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The Analysis of Variance

The Two-Way Model

We shall begin our discussion of the analysis of variance by considering a
model in the form of

(1)
ytj = µ+ γt + δj + εtj ;
where t = 1, . . . , T and j = 1, . . . ,M.

It is assumed that the disturbances εtj are independently and identically dis-
tributed with E(εtj) = 0 and V (εtj) = σ2 for all t, j.

The parameters γt and δj are subject to the restrictions

(2)
∑
t

γt = 0 and
∑
j

δj = 0;

and therefore µ = E(
∑
t

∑
j ytj/MT ) represents the expected value of the

overall average of ytj .
For the sake of a concrete interpretation, let us imagine that ytj is an ob-

servation taken at time t in the jth region. Then the parameter γt represents
an effect which is common to all observations taken at time t, whilst the pa-
rameter δj represents a characteristic of the jth region which prevails through
time.

In order to apply our existing techniques to the problem of estimating the
parameters of this model, we must first find an appropriate way of formatting
the TM observations. Let us begin by using the index notation to represent
the equations of (1) by

(3) (ytje
j
t ) = µ(ejt ) + (γte

j
t ) + (δje

j
t ) + (εtje

j
t ).

In ordinary matrix notation, this becomes

(4) Y = µιT ι
′
M + γι′M + ιT δ

′ + E ,
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where Y = [ytj ] and E = [εtj ] are matrices of order T ×M and γ = [γ1, . . . , γT ]′

and δ = [δ1, . . . , δM ]′ are vectors of orders T and M respectively. It can be seen
that (ejt ) = (et) ⊗ (ej) = ιT ⊗ ι′M where ιT and ιM are vectors of units whose
orders are indicated by their subscripts.

As an illustration, we may consider the case where T = M = 3. Then
equation (3) assumes the following form:

(5)

 y11 y12 y13

y21 y22 y23

y31 y32 y33

 =µ

 1 1 1
1 1 1
1 1 1

+

 γ1 γ1 γ1

γ2 γ2 γ2

γ3 γ3 γ3


+

 δ1 δ2 δ3
δ1 δ2 δ3
δ1 δ2 δ3

+

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .
To put our equation into a form which is amenable to estimation by least

squares regression, we must vectorise it. In terms of the notation of (3), the
vectorised equation is

(6) (ytjejt) = µ(ejt) + (e t
jt)(γtet) + (ejjt)(δjej) + (εtjejt).

Using the notation of the Kronecker product, this can be rendered as

(7)
Y c = µ(ιM ⊗ ιT ) + (ιM ⊗ IT )γ + (IM ⊗ ιT )δ + Ec

= Xβ + Ec.

In comparing (6) and (7), we see, for example, that (e t
jt) = (ej) ⊗ (ett) =

ιM ⊗ IT . We recognise that (ett) is the sum over the index t of the matrices
of order T which have a unit in the tth diagonal position and zeros elsewhere;
and this sum amounts, of course, to the unit matrix of order T .

By vectorising our example under (5), we get

(8)



y11

y21

y31

y12

y22

y32

y13

y23

y33


=



1 1 0 0 1 0 0
1 0 1 0 1 0 0
1 0 0 1 1 0 0

1 1 0 0 0 1 0
1 0 1 0 0 1 0
1 0 0 1 0 1 0

1 1 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 1 0 0 1





µ

γ1

γ2

γ3

δ1

δ2

δ3


+



ε11

ε21

ε31

ε12

ε22

ε32

ε13

ε23

ε33


.

The matrixX consisting of zeros and ones is described as the design matrix.
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So far, in our description of the two-way model, we have assumed that there
is a single observation in every cell. That is to say, only a single observation is
taken at the time t in the jth region. Let us now imagine that a total of Ntj
observations are taken. Then, in place of the element ytj within the vector Y c,
we have a subvector containing the elements ytij ; i = 1, . . . , Ntj . Corresponding
to these Ntj observations, there will be Ntj replications of the row of the original
design matrix which was associated with ytj . Although this extension of the
model is easily accomplished, it somewhat spoils the neatness of the algebra
unless it can be assumed that Ntj = N for all t, j. If this condition does prevail,
then the equations of the model can be written as

(8)

ytij = µ+γt + δj + εtij ;
where t = 1, . . . , T,

i = 1, . . . , N and
j = 1, . . . ,M.

