θ1 = E(θ̂|θ1) =

∫
θ̂L(Y ; θ1)dY

and θ2 = E(θ̂|θ2) =
∫
θ̂L(Y ; θ2)dY are distinct values, then it must be true that

L(Y ; θ1) 6= L(Y ; θ2) over a measureable set in S. Unfortunately, the concept of
unbiased estimability is of limited use since it is often difficult, if not impossible,
to prove that an unbiased estimator exists. Indeed, there are cases where none of
the estimators which are worth considering have finite moments of any order.

The criterion of identifiability under (25.4) may be too stringent, for it is
difficult to talk broadly of the generality of values in A. It may be that some
elements of A are identifiable whilst others are not. Therefore, in the main, we
have to be content with saying that

(25.7) The parameter vector θ0 ∈ A is identifiable if there exists no other
θ ∈ A such that L(Y ; θ) = L(Y ; θ0) with a probability of 1 when
Y is regarded as a random variable. If L(Y ; θ0) = L(Y ; θ1) with a
probability of 1, then θ0, θ1 are observationally equivalent.

By concentrating our attention on the point θ0, we can put out of mind the pitfalls
which may be lurking elsewhere in the parameter space A.

Our object must be to establish necessary and sufficient conditions for iden-
tifiability which can be checked easily. For this purpose, it is useful to consider
the so-called information integral. Imagine, therefore, that L(Y ; θ0) is the proba-
bility density function of the process which generates the data, and let L(Y ; θ) be
construed as a function of θ ∈ A. Then the information integral is defined as the
function

(25.8)
H(θ; θ0) =

∫
S

log
{
L(Y ; θ)
L(Y ; θ0)

}
L(Y ; θ0)dY

= E

[
log
{
L(Y ; θ)
L(Y ; θ0)

}]
.

This function, which is an instance of the function under (25.5), provides a measure
of the extent to which the statistical implications of θ differ from those of θ0.
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The expectation is formed under the presumption that θ0 is the true value. It is
straightforward to show that

(25.9) H(θ; θ0) ≤ 0 with H(θ; θ0) = 0 when θ = θ0.

Proof. It is clear that H(θ0, θ0) = 0. To show that H(θ, θ0) ≤ 0, we may employ
Jensen’s inequality which indicates that, if x ∼ f(x) is a random variable and g(x)
is a strictly concave function, then E{g(x)} < g{E(x)}. This result, which is little
more than a statement that λg(x1) + (1 − λ)g(x2) < g{λx1 + (1 − λ)x2} when
0 < λ < 1, is proved by Rao [421]. Noting that log(z) is a strictly concave function,
we find that

(25.10)

H(θ, θ0) = E

[
log
{
L(Y ; θ)
L(Y ; θ0)

}]
≤ log

[
E

{
L(Y ; θ)
L(Y ; θ0)

}]
= log

∫
S

{
L(Y ; θ)
L(Y ; θ0)

}
L(Y ; θ0)dY

= log 1 = 0.

It follows, from the definition of the information measure and from the condi-
tions under (25.9), that

(25.11) The parameter vector θ0 is identifiable if and only if there is no other
vector θ sharing the maximum information measure. Equivalently, θ0

is identifiable if and only if the equation H(θ; θ0) = 0 has the unique
solution θ = θ0.

The condition for the identifiability of θ0 is therefore the condition thatH(θ; θ0)
should achieve a unique global maximum at this point. Conditions for global max-
imisation are hard to come by. The conditions for local maximisation and therefore
for local identifiability are more accessible. In saying that θ0 is locally identified,
we mean that there is no other point in the neighbourhood sharing the maximum
information measure. Thus

(25.12) IfH(θ, θ0) has continuous first and second derivatives in an open neigh-
bourhood of the parameter point θ0, then a necessary and sufficient
condition for the local identifiability of θ0, is that ∂H/∂θ = 0 and that
∂{∂H/∂θ}′/∂θ is negative definite at this point.

The points in A in whose neighbourhood the derivatives are continuous may
be described as regular points. Usually, we can make assumptions which guarantee
that the irregular points of A, where the derivatives are discontinuous, constitute
a set of measure zero.

