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Temporal Regression
Models in Econometrics

Transfer Functions

Consider a simple dynamic model of the form

(1) y(t) = φy(t− 1) + x(t)β + ε(t).

With the use of the lag operator, we can rewrite this as

(2) (1− φL)y(t) = βx(t) + ε(t)

or, equivalently, as

(3) y(t) =
β

1− φLx(t) +
1

1− φLε(t).

The latter is the so-called rational transfer-function form of the equation. We
can replace the operator L within the transfer functions or filters associated
with the signal sequence x(t) and disturbance sequence ε(t) by a complex num-
ber z. Then, for the transfer function associated with the signal, we get

(4)
β

1− φz = β
{
1 + φz + φ2z2 + · · ·

}
,

where the RHS comes from a familiar power-series expansion.
The sequence {β, βφ, βφ2, . . .} of the coefficients of the expansion consti-

tutes the impulse response of the transfer function. That is to to say, if we
imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(5) x(t) = {. . . , 0, 1, 0, 0, . . .},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(6) r(t) = {. . . , 0, β, βφ, βφ2, . . .}.
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Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(7) x(t) = {. . . , 0, 1, 1, 1, . . .}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(8) s(t) = {. . . , 0, β, β + βφ, β + βφ+ βφ2, . . .}

whose elements, from the point when the step occurs in x(t), are simply the
partial sums of the impulse-response sequence.

This sequence of partial sums {β, β+βφ, β+βφ+βφ2, . . .} is described as
the step response. Given that |φ| < 1, the step response converges to a value

(9) γ =
β

1− φ

which is described as the steady-state gain or the long-term multiplier of the
transfer function.

These various concepts apply to models of any order. Consider the equa-
tion

(10) α(L)y(t) = β(L)x(t) + ε(t),

where

(11)

α(L) = 1 + α1L+ · · ·+ αpL
p

= 1− φ1L− · · · − φpLp,

β(L) = 1 + β1L+ · · ·+ βkL
k

are polynomials of the lag operator. The transfer-function form of the model
is simply

(12) y(t) =
β(L)
α(L)

x(t) +
1

α(L)
ε(t),

The rational function associated with x(t) has a series expansion

(13)
β(z)
α(z)

= ω(z)

=
{
ω0 + ω1z + ω2z

2 + · · ·
}
;
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and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

(14) γ =
β(1)
α(1)

=
β0 + β1 + · · ·+ βk
1 + α1 + · · ·+ αp

.

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

(15)
β0 + β1z

1− φ1z − φ2z2
=
{
ω0 + ω1z + ω2z

2 + · · ·
}
.

We rewrite this equation as

(16) β0 + β1z =
{
1− φ1z − φ2z

2
}{
ω0 + ω1z + ω2z

2 + · · ·
}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(17)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

By examining this scheme, we are able to distinguish between the different roles
which are played by the numerator parameters β0, β1 and the denominator pa-
rameters φ1, φ2. The parameters of the numerator serve as initial conditions
for the process which generates the impulse response. The denominator pa-
rameters determine the dynamic nature of the impulse response.

Consider the case where the impulse response takes the form a damped
sinusoid. This case arises when the roots of the equation α(z) = 1−φ1z−φ2z

2 =
0 are a pair of conjugate complex numbers falling outside the unit circle—
as they are bound to do if the response is to be a damped one. Then the
parameters β0 and β1 are jointly responsible for the initial amplitude and for
the phase of the sinusoid. The phase is the time lag which displaces the peak
of the sinusoid so that it occurs after the starting time t = 0 of the response,
which is where the peak of an undisplaced cosine response would occur.

The parameters φ1 and φ2, on the other hand, serve to determine the
period of the sinusoidal fluctuations and the degree of damping, which is the
rate at which the impulse response converges to zero.
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It seems that all four parameters ought to be present in a model which
aims at capturing any of the dynamic responses of which a second-order system
is capable. To omit one of the numerator parameters of the model would be a
mistake unless, for example, there is good reason to assume that the impulse
response attains its maximum value at the starting time t = 0. We are rarely
in the position to make such an assumption.

Models with Lagged-Dependent Variables

The reactions of economic agents, such as consumers or investors, to changes in
their environment resulting, for example, from changes in prices or incomes, are
never instantaneous. The changes are likely to be distributed over time; and
positions of equilibrium, if they are ever attained, are likely to be approached
gradually.