The equations can be put in a vectorised format which is represented in our
index notation by

(10) (ytijejit) = µ(ejit) + (e t
jit)(γtet) + (ejjit)(δjej) + (εtijejit).

Using the notation of the Kronecker product, this can be rendered as

(11)
y = µ(ιM ⊗ ιN ⊗ ιT ) + (ιM ⊗ ιN ⊗ IT )γ + (IM ⊗ ιN ⊗ ιT )δ + ε

= Xβ + ε,

where y and ε are long vectors whose elements are arrayed according to a
reversed lexicographic ordering of their indices.

A cursory inspection of the example under (8) reveals that the design
matrix is singular; for the first column can be obtained either as the sum of
the columns 2, 3 and 4 or as the sum of the columns 5, 6 and 7. Therefore the
matrix has a rank of 5; and it does not seem possible to estimate the parameters
within β. However, it is always possible to estimate the mean vector Xβ. If we
calculate the Q–R decomposition of X = QrR, then this estimate is available
in the form of Xβ̂ = PY c = QrQ

′
rY

c where P = QrQ
′
r is the orthogonal

projector onto the manifold of the design matrix.

Estimation with Restrictions

There are two ways in which we might overcome the problems posed by
the singularity of the design matrix. The first way is to confine our attention to
functions of the parameters in β which can be estimated from the information
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contained in the observations on ytj and in the corresponding rows of the design
matrix. We shall examine this approach in the next section

The alternative approach is to overcome the singularity of the design ma-
trix by supplementing the equations Y c = Xβ + Ec of (7) by a further set of
equations which are derived from the restrictions under (2). The supplementary
equations can be written as

(12) ι′T γ = 0 and ι′Mδ = 0,

or as

(13)
H ′β = 0, where

H ′ =
[

0 ι′T 0
0 0 ι′M

]
and β′ = [µ γ′ δ′ ] .

In the example under (8), the singularity of the design matrix is overcome
by adding to it the rows [0, 1, 1, 1, 0, 0, 0] and [0, 0, 0, 0, 1, 1, 1] which relate to
the restrictions γ1 + γ2 + γ3 = 0 and δ1 + δ2 + δ3 = 0 respectively. At the same
time, the vectors Y c and Ec must be lengthened by adding to each of them a
pair of zeros.

It can be shown that this extra information, when it is added to the equa-
tions, in no way conflicts with the pre-existing observational information. The
consequence is that, when we use the ordinary least-squares regression to esti-
mate the parameters from the combined equations, we find that the estimates
obey the restrictions of (13) precisely.

By combining the equations of (13) with the equations of (7), we get the
system

(14)
[
Y c

0

]
=
[
X
H ′

]
β +

[
Ec
0

]
and, when ordinary least-squares regression is applied, we obtain the estimator

(15) β̂ = (X ′X +HH ′)−1X ′Y c.

Exactly the same estimator is derived if we consider joining the equations
Xβ = PY c to the equations H ′β = 0 to derive the system

(16)
[
X
H ′

]
β =

[
PY c

0

]
.

On premultiplying this system by the matrix [X ′, H] and using the result that
X ′P = X, we get (X ′X + HH ′)β = X ′PY c = X ′Y c ; and the solution is
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provided, once more, by (15). To demonstrate that the estimate β̂ fulfils the
restrictions, we need only prove the following proposition:

(17) The equations PY c = Xβ and H ′β = 0 have a unique solution for
all Y c if and only if the rows of X and H ′ are linearly independent
and the matrix [X ′, H] has full rank.

Proof. Assume to the contrary that the rows of X and H ′ are linearly de-
pendent. Then there exists a vector v′ = [v′1, v

′
2] such that v′1X + v′2H

′ = 0
with v′1X, v

′
2H
′ 6= 0. Since the vector Y c is unconstrained, there must be a

value for Y c such that v′1PY
c = v′1Xβ 6= 0. But this conflicts with the result

that (v′1X + v′2H
′)β = v′1Xβ = 0. Therefore, if there are to be solutions for all

values of Y c, the rows of X and H ′ cannot be linearly dependent.
Now assume that the rows of X and H ′ are linearly independent. Then

v′1X + v′2H
′ = 0 implies v′1X, v

′
2H
′ = 0. Since PY c = Xβ, it follows that, if

v′1X+v′2H
′ = 0, then v′1PY

c+v′20 = 0. Thus every vector which is orthogonal to
the matrix [X ′, H]′ is also orthogonal to the vector [(PY c)′, 0]′. Therefore, the
vector [(PY c)′, 0]′ must be a linear combination of the columns of the matrix,
which implies the existence of a vector β such that Xβ = PY c and H ′β = 0;
and this is the solution we are seeking. Finally, the condition that [X ′, H] has
full rank is necessary and sufficient for the uniqueness of this solution.