The Information Matrix
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The condition for identifiability given under (25.12) can be expressed in terms
of a classical statistical construct known as Fisher’s Information Matrix. In order
to demonstrate this connection, we need to derive a series of fundamental identities
which are used throughout the development of the theory of estimation. First let
us consider the identity

(25.13)
∂L(Y ; θ)

∂θ
=
∂ logL(Y ; θ)

∂θ
L(Y ; θ).

This comes from rearranging the equation ∂ logL/∂θ = (1/L)∂L/∂θ. Next we may
consider the condition

(25.14) 1 =
∫
S
L(Y ; θ)dY.

Differentiating under the integral with respect to θ and using (25.13) gives a further
useful identity:

(25.15) 0 =
∫
S

∂L(Y ; θ)
∂θ

dY =
∫
S

∂ logL(Y ; θ)
∂θ

L(Y ; θ)dY.

Setting θ = θ0 in this equation gives the condition

(25.16) E

{
∂ logL(Y ; θ0)

∂θ

}
= 0.

Differentiating (25.15) with the help of (25.13) gives
(25.17)

0 =
∫
S

[
∂(∂ logL(Y ; θ)/∂θ)′

∂θ
+
{
∂ logL(Y ; θ)

∂θ

}′{
∂ logL(Y ; θ)

∂θ

}]
L(Y ; θ)dY.

Setting θ = θ0 in the latter serves to show that

(25.18)
E

[{
∂ logL(Y ; θ0)

∂θ

}′{
∂ logL(Y ; θ0)

∂θ

}]
= −E

[
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

]
= Q(θ0).

Also, in the light of equation (25.16), we can interpret the first expression of (25.18)
as the dispersion matrix of the derivative ∂ logL(Y ; θ)/∂θ evaluated at θ = θ0; and
thus we can write

(25.19) Q(θ0) = D

(
∂ logL(Y ; θ0)

∂θ

)
.

The matrix Q(θ0) is known as Fisher’s Information Matrix.
The information matrix is, in fact, the negative of the matrix of second deriva-

tives of the information measure H(θ; θ0) at the point θ = θ0. Consider the first
derivative of the measure:

(25.20)

∂H(θ; θ0)
∂θ

=
∫
S

∂

∂θ

{
logL(Y ; θ)− logL(Y ; θ0)

}
L(Y ; θ0)dY

=
∫
S

∂ logL(Y ; θ)
∂θ

L(Y ; θ0)dY.
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Setting θ = θ0 delivers the identity under (25.16); and this reflects the fact that
θ0 is a stationary point of the function. Differentiating a second time and setting
θ = θ0 gives

(25.21)
∂(∂H(θ0; θ0)/∂θ)′

∂θ
= E

[
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

]
= −Q(θ0).

This is the negative of Fisher’s Information Matrix. In view of the statement under
(25.12), we may conclude that

(25.22) The parameter vector θ0 is identifiable if the information matrix Q(θ0)
is positive definite.

The Efficiency of Estimation

To be of any worth, a estimator must possess a probability distribution which is
closely concentrated around the true value of the unknown parameter. The easiest
way of characterising such a distribution is in terms its moments. However, as we
have already indicated, these moments might not exist. Nevertheless, it is usually
the case that, as the size of the sample increases, an estimator will converge in
probability upon a random variable whose distribution has well-defined moments.
We must content ourselves, in the main, with analysing such limiting distributions.
For the moment, we shall imagine that our estimator θ̂ = θ̂(Y ) is unbiased and that
it has a finite variance.

For an unbiased estimator, the natural measure of concentration is the variance.
For any given sample, there is a bound below which the variance of an unbiased
estimator cannot be reduced.

(25.23) Let L(Y ; θ0) be the density function of the sample Y . If θ̂ = θ̂(Y ) is an
unbiased estimator of θ, and if q is any vector of the same order, then
we have V (q′θ̂) ≥ q′Q(θ0)q, where Q(θ0) is the information matrix
specified in (25.18) and (25.19). This is the Cramér–Rao inequality.

Proof. Let us consider the condition which asserts that θ̂ = θ̂(Y ) is an unbiased
estimator:

(25.24)
E
{
θ̂(Y )

}
=
∫
S
θ̂(Y )L(Y ; θ0)dY

= θ0.

The derivative is

(25.25)

∂E{θ̂(Y )}
∂θ

=
∫
S
θ̂(Y )

∂ logL(Y ; θ0)
∂θ

L(Y ; θ0)dY

= E

{
θ̂(Y )

∂ logL(Y ; θ0)
∂θ

}
= I.

