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The Analysis of Covariance

The Models

In the previous chapter, we have considered a model in the form of

(1) ytj = µ + γt + δj + εtj

wherein t = 1, . . . , T and j = 1, . . . ,M are respectively indices of temporal
and spatial location. In this chapter, we shall relate the index j to individual
persons or to individual units of production such as farms or factories.

We shall also elaborate the model by introducing a function xt.β.tj =P
k xtkβktj comprising K explanatory variables or regressors. Of course, if

the elements βktj were to vary across all of the indices, then we should have
no chance of making any reasonable inference about their values unless some
further assumptions were made as to the nature of this variation.

Without further ado, we shall make the very restrictive assumption that
βktj = βkj for all t, which is to say that there is no temporal variation in these
coefficients. If, in addition, we assume that γt = 0 for all t, then our model can
be written as

(2)
(ytjejt) = µ(ejt) + (δjejt) + ({xtkβkj}ejt) + (εtjejt)

= µ(ejt) + (δjejt) + (xtkejk
jt )(βkjejk) + (εtjejt).

Here the braces which surround the expression {xtkβkj} are to indicate that a
sum has been taken over the repeated index k.

The set of T realisations of the jth equation can be written as

(3)
y.j = µιT + δjιT + Xβ.j + ε.j

= αjιT + Xβ.j + ε.j ,

where αj = µ+ δj ; and we can compile the full set of M such equations to give
the following system:
(4)



y.1

y.2
...

y.M



 =





ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT









α1

α2
...

αM



+





X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X









β.1

β.2
...

β.M



+





ε.1

ε.2
...

ε.M



 .
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A useful elaboration of this model, which costs little in terms of added difficulty,
is to allow the matrix X to vary between the M equations. Then in place of
the variables xtk we have elements xtkj bearing the spatial subscript j. In that
case, equation (4) is replaced by

(5)





y.1

y.2
...

y.M



 =





ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT









α1

α2
...

αM





+





X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XM









β.1

β.2
...

β.M



 +





ε.1

ε.2
...

ε.M



 .

It may be, for example, that our equations, which explain farm production in
M regions, comprise explanatory variables whose measured values vary from
region to region.

Within the context of this model, we shall consider some more restrictive
hypotheses. The first of these, which is denoted by

(6) Hβ : β1 = β2 = · · · = βM ,

asserts that the slope parameters of all M of the regression equations are equal.
This condition gives rise to a model in the form of

(7)





y.1

y.2
...

y.M



 =





ιT 0 . . . 0
0 ιT . . . 0
...

...
. . .

...
0 0 . . . ιT









α1

α2
...

αM



 +





X1

X2
...

XM



β +





ε.1

ε.2
...

ε.M





wherein each of the M equations is distinguished by having a particular value
for the intercept.

The second hypothesis, which is denoted by

(8) Hα : α1 = α2 = · · · = αM ,

asserts that all of the intercepts have the same value. It is unlikely that we
should ever wish to maintain this hypothesis without asserting Hβ at the same
time. The combined hypothesis Hγ = Hα ∩ Hβ gives rise to a model in the
form of

(9)





y.1

y.2
...

y.M



 =





ιT
ιT
...

ιT



α +





X1

X2
...

XM



β +





ε.1

ε.2
...

ε.M



 .
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The Least-Squares Estimates of the Models

We shall assume that the disturbances εtj are distributed independently
and identically with E(εtj) = 0 and V (εtj) = σ2 for all t, j. Under these as-
sumptions, the equations of the model represented by (5) are wholly separable,
and we can easily see that the parameters of the jth equation may be estimated
efficiently by the formulae

(10)
β̂.j =

©
X 0

j(I − PT )Xj

™−1
X 0

j(I − PT )y.j and

α̂j = ȳj − x̄j.β̂.j ,

where

(11) I − PT = I − ιT (ι0T ιT )−1ι0T

is the operator which transforms a vector of T observations into the vector of
their deviations about the mean.

The residual sum of squares from the jth regression is given by

(12) Sj = y0.j(I − PT )y.j − y0.j(I − PT )Xj{X 0
j(I − PT )Xj}−1X 0

j(I − PT )y.j ;

and therefore, from the separability of the M regressions, it follows that the
residual sum of squares obtained from fitting the model of (5) to the data is
just

(13) S =
X

j

Sj .

The formulae under (10) are familiar from our treatment of the linear
regression model (y; iα+Xβ, σ2I), which was regarded as a particular instance
of the partitioned model (y;X1β1 + X2β2, σ2I).

We may recall that one way of developing the ordinary least-squares es-
timator of β2 in the partitioned model depends on transforming the equation
y = X1β1 + X2β2 + ε by the matrix I − P1 where P1 = X1(X 0

1X1)−1X 0
1 is

the orthogonal projector on the manifold of X1. The effect of this transforma-
tion is to annihilate the term X1β1, which leads to the equation (I − P1)y =
(I −P1)X2β2 +(I −P1)ε. When ordinary least-squares regression is applied to
the transformed equation, we get

(14) β̂2 =
©
X 0

2(I − P1)X2

™−1
X 0

2(I − P1)y.