If the order T +M + 1 of the matrix X ′X +HH ′ is great, then it may be
impractical to estimate the elements of β in the manner suggested by equation
(15). In that case, we may be inclined to approach the problem of estimation
by way of the estimable parametric functions of β.

Estimable Parametric Functions

The alternative way of overcoming the problem of the singularity of the
design matrix is to reparametrise the model so that its new parameters are
estimable functions of the old parameters. We say that a parametric function
p′β is estimable if and only if there exists a vector q such that E(q′Y c) = p′β.
It is easy to prove that

(18) A parametric function p′β is estimable if and only if there exists
a vector q such that p′ = q′X; that is to say, if and only if p′ may
be expressed as a linear combination of the rows of X.

Proof. If p′β is estimable, then there exists, by definition, a vector q such that
E(q′Y c) = q′Xβ = p′β for all values of β; whence it follows that p′ = q′X.
Conversely, if p′ = q′X, then p′β = q′Xβ = E(q′Y c) and p′β is an estimable
parametric function for all β.
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Example. We should note that, according to this criterion of estimability, the
fact that we are unable to construct the identity matrix of order 7 from linear
combinations of the rows of the design matrix in the example under (8) signifies
that the seven parameters in β = [µ, γ1, γ2, γ3, δ1, δ2, δ3]′ cannot be estimated
individually unless we can somehow impose the restrictions

∑
t γt = 0 and∑

j δj = 0. However, it is easy to see that the functions µ∗j = µ + δj and
µt∗ = µ+ γt are estimable for all j and t.

Consider, for example, µ∗3 = µ + δ3. Since
∑
t γt = 0, this can also be

written as µ∗3 = µ+ 1
3

∑
t γt + δ3 = p′β where p′ = [1, 1

3 ,
1
3 ,

1
3 , 0, 0, 1]. We can

see that p′β is an estimable function by virtue of the fact that p′ = q′X, where
q′ = [0, 0, 0, 0, 0, 0, 1

3 ,
1
3 ,

1
3 ] and where X is the design matrix of equation (8). It

follows that we can estimate p′β by q′y = 1
3

∑
t yt3 = ȳ∗3.

We can approach the problem of constructing estimable parametric func-
tions in a wide variety of ways. One way, which is particularly simple, is to
partition the columns of the design matrix to give X = [X1, X2], wherein X2,
which has Rank(X2) = Rank(X), serves as a basis for X. It follows that
X1 = P2X1, where P2 = X2(X ′2X2)−1X ′2 is the orthogonal projector onto the
manifold of X2.

To enable such a partitioning, we must allow the order of the columns of
X to be chosen at will. However, in our example under (8), the columns of the
design matrix are already in an appropriate order; for we can form the matrix
X1 from the first two and the matrix X2 from the remaining five columns.

From the way in which we partition the design matrix, it follows that, if
p′β = p′1β1 + p′2β2 is estimable by virtue of the condition p′ = q′X, then

(19)

p′ = q′[X1, X2]

= q′X2[(X ′2X2)−1X ′2X1, I]

= p′2[(X ′2X2)−1X ′2X1, I].

We can use this result in either of two ways. On the one hand, we can ascertain
whether a proposed parametric function p′1β1 + p′2β2 does satisfy the condition
of estimability by seeking to confirm the condition

(20) p′1 = p′2(X ′2X2)−1X ′2X1.

On the other hand, we can generate estimable parametric functions by
freely choosing the vector p2 and then using the formula of (20) to generate the
value of p1.