6



25: THE THEORY OF INFERENCE

Now a pair of random vectors a, b have a covariance of C(a, b) = E(ab′) when
E(b) = 0. Therefore, since E{∂ logL(Y ; θ0)/∂θ} = 0, it follows that the final
equality under (25.25) can be written as

(25.26) C

(
θ̂,
∂ logL(θ0)

∂θ

)
= I.

The joint dispersion matrix of θ̂ and ∂ logL(Y ; θ0)/∂θ is

(25.27)

D

 θ̂(
∂ logL(θ0)

∂θ

)′
 =


D
(
θ̂
)

C

(
θ̂,
∂ logL(θ0)

∂θ

)
C

(
∂ logL(θ0)

∂θ
, θ̂

)
D

(
∂ logL(θ0)

∂θ

)


=

[
D
(
θ̂
)

I

I Q(θ0)

]
.

This is a positive-semidefinite matrix. It follows that
(25.28)

[ q′ −q′Q−1(θ0) ]

[
D(θ̂) I

I Q(θ0)

][
q

−Q−1(θ0)q

]
= q′D(θ̂)q − q′Q−1(θ0)q ≥ 0.

Using q′D(θ̂)q = V (q′θ̂), we can write this inequality as V (q′θ̂) ≥ q′Q(θ0)q which
is the desired result.

Now consider the case where θ̂ attains the minimum variance bound. Then
V (q′θ̂)− q′Q−1(θ0)q = 0 or equivalently

(25.29) [ q′ −q′Q−1(θ0) ]D

 θ̂(
∂ logL(θ0)

∂θ

)′

 q

−Q−1(θ0)q

 = 0.

But this is equivalent to the condition that

(25.30) [ q′ −q′Q−1(θ0) ]

 θ̂ − E(θ̂)(
∂ logL(θ0)

∂θ

)′
− E

(
∂ logL(θ0)

∂θ

)′
 = 0,

whence, using the condition of unbiasednessE(θ̂) = θ0 and the conditionE{∂ logL(θ0)/∂θ} =
0 from (25.16), we get

(25.31) q′(θ̂ − θ0)− q′Q−1(θ0)
(
∂ logL(θ0)

∂θ

)′
= 0.

Since this holds for all q, we must have θ̂ − θ0 = Q−1(θ0)(∂ logL(θ0)/∂θ)′. What
we have shown is that
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(25.32) Subject to regularity conditions, there exists an unbiased estimator
θ̂(Y ) whose variance attains the Cramér–Rao minimum-variance bound
if and only if ∂ logL(Y ; θ)/∂θ can be expressed in the form(

∂ logL
∂θ

)′
= −E

{
∂(∂ logL/∂θ)′

∂θ

}
(θ̂ − θ).

This is, in fact, a rather strong requirement; and therefore it is only in excep-
tional circumstances that the minimum-variance bound can be attained. However,
as we shall see shortly, whenever the regularity conditions are satisfied, the vari-
ance associated with the limiting distribution of the maximum-likelihood estimates
invariably attains the bound. Indeed, the equation

(25.33) (θ̂ − θ) = −
[
E

{
∂(∂ logL/∂θ)′

∂θ

}]−1(
∂ logL
∂θ

)′
is the prototype of a form of asymptotic equation which the maximum-likelihood
estimators satisfy in the limit when the sample size becomes indefinitely large.

Unrestricted Maximum-Likelihood Estimation

(25.34) If θ̂ is the maximum-likelihood estimator obtained by solving the equa-
tion ∂ logL(Y ; θ)/∂θ = 0, and if θ0 is the true parameter value, then√
T (θ̂ − θ0), has the limiting distribution N(0,M−1) where

M = − 1
T
E

{
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

}
=

1
T
E

[{
∂ logL(Y ; θ0)

∂θ

}′{
∂ logL(Y ; θ0)

∂θ

}]

=
1
T
Q(θ0).