The same estimator may be derived by applying ordinary least-squares
regression to the equation Q0y = Q0X2β2 + Q0ε where Q is a matrix of or-
thonormal vectors such that QQ0 = (I − PT ). Since D(Q0ε) = σ2IT−k1 , it
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follows that the equation fulfils the assumptions of the classical linear model;
and we can use a standard form of the Gauss–Markov theorem to demonstrate
the efficiency of the estimator β̂2.

In the case of system under (5) the intercept term αj is eliminated from
each equation by premultiplying the equation by (I−PT ). The intercept terms
may be eliminated from the full system of of equations by premultiplying it by

(15) W = IM ⊗ (IT − PT ) = IMT − (IM ⊗ PT ).

Now, let us consider fitting the model under (7) which may be regraded as
a variant of the model under (5) which has been subjected to the restrictions
of Hβ of (6). It can be seen, in a variety of ways, that the efficient estimates
of the parameters are given by the equations

(16)

β̂ =
∑X

j

X 0
j(I − PT )Xj

∏−1∑X

j

X 0
j(I − PT )yj

∏

=
h
X 0©IM ⊗ (IT − PT )

™
X

i−1
X 0©IM ⊗ (IT − PT )

™
y and

α̂j = ȳj. − x̄j β̂,

where X 0 = [X 0
1,X

0
2, . . . ,X

0
M ] and y = [y0.1y0.2, . . . , y0.M ]. The estimator is clearly

the result of applying ordinary least-squares regression to an equation derived
by premultiplying (7) by the matrix W of (15) which serves to annihilate the
intercept terms.

The residual sum of squares from fitting the model of (7) is given by

(17)
Sα = y0Wy − y0WX(X 0WX)−1X 0Wy where
W = IM ⊗ (IT − PT )

Finally, let us consider fitting the model of (9) which makes no distinction
between the structures of the M equations. Let PMT to denote the projector
in the form of PMT = ιMT (ι0MT ιMT )−1ι0MT when ιMT is the summation vector
of order MT . Then we can write the estimators of the parameters of the model
under (9) as

(18)
β̂ = {X 0(I − PMT )X}−1X 0(I − PMT )y

α̂ = ȳ − x̄β̂.

The residual sum of squares from fitting the restricted model of (9) is given by

(19) Sγ = (y − αιMT −Xβ̂)0(y − αιMT −Xβ̂).
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The Tests of the Restrictions

In order to test the various hypotheses, we need the following results con-
cerning the distribution of the residual sum of squares from each of the regres-
sions that we have considered:

(20)

1.
1
σ2

S ∼ χ2{MT −M(K + 1)},

2.
1
σ2

Sβ ∼ χ2{MT − (K + M)},

3.
1
σ2

Sγ ∼ χ2{MT − (K + 1)}.

The number of degrees of freedom in each of these cases is easily explained. It is
simply the number of observations available in the vector y0 = [y0.1, y0.2, . . . , y0.M ]
less the number of parameters that are estimated in the particular model.

We test the hypothesis Hβ by assessing the loss of fit which results from
imposing the restrictions β1 = β2 = · · · = βM . The loss is given by Sβ−S. The
residual sum of squares S from the unrestricted model is the standard against
which we measure this loss. The appropriate test statistic is therefore

(21) F =

(
Sβ − S

(M − 1)K

,
S

MT −M(K + 1)

)

which has a F distribution of (M−1)K and MT−M(K+1) degrees of freedom.
If the hypothesis Hβ is accepted, then we might proceed to test the more

stringent hypothesis Hγ = Hβ ∩Hα which entails the additional restrictions of
Hα : α1 = α2 = · · · = αM . The relevant test statistic in this case is given by

(22) F =

(
Sγ − Sβ

M − 1

,
Sβ

MT − (K + M)

)

which has a F distribution of M − 1 and MT − (K + M) degrees of freedom.
The numerator of this statistic embodies a measure of the loss of fit that comes
from imposing the additional restrictions of Hα.

The statistic under (22) tests the hypothesis Hγ within the context of an
assumption that Hβ is true. We might decide to test additionally, or even
alternatively, the joint hypothesis Hγ = Hα ∩ Hβ within the context of the
unrestricted model. The relevant statistic in that case would be given by

(23) F =

(
Sγ − S

(M − 1)(K + 1)

,
S

MT −M(K + 1)

)
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We have to consider the possibility that, having accepted the hypotheses
Hβ and Hα on the strength of the values the F statistics under (21) and (22),
we shall then discover that value of the statistic of (23) casts doubt on the joint
hypothesis Hγ = Hβ ∩ Hα. The possibility arises from the fact that critical
region of the test of Hγ can never coincide with the critical region of the joint
test implicit in the sequential procedure. However, if the critical value of the
test Hγ has been appropriately chosen, then such a conflict in the results of
the tests is an unlikely eventuality.