The slowness to respond may be due to two factors. In the first place, there
will be time delays in the transmission and the reception of the information
upon which the agents base their actions. In the second place, costs will be
entailed in the process of adapting to the new circumstances; and these costs are
liable to be positively related to the speed and to the extent of the adjustments.
For these reasons, it is appropriate to make some provision in econometric
equations for dynamic responses which are distributed over time.

The easiest way of setting an econometric equation in motion is to in-
troduce an element of feedback. This is done by including one or more lagged
values of the dependent variable on the right-hand side of the equation to stand
in the company of the other explanatory variables. It transpires that, if the
current disturbance is unrelated to the lagged dependent variables, then the
standard results concerning the consistency of the ordinary least-squares re-
gression procedure retain their validity. This is despite the fact that we can
no longer assert that the ordinary least-square estimates of the parameters are
unbiased in finite samples.

If the current disturbances and the lagged-dependent variables which are
included on the RHS of a dynamic regression equation are not unrelated, then
resulting parameter estimates are liable to suffer from considerable biases. The
biases are worst when the variance of the disturbance process is large relative
to the variances of the explanatory variables.

The essential nature of the problem can be illustrated via a simple model
which includes only a lagged dependent variable and which has no other ex-
planatory variables. Imagine that the disturbances follow a first-order autore-
gressive process. Then there are two equations to be considered. The first of
these is the regression equation

(18) y(t) = y(t− 1)β + η(t), where |β| < 1,

and the second is the equation

(19) η(t) = ρη(t− 1) + ε(t), where |ρ| < 1,
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which describes the autoregressive disturbance process. Here ε(t) stands for an
unobservable white-noise process which generates a sequence of independently
and identically distributed random variables which are assumed to be inde-
pendent of the elements of y(t) which precede them in time. The conditions
on the parameters β and ρ are necessary to ensure the stability of the model.
That is to say, they are necessary conditions for the attainment of a long-run
equilibrium in the dynamic response.

Equations (18) and (19), it will be observed, have the same mathematical
form. Using the lag operator L, we may rewrite them, in slightly different
forms, as

(20) (I − βL)y(t) = η(t) and η(t) =
ε(t)

I − ρL.

Combining the latter gives

(21) (I − ρL)(I − βL)y(t) =
{
I − (ρ+ β)L+ ρβL2

}
y(t) = ε(t).

What we have here is just a particular rendering of the equation

(22) (I − β1L− β2L
2)y(t) = ε(t)

which relates to the regression of the sequence y(t) on itself lagged by one and
by two periods. The only restriction which is entailed by writing the equation
in the form of (21) derives from the implication that ρ and β are real-valued
coefficients. In the case of equation (22), the corresponding values λ1 and λ2,
which would be obtained by factorising the the polynomial

(23) 1 + β1z + β2z
2 = (1− λ1z)(1− λ2z),

might be complex numbers. In that case, the two equations (21) and (22)
would have different implications regarding their dynamic responses to the
disturbances in ε(t).

Now consider the effect of fitting a model with a single lagged value from
the sequence y(t) in the role of the explanatory variable. This can be described
as the endeavour to estimate the parameter β of equation (18) by applying
ordinary least-squares regression to the equation whilst overlooking the serially
correlated nature of the disturbance sequence η(t).

Both y(t) and η(t) are serially correlated sequences which are linked to
each other via equation (18). Therefore the current elements of η(t) will be
correlated with both past, current and future values of y(t). This means that
the essential condition on which the consistency of the ordinary least-squares
estimator depends is violated.

5



D.S.G. POLLOCK: ECONOMETRICS

On substituting the expression yt = (ρ + β)yt−1 − ρβyt−2 + εt into the
regression formula, we derive the following expression for the estimate:

(24)

β̂ =
∑
yt−1yt∑
y2
t−1

= (ρ+ β)
∑
y2
t−1∑
y2
t−1

− ρβ
∑
yt−1yt−2∑
y2
t−1

+
∑
yt−1εt∑
y2
t−1

.

It is straightforward to take limits in the expression as the sample size T in-
creases. Let β̂ → δ as T →∞. Then the equation above becomes the equation

(25) δ = (β + ρ)− βρδ.