Proof. It follows from the mean-value theorem that

(25.35)

∂ logL(Y ; θ0)
∂θ

=
∂ logL(Y ; θ̂)

∂θ

+ (θ0 − θ̂)′
∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ
,

where θ∗ is a value subject to the condition ‖θ∗ − θ0‖ ≤ ‖θ̂ − θ0‖, which is to say
that it lies between θ̂ and θ0. By the definition of θ̂, we have ∂ logL(Y ; θ̂)/∂θ = 0,
so the above expression can be rearranged to give

(25.36)
√
T (θ̂ − θ0) = −

{
1
T

∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ

}−1
{

1√
T

∂ logL(Y ; θ̂)
∂θ

}′
.
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Now θ̂
P−→ θ0, which denotes the consistency of the maximum-likelihood estimator,

implies that θ∗
P−→ θ0. Therefore, in the limit, both factors on the RHS of (25.36)

may be evaluated at θ0; and we may use the following results:

(25.37) (i) By the law of large numbers, the term

1
T

∂(∂ logL(Y ; θ0)/∂θ)′

∂θ
=

1
T

∑
t

∂(∂ log f(yt; θ0)/∂θ)′

∂θ

converges to its expected value of M ,

(ii) By the central limit theorem, the term

1√
T

∂ logL(Y ; θ0)
∂θ

=
1√
T

∑
t

∂ log f(yt; θ0)
∂θ

has a limiting normal distribution N(0,M).

It follows immediately that
√
T (θ̂ − θ0) tends in distribution to a random variable

M−1η where η ∼ N(0,M); and, therefore, we conclude that
√
T (θ̂ − θ0) has the

limiting distribution N(0,M−1). Equivalently,
√
T (θ̂− θ0) tends in distribution to

a random variable φ¦ = (Z ′Z)−1Z ′ε where ε ∼ N(0, I) is a standard normal vector
and where Z ′Z = M . Finally, we may recognise that the equivalence of the two
expressions for M follows from equation (25.18).

It is apparent that the asymptotic form of the maximum-likelihood estimator
is identical to that of a least-squares regression estimator of the parameter φ in the
distribution N(ε;Zφ, I). We can exploit this least-squares analogy to demonstrate
that

(25.38) If θ̂ is the maximum-likelihood estimator obtained by solving the equa-
tion ∂ logL(Y ; θ)/∂θ = 0, and if θ0 is the true parameter value, then
the quantity

−
√
T (θ̂ − θ0)′

{
1
T

∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ

}
√
T (θ̂ − θ0)

has a limiting distribution which is identical to that of the variate
φ¦′Z ′Zφ¦ = ε′Z(Z ′Z)−1Z ′ε = ε′Pε ∼ χ2(k).

This result can be used in testing an hypothesis relating to the vector θ0. The
theory of least-squares estimation, which is expounded in chapter 4, will help us to
devise tests relating to subsets of the elements of θ0.

Restricted Maximum-Likelihood Estimation
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Often we wish to consider a model which can be expressed in terms of the
likelihood function L(Y ; θ) where θ ∈ Rk is subject to a set of restrictions in the
form of a vector function r(θ) = 0 of j < k elements. These restrictions will have
the effect of confining θ to some subset A ⊂ Rk. One approach to estimating
θ, which may be fruitful, is to reexpress the restrictions in the form of θ = θ(α)
where α is an vector of k − j unrestricted elements. Once we have an estimate α̂
of the unrestricted elements, we can obtain a restricted estimate of θ in the form
of θ∗ = θ(α̂). The alternative approach is to maximise the function L(Y ; θ) with
respect to θ subject to the restrictions. Our criterion function is then

(25.39) L∗ = logL(Y ; θ)− λ′r(θ),

where λ is a j × 1 vector of Lagrangean multipliers corresponding to the j restric-
tions.

The first-order conditions for maximisation are

(25.40)
∂ logL(Y ; θ)

∂θ
− λ′R(θ) = 0,

r(θ) = 0,

where R(θ) = ∂r(θ)/∂θ is a j × k matrix of the derivatives of the restrictions
with respect to the unknown parameters. The solution of the equations (25.40)
is the restricted maximum-likelihood estimator θ∗. The equations are liable to be
nonlinear so that, in order to investigate the properties of the estimator, we must
rely upon a Taylor-series expansion to provide the appropriate linear approximation.
As the sample size increases, the linear approximation should become increasingly
valid.

Consider the following expansion about the true value θ0 of the first derivative
of the log-likelihood function at θ∗ :

(25.41)

∂ logL(Y ; θ∗)
∂θ

=
∂ logL(Y ; θ0)

∂θ

+ (θ∗ − θ0)′
∂(∂ logL(Y ; θ0)/∂θ)′

∂θ
+ ζ ′.