Models with Two-way Fixed Effects

Let us now elaborate the model of Hβ by including the parameters γt which
represent the temporal variation which is experienced by all J individuals. Our
equation now assumes the form of

(24) (ytjejt) = µ(ejt) + (xtjke k
jt )(βkek) + (e t

jt)(etγt) + (ej
jt)(ejδj) + (εtjejt).

Comparison with equation (2) shows that we are assuming that βkj = βk for
all k which is to say that all j individuals share the same slope coefficients.
Therefore, the system of equations as a whole can be represented by

(25) Y c = µιMT + Xβ + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec.

The matrix [ιMT ,X, ιM⊗IT , IM⊗ιT ] which contains the regressors of the model
is, in fact, singular by virtue of the linear dependence which exists between the
columns of its submatrix [ιMT , ιM ⊗ IT , IM ⊗ ιT ]. This dependence is made
clear by writing the equation

(26) (ιM ⊗ IT )(1⊗ ιT ) = (IM ⊗ ιT )(ιM ⊗ 1) = ιMT .

Therefore, the parameters µ, β,γ, δ are not estimable as a whole unless we
are prepared to introduce some restrictions. The obvious conditions are that
ι0T γ =

P
t γt = 0 and that ι0MT δ =

P
j δj = 0.

To derive the ordinary least-squares estimate of β, we can begin by trans-
forming our chosen equation in such a way as to eliminate the parameters γ,
δ. The can be accomplished by premultiplying the equation by the matrix

(27)
W = [IMT − (IM ⊗ PT )][IMT − (PM ⊗ IM )]

= IMT − (IM ⊗ PT )− (PM ⊗ IM ) + (IM ⊗ PT )(PM ⊗ IM ).

The two factors commute. The first factor IMT − (IM ⊗ PT ) has the effect of
annihilating the term (IM ⊗ ιT )δ whilst the second factor IMT − (PM ⊗ IM )
has the effect of annihilating (ιM ⊗ IT )γ. However, since W is a symmetric
idempotent matrix, it can be written in the form of W = QQ0 where Q is
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a matrix of order MT × (MT − M − T ) consisting or orthonormal vectors.
Therefore, we may, with equal effect transform, our equation by premultiplying
by Q0 to obtain the system

(28) Q0Y c = Q0Xβ + Ec.

The latter fulfils the assumptions of the classical linear model. It follows that
the efficient estimator of β is given by

(29)
β = (X 0QQ0X)−1X 0QQ0y

= (X 0WX)−1X 0Wy.

Models with Random Effects

An alternative way of accommodating temporal and individual effects is
to regard them as random variables rather than as fixed constants. To signify
the difference in approach that is entailed by adopting a random-effects model,
we shall denote the model by

(30) (ytjejt) = µejt + (xjtkek
jt)(βkek) + (e t

jt)(etζt) + (ej
jt)(ejηj) + (εjtejt)

A set of T realisations on all M equations is now written as

(31) y = µιMT + Xβ + (ιM ⊗ IT )ζ + (IM ⊗ ιT )η + ε

We assume that the random variables ζt, ηj and εtj are independently
distributed with V (ζt) = σ2

ζ , V (ηj) = σ2
η and V (εtj) = σ2

ε . It follows that the
dispersion matrix of the vector of disturbances in this model is given by

(32) Ω = σ2
ζ (ιM ι0M ⊗ IT ) + σ2

η(IM ⊗ ιT ι0T ) + σ2
εIMT .

A special case that is often considered arises when σ2
η = 0, which is to

say that there is no intertemporal variation in the structure of the stochastic
disturbances. In that case, the dispersion matrix is of the form

(33)
Ω = σ2

η(IM ⊗ ιT ι0T ) + σ2
εIMT

= IM ⊗ (σ2
εIT + σ2

ηιT ιT ) = IM ⊗ V.

It can be confirmed by direct multiplication that the inverse of the matrix
V = σ2εIT + σ2

ηιT ιT is

(34) V −1 =
1
σ2

ε

√

IT −
σ2

η

σ2
ε + Tσ2

η

ιT ι0T

!

.
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The inverse of the matix Ω of (32) has a somewhat complicated structure.
It takes the form of the form of
(35)

Ω−1 =
1
σ2

ε

{IMT−λ1(ιM ι0MT ⊗ IT ) + λ2(IM ⊗ ιT ι0T ) + λ3(ιM ι0MT ⊗ ιT ιT )}

where λ1 = σ2
ζ (σ2

ε −Mσ2
ζ )−1,

λ2 = σ2
η(σ2

ε − Tσ2
η)−1,

λ3 = λ1λ2(2σ2
ε + Mσ2

ζ + Tσ2
η)(σ2

ε + Mσ2
ζ + Tσ2

η)−1.
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