The final term on the RHS of (24) vanishes since, according to the assumptions,
the elements of ε(t) are uncorrelated with elements of y(t) which precede them
in time. Rearranging equation (25) gives the result that

(26) δ =
ρ+ β

1 + ρβ
.

Notice that the expression for δ is symmetric with respect of ρ and β.
However, we have tended to regard β as the regression parameter and ρ as
the parameter of an autoregressive disturbance process. This distinction now
appears to be false. However, if y(t − 1) on the RHS of equation (18) were
standing in the company of another explanatory variable, say x(t), then the
distinction would be a valid one.

Now let us imagine, for the sake of argument, that ρ→ 0. Then it is clear
that δ → β. Since the variance of the process η(t) is related positively to the
value of ρ, it can be said that the bias in β is directly related to the variance
of the serially-correlated disturbance process. Exactly the same result obtains
when y(t− 1) is accompanied in the regression equation by other explanatory
variables.

Error-Correction Forms, and Nonstationary Signals

Many econometric data sequences are nonstationary, with evident trends
that persist for long periods. However, the usual linear regression procedures,
which might be used in estimating the relationships existing amongst the data,
presuppose that the relevant moment matrices will converge asymptotically to
fixed limits as the sample size increases. This condition will not be fulfilled
if the data are strongly trended, in which case, the standard techniques of
statistical inference will not be applicable.

In order to apply the regression procedures successfully, it is necessary to
find some means of reducing the data to stationarity. A common approach is
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to subject the data to as many differencing operations as may be required to
achieve stationarity. Often, only a single differencing is required.

An objection that can be raised against the recourse to differencing is
that it tends to remove, or at least to attenuate severely, some of the essential
information regarding the behaviour of economic agents. There are processes
of equilibration, which are evident in the original data, by which the relative
proportions of econometric variables are maintained over long periods of time.
The evidence will be lost in the process of differencing the data.

When the original undifferenced data sequences share a common trend,
the coefficient of determination in a fitted regression is liable to be high; but
it is often discovered that the regression model looses much of its explanatory
power when the differences of the data are used instead.

A formulation which can sometimes be used to good effect in such cir-
cumstances is the so-called error-correction model. The form of error correc-
tion model that we shall examine is a re-parametrised version of an ordinary
autoregressive–distributed lag model. One of the features of the model is that
it depicts a mechanism whereby two trended economic variables maintain an
enduring long-term proportionality with each other. Moreover, the data se-
quences comprised by the model are stationary, either individually or in an
appropriate combination; and this feature enables us apply the standard pro-
cedures of statistical inference that are available to models comprising data
from stationary processes.

In this section, we shall begin by deriving the error-correction formulation
which corresponds to a simple first-order dynamic model. Thereafter, we shall
consider models of higher orders.

Consider taking y(t− 1) from both sides of the equation under (1) which
represents the first-order dynamic model. This gives

(27)

∇y(t) = y(t)− y(t− 1) = (φ− 1)y(t− 1) + βx(t) + ε(t)

= (1− φ)
{

β

1− φx(t)− y(t− 1)
}

+ ε(t)

= λ
{
γx(t)− y(t− 1)

}
+ ε(t),

where λ = 1−φ and where γ is the gain of the transfer function as defined under
(9). This is the so-called error-correction form of the equation; and it indicates
that the change in y(t) is a function of the extent to which the proportions of
the series x(t) and y(t− 1) differs from those which would prevail in the steady
state.

The error-correction form provides the basis for estimating the parameters
of the model when the signal series x(t) is trended or nonstationary. A pair of
nonstationary series which maintain a long-run proportionality are said to be
cointegrated.
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In such circumstances, it is easy to obtain an accurate estimate of γ simply
by running a regression of y(t−1) on x(t); for all that is required of the regres-
sion is that it should determine the fundamental coefficient of proportionality
which, in the long term, dominates the relationship which exists between the
two series.

Once a value for γ is available, the remaining parameter λ may be es-
timated by regressing ∇y(t) upon the composite variable {γx(t) − y(t − 1)}.
However, if the error-correction model is an unrestricted reparametrisation of
an original model in levels, as it will be in the majority of the cases that we
shall be considering here, then its parameters can be estimated by ordinary
least-squares regression. The same estimates can also be inferred from the
least-squares estimates of the parameters of the original model in levels.