Here ζ stands for the higher-order terms. Also consider the expansion

(25.42)
r(θ∗) = r(θ0) +R(θ0)(θ∗ − θ0)− ξ

= R(θ0)(θ∗ − θ0)− ξ.

On substituting the RHS of (25.41) in place of ∂ logL(Y ; θ)/∂θ in (25.40) and on
dividing the resulting expressions by

√
T , we get, after some minor manipulations,

(25.43)
−
{

1
T

∂(∂ logL(Y ; θ0)/∂θ)′

∂θ

}√
T (θ∗ − θ0) +R′

λ√
T

=
1√
T

{
∂ logL(Y ; θ0)

∂θ

}′
+

1√
T
ζ.
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When this is combined with the equation

(25.44)
√
TR(θ0)(θ∗ − θ0) =

√
Tξ

which comes from (25.42), we obtain the following representation of the first-order
conditions of (25.40):

(25.45)

− 1
T

∂(∂ logL(θ0)/∂θ)′

∂θ
R′(θ0)

R(θ0) 0



√
T (θ∗ − θ0)

λ√
T



=


1√
T

{
∂ logL(θ0)

∂θ

}′
0

+

 ζ√
T

√
Tξ

 .
As the sample size T increases, the terms involving the first and the second deriva-
tives of the log-likelihood function tend to their probability limits. Given that the
restricted estimate θ∗ is consistent, the remainder terms ζ/

√
T and

√
Tξ will tend

in probability to zero. To find the limiting distribution of the estimator, we use
again the two results under (25.37) concerning the central limit theorem and the
law of large numbers. It follows that the vectors

√
T (θ∗ − θ0) and λ/

√
T have a

limiting normal distribution which is identical to the distribution of the vectors φ∗

and µ which are determined by the linear system

(25.46)
[
Z ′Z R′

R 0

] [
φ∗

µ

]
=
[
Z ′ε
0

]
,

wherein Z is such that Z ′Z = M and ε ∼ N(0, I) is a vector with a standard
normal distribution, and where R = R(θ0).

The solutions for φ∗ and µ are obtained from the equations

(25.47)
[
C1 C2

C ′2 C3

] [
Z ′ε
0

]
=
[
φ∗

µ

]
.

The elements of the partitioned matrix are defined by the following identities:

(25.48)
(i) Z ′ZC1 +R′C ′2 = I,

(iii) RC1 = 0,

(ii) Z ′ZC2 +R′C3 = 0,

(iv) RC2 = I.

From these conditions, we may easily obtain the following identities:

(25.49)
(i) C1Z

′ZC1 = C1,

(iii) C ′2Z
′ZC2 = −C3.

(ii) C1Z
′ZC2 = 0,
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Using the latter, we may confirm that the dispersion matrix of φ∗ and µ is given
by

(25.50)
D

[
φ∗

µ

]
=
[
C1 C2

C ′2 C3

] [
Z ′Z 0

0 0

] [
C1 C2

C ′2 C3

]
=
[
C1 0
0 −C3

]
.

Since the systems under (25.45) and (25.46) are equivalent asymptotically, we may
draw the following conclusions:

(25.51) If θ∗ is the restricted maximum-likelihood estimator and θ0 is the true
value of the parameter, then

√
T (θ∗−θ0) has a limiting normal distri-

bution N(0, C1) which is the same as the distribution of the random
variable φ∗ = C1Z

′ε ∼ N(0, C1). If λ is the Lagrangean multiplier
associated the restrictions, then λ/

√
T has a limiting normal distribu-

tion N(0,−C3) which is the same as the distribution of the random
variable µ = C ′2Z

′ε ∼ N(0,−C3).

We can exploit these results in order to establish an asymptotic result which re-
lates the restricted and the unrestricted maximum-likelihood estimators.
Consider the vectors φ¦ = (Z ′Z)−1Z ′ε and φ∗ = C1Z

′ε. From these we may
construct

(25.52) −Z(φ∗ − φ¦) = (P − ZC1Z)ε,

where P = Z(Z ′Z)−1Z is a symmetric idempotent matrix such that P = P ′ = P 2

and PZ = Z. We find that

(25.53)
(φ∗ − φ¦)′Z ′Z(φ∗ − φ¦) = ε′(P − ZC1Z

′)′(P − ZC1Z
′)ε

= ε′(P − ZC1Z
′)ε.

