
14 : APPENDIX

Polynomials and
Difference Equations

A time-series model is one which postulates a relationship amongst a num-
ber of temporal sequences or time series. For example, we have the regression
model

(1) y(t) = x(t)β + ε(t)

where x(t) is an observable sequence indexed by the time subscript t and ε(t) is
an unobservable sequence of independently and identically distributed random
variables.

A more general model, which we shall call the general temporal regres-
sion model, is one which postulates a relationship comprising any number of
consecutive elements of x(t), y(t) and ε(t). Thus we have

(2)
p∑
i=0

αiy(t− i) =
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i)

Any of the sums in this expression can be infinite, but if the model is to be
viable, the sequences of coefficients {αi}, {βi} and {µi} can depend on only a
limited number of parameters.

We are particularly interested in a number of specialisations of the model.
The model represented by the equation

(3) y(t) = βx(t− i) +
q∑
i=0

µiε(t− i)

is described as a regression model with a serially correlated disturbance se-
quence η(t) =

∑
µiε(t − i). If this sum is finite, then η(t) is called a moving

average process. The model represented by

(4)
p∑
i=0

αiy(t− i) = βx(t) + ε(t)
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is described as an autoregressive regression model. The equation

(5) y(t) =
∑
i=0

βix(t− i) + ε(t)

represents the distributed-lag regression model.
The foregoing models are all termed regression models by virtue of the

inclusion of the observable explanatory sequence x(t). When x(t) is deleted, we
obtain the simpler unconditional linear stochastic models. Thus the equation

(6) y(t) =
q∑
i=0

µiε(t− i),

where the sum is finite, represents a moving average process; whereas

(7)
p∑
i=0

αiy(t− i) = ε(t),

again with a finite sum, represents an autoregressive process. The equation

(8)
p∑
i=0

αiy(t− i) =
q∑
i=0

µiε(t− i)

represents an autoregressive-moving average process.

The Algebra of the Lag Operator

A sequence x(t) is any function mapping from the set of integers Z =
{0,±1,±2, . . .} to the real line. If the set of integers represents a set of dates
separated by unit intervals, then we say that x(t) is a temporal sequence or
time series.

The set of all time series represents a vector space, and we can define
various linear transformations or operators over the space. For example, we
define the lag operator by

(9) Lx(t) = x(t− 1).

Now, L{Lx(t)} = Lx(t − 1) = x(t − 2); so it makes sense to define L2 by
L2x(t) = x(t− 2). More generally, Lkx(t) = x(t− k) and, likewise, L−kx(t) =
x(t+ k). Other operators are the difference operator ∇ = I −L which has the
effect that

(10) ∇x(t) = x(t)− x(t− 1),
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the forward-difference operator ∆ = L−1 − I, and the summation operator
S = (I − L)−1 = {I + L+ L2 + · · ·} which has the effect that

(11) Sx(t) =
∞∑
i=0

x(t− i).

In general, we can define polynomials of the lag operator of the form p(L) =
p0 + p1L+ p2L

2 + · · ·+ pnL
n =

∑
piL

i having the effect that

(12)

p(L)x(t) = p0x(t) + p1x(t− 1) + · · ·+ pnx(t− n)

=
n∑
i=0

pix(t− i).

The advantage which comes from defining polynomials in the lag operator
stems from the fact that they are isomorphic to the set of ordinary algebraic
polynomials. Thus we can rely upon what we know about ordinary polynomials
to treat problems concerning lag-operator polynomials.

Algebraic Polynomials

Consider the equation α0 + α1z + α2z
2 = 0. On dividing the equation by

α2, we can factorise it as (z − λ1)(z − λ2) where λ1, λ2 are the roots of the
equation that are given by the formula

(13) λ =
−α1 ±

√
α2

1 − 4α2α0

2α2
.

If α2
1 ≥ 4α2α0, then the roots λ1, λ2 are real. If α2

1 = 4α2α0, then λ1 = λ2.
If α2

1 ≤ 4α2α0, then the roots are the conjugate complex numbers λ = α+ iβ,
λ∗ = α− iβ where i =

√
−1.

Complex Roots

There are three alternative ways of representing the conjugate complex
numbers λ and λ∗ :

(14)
λ = α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗ = α− iβ = ρ(cos θ − i sin θ) = ρe−iθ,

where

(15) ρ = √(α2 + β2) and θ = tan−1

(
β

α

)
.
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These are called, respectively, the Cartesian form, the trigonometrical form and
the exponential form.

The polar representation is understood by considering the Argand diagram:

ρ

α

β

θ
θ

λ

λ*

Re

Im

Figure 1. The Argand Diagram showing a complex

number λ = α+ iβ and its conjugate λ∗ = α− iβ.

The exponential form is understood by considering the following series
expansions of cos θ and i sin θ about the point θ = 0:

(16)
cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

i sin θ = iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

Adding these gives us Euler’s equation:

(17)
cos θ + i sin θ = 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

= eiθ.

Likewise, by subtraction, we get

(18) cos θ − i sin θ = e−iθ.