It is possible to derive an error-correction form for the more general model
to be found under (10). We may begin by writing the model in the form of

(28) y(t) = φ1y(t− 1) + · · ·+ φpy(t− p) + β0x(t) + · · ·+ βkx(t− k) + ε(t).

We can proceed to reparametrise this model so that it assumes the equivalent
form of

(29)
y(t) = θy(t− 1) + ρ1∇y(t− 1) + · · ·+ ρp∇y(t− p+ 1)

+κx(t) + δ0∇x(t) + · · ·+ δk∇x(t− k + 1) + ε(t),

where θ = φ1 + · · · + φp and κ = β0 + · · · + βk. Now let us subtract y(t − 1)
from both sides of equation (29). This gives

(30)
∇y(t) =(θ − 1)y(t− 1) + κx(t)

+ ρ1∇y(t− 1) + · · ·+ ρp∇y(t− p+ 1)
+ δ0∇x(t) + · · ·+ δk∇x(t− k + 1) + ε(t).

The first two terms on the RHS combine to give

(31)
(θ − 1)y(t− 1) + κx(t) = (1− θ)

{
κ

1− θx(t)− y(t− 1)
}

= λ
{
γx(t)− y(t− 1)

}
which is an error-correction term in which γ is the value of the gain defined in
(14) above. It follows that the error-correction form of equation (28) is

(32) ∇y(t) = λ
{
γx(t)− y(t− 1)

}
+
p−1∑
i=1

ρi∇y(t− i) +
k−1∑
i=0

δi∇x(t− i) + ε(t).
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In the case of a nonstationary signal x(t), this is amenable to precisely the
same principle of estimation as was the simpler first-order equation under (27).
That is to say, we can begin by estimating the gain γ by a simple regression of
y(t−1) on x(t). Then, when a value for γ is available, we can proceed to find the
remaining parameters of the model via a second regression. Alternatively, the
parameters of the error-correction model can be estimated directly by ordinary
least-squares regression, or they can be inferred from the estimated parameters
of a model in levels that has been fitted by least-squares regression.

Example. To reveal the nature of the reparameterisation which transforms
equation (28) into equation (29), let us consider the following example:

(33)

β0x(t) + β1x(t− 1) + β2x(t− 2) + β3x(t− 3)

=
{
β0 + β1 + β2 + β3

}
x(t)−

{
β1 + β2 + β3

}{
x(t)− x(t− 1)

}
−
{
β2 + β3

}{
x(t− 1)− x(t− 2)

}
− β3

{
x(t− 2)− x(t− 3)

}
= κx(t) + δ0∇x(t) + δ1∇x(t− 1) + δ2∇x(t− 2).

The example may be systematised. Consider the product β′x wherein x =
[x(t), x(t− 1), x(t− 2), x(t− 3)]′ and β′ = [β0, β1, β2, β3]. Let Λ be an arbitrary
nonsingular, i.e. invertible, matrix of order 4× 4. Then β′x = {β′Λ−1}{Λx} =
δ′z where z = Λx and δ′ = β′Λ−1. That is to say, the expression in terms of z
and δ is equivalent to the original expression in terms of x and β. With these
results in mind, let us consider the following transformations:

(34)


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




x(t)
x(t− 1)
x(t− 2)
x(t− 3)

 =


x(t)
−∇x(t)
−∇x(t− 1)
−∇x(t− 2)


and

(35) [β0 β1 β2 β3 ]


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 = [κ −δ0 −δ1 −δ2 ] .

The two matrices which affect the transformation upon the variables and upon
their associated parameters stand in an inverse relationship to one another.

Example. The reparameterisation of a dynamic system can be achieved in
a variety of ways which lead to alternative expressions. A reparametrisation
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which is common, and which is somewhat less straighforward than that of the
previous example, can be illustrated in the context of the equation

(36)
3∑
j=0

αjy(t− j) =
3∑
j=0

βjy(t− j) + ε(t).

On the RHS, the variables are transformed as follows:

(37)


0 1 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1




x(t)
x(t− 1)
x(t− 2)
x(t− 3)

 =


x(t− 1)
−∇x(t)
−∇x(t− 1)
−∇x(t− 2)

 .
The corresponding transformation of the parameters is given by

(38) [β0 β1 β2 β3 ]


1 −1 0 0
1 0 0 0
1 0 1 0
1 0 1 1

 = [κ −δ0 −δ1 −δ2 ] .