Now consider the identity

(25.54) ε′Pε = ε′(P − ZC1Z
′)ε+ ε′ZC1Z

′ε.

Since P¦ = (P −ZC1Z
′) and P∗ = ZC1Z

′ are symmetric idempotent matrices with
P¦P∗ = 0, and given that Rank(P ) = k and Rank(ZC1Z

′) = Rank(C1) = j, we can
apply Cochran’s theorem to show that equation (25.5) represents the decomposition
of a chi-square variate. Thus

(25.55)

ε′(P − ZC1Z
′)ε ∼ χ2(j),

ε′ZC1Z
′ε ∼ χ2(k − j),

ε′Pε ∼ χ2(k).

We can conclude that

12
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(25.56) If θ̂ and θ∗ are, respectively, the restricted maximum-likelihood es-
timate and the unrestricted maximum-likelihood estimate, then the
quantity

−
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(Y ; θ∗)/∂θ)′

∂θ

}√
T (θ∗ − θ̂)

has a limiting distribution which is identical to that of the variate
(φ∗ − φ¦)′Z ′Z(φ∗ − φ¦) = ε′(P − ZC1Z

′)ε ∼ χ2(j).

Tests of the Restrictions

Three closely related methods are available for testing the hypothesis that
θ0 ∈ A, where A = {θ; r(θ) = 0} is the parameter set defined by the restrictions.
These are the likelihood-ratio test, the Wald test and the Lagrangean-multiplier
test. They are based respectively on the measures

(25.57) −
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(θ̂)/∂θ)′

∂θ

}√
T (θ∗ − θ̂),

(25.58) −
√
Tr′(θ̂)

[
R(θ̂)

{
1
T

∂(∂ logL(θ̂)/∂θ)′

∂θ

}−1

R′(θ̂)
]−1√

Tr(θ̂)

and

(25.59)

− λ′√
T
R(θ∗)

{
1
T

∂(∂ logL(θ∗)/∂θ)′

∂θ

}−1

R′(θ∗)
λ′√
T

= − 1√
T

{
∂ logL(θ∗)

∂θ

}{
1
T

∂(∂ logL(θ∗)/∂θ)′

∂θ

}−1 1√
T

{
∂ logL(θ∗)

∂θ

}′
,

wherein θ∗ is the restricted maximum-likelihood estimator and θ̂ is the unrestricted
estimator. These statistics are asymptotically equivalent and they share the same
limiting distribution.

The ideas which give rise to these statistics are easily explained. The likelihood-
ratio statistic in the form given under (25.57) embodies a measure of the proximity
of the estimator θ∗, which incorporates the information of the restrictions, and the
estimator θ̂, which freely reflects the information of the sample data in Y . If θ∗

is remote from θ̂ then doubt will be cast upon the validity of restrictions. The
limiting distribution of the statistic is given in (25.56) above.

The likelihood ratio itself, from which our statistic is derived remotely, is de-
fined as

(25.60) κ =
max{θ ∈ A}L(Y ; θ)
max{θ ∈ Rk}L(Y ; θ)

=
L(Y ; θ∗)

L(Y ; θ̂)
.

By taking the logarithm, we get

(25.61) −2 log κ = 2 logL(Y ; θ̂)− 2 logL(Y ; θ∗).

13
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To show how this form relates to the measure under (25.57), we may take the Tay-
lor’s series expansion of logL(Y ; θ∗) about the point of the unrestricted estimator
θ̂. This gives

(25.62)

logL(Y ; θ∗) ≈ logL(Y ; θ̂) +
∂ logL(Y ; θ̂)

∂θ
(θ∗ − θ̂)

+
1
2

(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂)

≈ logL(Y ; θ̂) +
1
2

(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂).

The second expression follows by virtue of the fact that ∂ logL(Y ; θ̂)/∂θ = 0, since
θ̂ satisfies the first-order condition for maximising logL(Y ; θ). Hence

(25.63)
−2 log κ ≈ −(θ∗ − θ̂)′ ∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ
(θ∗ − θ̂)

≈ −
√
T (θ∗ − θ̂)′

{
1
T

∂(∂ logL(Y ; θ̂)/∂θ)′

∂θ

}
√
T (θ∗ − θ̂).