Hypothesis Testing and the Decomposition of the Variance

In the analysis of variance, our principle aim is to ascertain whether the
classificatory scheme which gives rise to the design matrix has any power in
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explaining the variability of the dependent variable. Thus, if the locality in
which the observations are taken is a factor in determining their values, then
we would expect the values of δj to be significantly different from zero; and to
test their significance we would wish to evaluate a null hypothesis maintaining
that δ1 = δ2 = · · · = δM = 0. Unfortunately these parameters are not es-
timable unless the design matrix is supplemented by the necessary restrictions.
Nevertheless, the values µ∗j = µ+δj will constitute estimable parametric func-
tions in the context of our two-way model; and a reasonable index of their effect
would be the sum of squares

∑
j(ȳ∗j− ȳ)2 wherein ȳ is the average of all values

of ytj and ȳ∗j is the average over time of all the observations taken in the jth
region. Thus it transpires that, to test an hypothesis, it is not always necessary
to estimate the parameters in question.

Hypothesis Testing in the One-Way Model

In order to demonstrate the derivation of the standard hypothesis tests,
let us begin with a simplified one-way model which can be obtained by setting
γ1 = γ2 = · · · = γT = 0 in the equations of (1). This gives the equations

(21)
ytj = µ+ δj + εtj

= µ∗j + εtj ;
where t = 1, . . . , T and j = 1, . . . ,M.

Now consider the sum of squares of the deviations of the observations y
tj

about their overall sample mean:
∑
t

∑
j(ytj − ȳ)2. This can be decomposed

into

(22)

∑
t

∑
j

(ytj − ȳ)2 =
∑
t

∑
j

{(ytj − ȳ∗j) + (ȳ∗j − ȳ)}2

=
∑
t

∑
j

(ytj − ȳ∗j)2 +
∑
t

∑
j

(ȳ∗j − ȳ)2

+ 2
∑
t

∑
j

(ytj − ȳ∗j)(ȳ∗j − ȳ).

However, the final term on the RHS is zero since
∑
t(ytj − ȳ∗j) = 0 for all j.

Therefore we find that

(23)
∑
t

∑
j

(ytj − ȳ)2 =
∑
t

∑
j

(ytj − ȳ∗j)2 + T
∑
j

(ȳ∗j − ȳ)2.

The first term on the RHS may be described as the sum of squares of the
local variations and the second term may described as the sum of squares of
the inter-regional variations. The local variation provides a standard by which
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to measure the inter-regional variation. Therefore it seems reasonable to adopt
the following ratio as a statistic for testing the null hypothesis of no significant
inter-regional variations:

(24) F =

{
T
∑
j(ȳ∗j − ȳ)2/(M − 1)∑

t

∑
j(ȳtj − ȳ∗j)2/M(T − 1)

}
.

To analyse this statistic and to find its distribution, let us use the Kro-
necker notation to express the vectorised equations as

(25)
Y c = µ(ιM ⊗ ιT ) + (IM ⊗ iT )δ + Ec

= Xβ + Ec.

This is just a specialisation of equation (7) which comes from setting γ = 0.
Let us also define the following projectors:

(26)
PM = ιM (ι′M ιM )−1ι′M , PT = ιT (ι′T ιT )−1ι′T ,

P∗j = IM ⊗ PT and P = PM ⊗ PT .
These projectors represent various averaging operators. To illustrate their

effect, let us consider the vector y∗j = [y1j , . . . yTj ]′ of order T . Then, since
(ι′T ιT )−1 = T−1 and ι′T y∗j =

∑
t ytj , it follows that

(27)
PT y∗j = ιT (ι′T ιT )−1ι′T y∗j

= ȳ∗jιT ,

which is just the vector [ȳ∗j , . . . ȳ∗j ]′ of order T which has the mean of the jth
region as its repeated element. We can also see that P∗j = IM ⊗ PT is the
operator which averages over time throughout the M regions. The operator P
is a total averaging operator which extends over space and time. We can easily
verify that

(28) PP∗j = P∗jP = P and (P∗j − P )(IMT − P∗j) = 0.

Now consider the following identity:

(29) Ec′(IMT − P )Ec = Ec′(P∗j − P )Ec + Ec′(IMT − P∗j)Ec.