On the LHS, the transformed variables are given by

(39)


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 −1 1




y(t)
y(t− 1)
y(t− 2)
y(t− 3)

 =


y(t)

y(t− 1)
−∇y(t− 1)
−∇y(t− 2)

 ,
and the corresponding parameters by

(40) [ 1 α1 α2 α3 ]


1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 1

 = [ 1 −θ ρ1 ρ2 ] .

Thus the equation becomes

(41)
y(t) = θy(t− 1) + κx(t− 1) + ρ1∇y(t− 1) + ρ2∇y(t− 2)

+ δ0∇x(t) + δ1∇x(t− 1) + δ2∇x(t− 2) + ε(t).

Taking y(t − 1) from both sides of the latter gives an equation with ∇y(t) on
the LHS and an error-correction term in the form of λ{γx(t− 1)− y(t− 1)} on
the RHS, where λ = 1− θ and γ = κ/(1− θ) as before.

Example. In many models, the natural logarithms of the economic variables
are used in the regression equation. Consider the case where the dependent

10



15: TEMPORAL REGRESSIONS

variable Y maintains a long-term proportionality with the explanatory variable
X. For example, Y and X might be consumption and income respectively. In
that case, the equilibrium condition which characterises a stationary state or an
equilibrium growth path is Y = KX. Letting x = lnX, y = lnY and k = lnK
gives y = k + x; and, on an equilibrium path, the proportional rate of growth
of the two variables will be ∇y = ∇x = r.

Our purpose is to reconcile these equilibrium conditions with a dynamic
regression equation in the form of

(42) y(t) = µ+ φ1y(t− 1) + β0x(t) + β1x(t− 1) + ε(t).

This is rendered in error-correction form by taking y(t− 1) from both sides of
the equation and supplementing the RHS by ±β0x(t− 1). The result is

(43)
∇y(t) = µ+ (φ1 − 1)y(t− 1) + β0∇x(t) + (β1 + β0)x(t− 1) + ε(t)

= µ+ (1− φ1)
{
β1 + β0

1− φ1
x(t− 1)− y(t− 1)

}
+ β0∇x(t) + ε(t).

Let the rate of growth be r so that Yt = Yt−1e
r and Xt = Xt−1e

r, which give
yt = yt−1 + r and xt = xt−1 + r, respectively. Putting these conditions in (42),
eliminating the disturbance term and suppressing the temporal indices gives

(44) y + r = µ+ φ1y + β0(x+ r) + β1x,

from which

(45) y =
µ+ (β0 − 1)r

1− φ1
+
β0 + β1

1− φ1
x.

To reconcile this with the equation y = k + x which characterises the growth
path, we must impose the condition that (β0+β1)/(1−φ1) = 1 or, equivalently,
that β0 + β1 + φ1 = 1. Notice that k = {µ+ (β0 − 1)r}/(1− φ1) is dependent
on the growth rate r.

One might doubt whether it is reasonable to postulate an equilibrium
growth rate that prevails over the entire sample period. However, if such a
postulate is accepted, then it becomes appropriate to fit an equation the form
of

(46) ∇y(t) = µ+ λ {x(t− 1)− y(t− 1)}+ β0∇x(t) + ε(t),

which is the resulting specialisation of equation (43). This equation and the
foregoing analysis were the basis of an influential article on consumer’s expen-
diture in the U.K. by Davidson et al.
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To understand the dynamic implications of the equation, let us set µ = 0.
Then, in a steady state, with a growth rate of r and with ε(t) = 0 for all t, we
should have ∇y(t) = r, β0∇x(t) = β0r and λ {x(t− 1)− y(t− 1)} = −λκ =
(1 − β0)r. It follows that, the faster the growth rate, the wider is the gap
between income and consumption. In the absense of an intercept term µ, the
gap would disappear altogether at a zero rate of growth. It seems that, in order
to avoid this implication, an intercept term should be present in the equation.

Cointegration in a Multivariate System

In the previous section, we have imagined that the sequences x(t) and
y(t) are both generated by nonstationary stochastic processes, and we have
supposed that these processes are coupled or “cointegrated” in the sense that
their values maintain a long-run proportionality. In particular, we have implied
that the processes are to be found within a system of the form

(47)
[
α(L) −β(L)

0 ω(L)

] [
y(t)
x(t)

]
=
[
ε(t)
η(t)

]
,

where ω(L) is a nonstationary autoregressive operator with one or more roots of
unit value. If the disturbance sequences ε(t) and η(t) are statistically indepen-
dent, then we will be justified in treating x(t) as a variable which is exogenous
with respect to the processes generating y(t).