The Wald statistic under (25.58) measures the extent to which the unrestricted
estimator θ̂ fails to satisfy the restrictions r(θ) = 0. If its value is significant, then
doubt will be cast, once more, upon the validity of the restrictions.

The Lagrange multiplier statistic uses λ to measure the strength of the con-
straint which must be imposed to ensure that the estimator θ∗ obeys the restrictions.
The alternative form of the statistic is obtained using the equality

(25.64)
∂ logL(Y ; θ∗)

∂θ
= λ′R(θ∗),

which comes from the first-order conditions (25.40). The quantity ∂ logL(Y ; θ)/∂θ
is know as the score vector which accounts for the alternative description of the
Lagrangean-multiplier statistic as the score statistic.

Our choice of a statistic for testing the validity of the restrictions will be influ-
enced by the relative ease with which we can obtain the restricted and unrestricted
estimates. If both θ̂ and θ∗ are readily available, then we might use the likelihood-
ratio statistic. If the unrestricted estimator θ̂ is available and we wish to test the
validity of the restrictions r(θ) = 0 before imposing them upon our estimates, then
we should use the Wald statistic to perform a test of specification. If only the
restricted estimator θ∗ is available, then we should test the validity of the restric-
tions using the Lagrangean-multiplier statistic. This is a test of testing whether θ∗

embodies a misspecification.
We wish to demonstrate that these three statistics are equivalent asymptoti-

cally and to show that they have the same limiting χ2 distribution. To begin, let
us recall that the limiting distribution of

√
T (θ̂−θ0) is the same as the distribution

of vector φ¦ = (Z ′Z)−1Z ′ε, and that the limiting distribution of
√
T (θ∗ − θ0) is

the same as the distribution of vector φ∗ = C1Z
′ε. Then it is straightforward to

demonstrate the following:

14
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(25.65) (i) The likelihood ratio under (25.57) has a limiting distribution which
is identical to that of (φ∗ − φ¦)′Z ′Z(φ∗ − φ¦),
(ii) The Wald statistic under (25.58) has a limiting distribution which
is identical to that of φ¦′R′{R(Z ′Z)−1R′}−1φ¦,

(iii) The Lagrange multiplier statistic under (25.59) has a limiting
distribution which is identical to that of µ′R(Z ′Z)−1R′µ.

In order to demonstrate the asymptotic equivalence of the three statistics, it
only remains to show that

(25.66)
(φ∗ − φ¦)′Z ′Z(φ∗ − φ¦) = −φ¦′R′C3Rφ

¦

= −µ′C−1
3 µ,

and that

(25.67) −C3 = {R(Z ′Z)−1R′}−1.

To demonstrate the equalities in (25.66), we make use of the identities in (25.48).
First, we may postmultiply (25.48)(ii) by R and transpose the result to give

(25.68) R′C3R = −R′C ′2Z ′Z.

Next, by postmultiplying (25.48)(i) by Z ′Z and rearranging, we get

(25.69) Z ′(I − ZC1Z
′)Z = R′C2Z

′Z.

Taking these two results together, we get

(25.70) −R′C3R = Z ′(I − ZC1Z
′)Z.

Now, from (25.47), we get φ∗ = C1Z
′ε and we also have φ¦ = (Z ′Z)−1Z ′ε; so,

using (25.70), we can establish the first equality in (25.66).
To help in establishing the second equality of (25.66), we premultiply the ex-

pression in (25.48)(ii) by Z ′(Z ′Z)−1 and transpose the result to give

(25.71) C ′2Z
′ = −C3R(Z ′Z)−1Z ′.

Using this result in the expression for µ given by (25.47), we find that

(25.72)

µ = C ′2Z
′ε

= −C3R(Z ′Z)−1Z ′ε

= −C3Rφ
¦.

The second equality follows immediately.
Finally, we must demonstrate the identity of (25.67). For this, we premultiply

(25.48)(ii) by R(Z ′Z)−1 to give

(25.73) RC2 + {R(Z ′Z)−1R′}C3 = 0.
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The result follows from using RC2 = I from (25.48)(iv).
Having established that the three statistics are asymptotically equivalent, it

remains to determine their common limiting distribution. We know that the j × 1
vector µ of (25.47) has the distribution N(0,−C3). Therefore it follows that

(25.74) −µ′C−1
3 µ ∼ χ2(j).

Thus the limiting distribution of the three statistics is a chi-square with j degrees
of freedom.
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