Since the elements εtj of Ec are independently and identically distributed nor-
mal variates with E(εtj) = 0 and V (εtj) = σ2 for all t,j, it follows immediately
from Cochran’s Theorem that

(30)

1.
1
σ2
Ec′(IMT − P )Ec ∼ χ2(MT − 1),

2.
1
σ2
Ec′(P∗j − P )Ec ∼ χ2(M − 1),

3.
1
σ2
Ec′(IMT − P∗j)Ec ∼ χ2(MT −M),
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where the expressions under 2 and 3 are for mutually independent variates.
Since Ec = (Y c −Xβ) and since (IMT − P∗j)(Y c −Xβ) = (IMT − P∗j)Y c, it
follows that the ratio of these expressions divided by their respective degrees
of freedom can be written

(31) F =
{

(Y c −Xβ)′(P∗j − P )(Y c −Xβ)/(M − 1)
Y c′(IMT − P∗j)Y c/M(T − 1)

}
and this is distributed as an F{M − 1,M(T − 1)} variate. Under the null
hypothesis that δ = 0 in equation (25), we have

(32)
(P∗j − P )(Y c −Xβ) = (P∗j − P ){Y c − µ(ιM ⊗ ιT )}

= (P∗j − P )Y c.

Therefore, on the hypothesis that δ1 = δ2 = · · · = δM , the ratio in (31)
becomes

(33) F =
{

Y c′(P∗j − P )Y c/(M − 1)
Y c′(IMT − P∗j)Y c/M(T − 1)

}
It can be seen that this is precisely the statistic which appears, in alternative
notation, under (24).

Hypothesis Testing in the Two-Way Model

Now let us develop tests for the standard hypotheses in the context of the
two-way model. The model is expressed in the equations

(34)
ytj = µ+ γt + δj + εtj

= µt∗ + µ∗j − µ+ εtj ,

where t = 1, . . . , T and j = 1, . . . ,M.

Here we have defined µt∗ = µ + γt and µ∗j = µ + γj which are respectively a
time-specific and a regional mean. The model is also represented by equations
(6) and (7). The sum of squares of the deviations of the observations about the
overall sample average ȳ may be decomposed as follows:

(35)

∑
t

∑
j

(ytj − ȳ)2 =
∑
t

∑
j

(ytj − ȳt∗ − ȳ∗j + ȳ)2

+M
∑
t

(ȳt∗ − ȳ)2 + T
∑
j

(ȳ∗j − ȳ)2.

Using the projectors defined in (26), together with the new projector

(36) Pt∗ = PM ⊗ IT ,
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we can write this decomposition in the equivalent form of

(37)
Y c′(IMT − P )Y c = Y c′(IMT − Pt∗ − P∗j + P )Y c

+ Y c′(Pt∗ − P )Y c + Y c′(P∗j − P )Y c.

Also, if Ec = Y c − Xβ = Y c − µ(ιM ⊗ ιT ) − (ιM ⊗ IT )γ − (IM ⊗ ιT )δ is
the normally distributed disturbance vector from equation (7), then it follows
immediately from Cochran’s Theorem that

(38)

1.
1
σ2
Ec′(IMT − P )Ec ∼ χ2(MT − 1),

2.
1
σ2
Ec′(IMT − Pt∗ − P∗j + P )Ec ∼ χ2(MT −M − T + 1),

3.
1
σ2
Ec′(Pt∗ − P )Ec ∼ χ2(T − 1),

4.
1
σ2
Ec′(P∗j − P )Ec ∼ χ2(M − 1),

where the expressions under 2, 3 and 4 are for mutually independent variates.
The ratio of any two of these, divided by their respective degrees of freedom
gives a chi-square variate.

Let us imagine that we wish to test the hypothesis that δ = 0 which signifies
that there is no inter-regional variation. This is the hypothesis for which we
constructed a test in the context of the one-way model. In the two-way model,
the hypothesis has the implication that

(39)
(P∗j − P )Ec = (P∗j − P ){Y c − µ(ιM ⊗ ιT )− (ιM ⊗ IT )γ}

= (P∗j − P )Y c.

We also have the result that

(40)
(IMT − Pt∗ − P∗j + P )Ec = (IMT − Pt∗ − P∗j + P )

× {Y c − µ(ιM ⊗ ιT )− (ιM ⊗ IT )γ}
= (IMT − Pt∗ − P∗j + P )Y c.

Therefore, under the conditions of the hypothesis, the following statistic

(41) F =
{

Y c′(P∗j − P )Y c/(M − 1)
Y c′(IMT − Pt∗ − P∗j + P )Y c/(M − 1)(T − 1)

}
has an F (M −1,MT −M −T +1) distribution; and we can test the hypothesis
by testing the validity of this implication.
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