However, it may be more meaningful, sometimes, to regard x(t) and y(t)
as pair of mutually dependent variables which enter into several statistical
relationships which might comprise other variables as well. Let us therefore
imagine that x(t) and y(t) are elements of a vector sequence z(t), which is not
constrained to be stationary, and let us consider an equation in the form of

(48) Π(L)z(t) = z(t) + Π1z(t− 1) + · · ·+ Πnz(t− n) = ζ(t),

which purports to describe how z(t) is generated. In this equation, the indi-
vidual processes within the disturbance vector ζ(t) on the RHS are presumed
to be stationary and, therefore, the combination Π(L)z(t) of the LHS must be
be stationary likewise.

There are a variety of ways in which the stationarity of the LHS can
arise. It may indeed be attributable to the stationary of each of the elements
of z(t). Alternatively, it may be that the operator Π(L) is effective in taking
differences of the nonstationary elements of z(t). However, it is also possible for
the stationarity to result from the combination of cointegrated nonstationary
processes which follow common trends.

In order to demonstrate this third possibility, let us, for convenience, make
the assumption that n = 2. Then equation (48) can be written as

(49) z(t) + Π1z(t− 1) + Π2z(t− 2) = ζ(t);
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and, on applying the transformation described in the previous section, this
becomes

(50)

[ I Π1 Π2 ]

 I 0 0
I I 0
I I I

 I 0 0
−I I 0
0 −I I

 z(t)
z(t− 1)
z(t− 2)


= [ Γ B1 B2 ]

 z(t)
∇z(t)
∇z(t− 1)

 = ζ(t),

where

(51) Γ = I + Π1 + Π2, −B1 = Π1 + Π2, and −B2 = Π2.

Thus, in place of (49), we have an equivalent equation

(52) Γz(t) +B1∇z(t) +B2∇z(t− 1) = ζ(t).

Equation (52) contains a mixture of differenced and undifferenced vari-
ables. We imagine that the differencing is sufficient to reduce the variables to
stationarity. Therefore, if the model is to be consistent, the term Γz(t) must
also be stationary. This will be impossible z(t) is nonstationary and if Γ has
full rank. It will only be possible if there are one or more cointegrating relation-
ships between the variables such that there can be found linear combinations,
embedded within Γz(t), which render the variables stationary.

A cointegrating relationship represents a restriction on the variables of the
sytem which asserts that, in the long run, they will tend to maintain a certain
proportionality. The greater the number of cointergrating relationships, the
more closely are these prorportions governed. In the limiting, case where the
number of relationship is one less that the number of variables, every ratio
amongst the variables is governed.

The number of cointegrating relationships is equal to the rank of Γ. If
the matrix Γ is of full rank, then every arbitrary combination of the sequences
must be stationary; which means that each of the sequences must be stationary.
Then there will be no call for differencing. On the other hand, if Γ is null, with
a rank of zero, then there will be no cointegrating relationships, and each
sequence will be following its own independent random walk, which will be
present in the equation only in its stationary differenced form.

Example. For the simplest example of these relationships, we may consider
the equations

(53)
y(t) = βx(t) + φy(t− 1) + ε(t) and

x(t) = x(t− 1) + η(t),

13
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which can be written together as

(54)
[

1 −β
0 1

] [
y(t)
x(t)

]
−
[
φ 0
0 1

] [
y(t− 1)
x(t− 1)

]
=
[
ε(t)
η(t)

]
,

or as

(55)
[
y(t)
x(t)

]
−
[
φ β
0 1

] [
y(t− 1)
x(t− 1)

]
=
[
ε(t) + βη(t)

η(t)

]
,

which comers from setting x(t) = x(t− 1) + η(t) in the first equation. Then

(56) Γ =
[

1 0
0 1

]
−
[
φ β
0 1

]
=
[

1− φ −β
0 0

]
is clearly a matrix of rank one as it is required to be. Also, it is clear that

(57)
[

1− φ −β
0 0

] [
y(t)
x(t)

]
=
[

(1− φ)x(y)− β(y(t)
0

]
comprises the disequilibrium error from equation (27), which is a stationary
random variable.
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