It follows readily from (17) and (18) that

(19) cos θ =
eiθ + e−iθ

2

4



D.S.G. POLLOCK : POLYNOMIALS

and

(20)
sin θ =

−i(eiθ − e−iθ)
2

=
eiθ − e−iθ

2i
.

The n-th Order Polynomial

Now consider the general equation of the nth order:

(21) α0 + α1z + α2z
2 + · · ·+ αnz

n = 0.

On dividing by αn, we can factorise this as

(22) (z − λ1)(z − λ2) · · · (z − λn) = 0,

where some of the roots may be real and others may be complex. The complex
roots come in conjugate pairs, so that, if λ = α + iβ is a complex root, then
there is a corresponding root λ∗ = α−iβ such that the product (z−λ)(z−λ∗) =
z2 + 2αz + (α2 + β2) is real and quadratic. When we multiply the n factors
together, we obtain the expansion

(23) 0 = zn −
∑
i

λiz
n−1 +

∑
i

∑
j

λiλjz
n−2 − · · · (−1)nλ1λ2 · · ·λn.

We can compare this with the expression (α0/αn)+(α1/αn)z+· · ·+zn = 0. By
equating coefficients of the two expressions, we find that (α0/αn) = (−1)n

∏
λi

or, equivalently,

(24) αn = α0

n∏
i=1

(−λi)−1.

Thus we can express the polynomial in any of the following forms:

(25)

∑
αiz

i = αn
∏

(z − λi)

= α0

∏
(−λi)−1

∏
(z − λi)

= α0

∏(
1− z

λi

)
.

We should also note that, if λ is a root of the equation
∑
αiz

i = 0,
then µ = 1/λ is a root of the equation

∑
αiz

n−i = 0. This follows since
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αiµ

n−i = µn
∑
αiµ
−i = 0 implies that

∑
αiµ
−i =

∑
αiλi = 0. Confusion

can arise from not knowing which of the two equations one is dealing with.

Rational Functions of Polynomials

If δ(z) and γ(z) are polynomial functions of x of degrees n and m respec-
tively with n < m, then the ratio δ(z)/γ(z) is described as a proper rational
polynomial. We shall often encounter expressions of the form

y(t) =
δ(L)
γ(L)

x(t).

For this to have a meaningful interpretation in the context of a time-series
model, we normally require that y(t) should be a bounded sequence whenever
x(t) is bounded. The necessary and sufficient condition for the boundedness of
y(t), in that case, is that the series expansion of δ(z)/γ(z) should be convergent
whenever |z| ≤ 1. We can determine whether or not the sequence will converge
by expressing the ratio δ(z)/γ(z) as a sum of partial fractions. The basic result
is as follows:

(26) If δ(z)/γ(z) = δ(z)/{γ1(z)γ2(z)} is a proper rational fraction, and
if γ1(z) and γ2(z) have no common factor, then the fraction can
be uniquely expressed as

δ(z)
γ(z)

=
δ1(z)
γ1(z)

+
δ2(z)
γ2(z)

,

where δ1(z)/γ1(z) and δ2(z)/γ2(z) are proper rational fractions.

Imagine that γ(z) =
∏

(1−z/λi). Then repeated applications of this basic
result enables us to write

(27) δ(z) =
κ1

1− z/λ1
+

κ2

1− z/λ2
+ · · ·+ κn

1− z/λn
.

By adding the terms on the RHS, we find an expression with a numerator of
order n − 1. By equating the terms of the numerator with the terms of δ(z),
we can find the values κ1, κ2, . . . , κn.

Consider, for example,

(28)

3x
1 + x− 2x2

=
3x

(1− x)(1 + 2x)

=
κ2

1− x +
κ2

1 + 2x

=
κ1(1 + 2x) + κ2(1− x)

(1− x)(1 + 2x)
.
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Equating the terms of the numerator gives

(29) 3x = (2κ1 − κ2)x+ (κ1 + κ2),

so that κ2 = −κ1 which gives 3 = (2κ1 − κ2) = 3κ1; and thus we have κ1 = 1,
κ2 = −1.

The conditions for the convergence of the expansion of δ(z)/γ(z) are
straightforward. For the rational function converges if and only if the expansion
of each of its partial fractions converges. For the expansion

(30)
κ

(1− z/λ)
= κ

{
1 + z/λ+ (z/λ)2 + · · ·

}
to converge when |z| ≤ 1, it is necessary and sufficient that |λ| > 1.

Linear Difference Equations

An nth-order linear difference equation is a relationship amongst n + 1
consecutive elements of a sequence x(t) of the form

(31) α0x(t) + α1x(t) + · · ·+ αnx(t− n) = u(t),

where u(t) is some specified sequence. We can also write this as

(32) α(L)x(t) = u(t),

where α(L) = α0 + α1L + α2L
2 + · · · + αnL

n. If we are given n consecutive
values of x(t), say x1, x2, . . . , xn, then we can use this relationship to find the
succeeding value xn+1. In this way, so long as u(t) is fully specified, we can
generate all the succeeding elements of the sequence. Likewise, we can generate
all the values of the sequence prior to t = 1; and thus, in effect, we can deduce
the function x(t) from the difference equation. However, instead of a recursive
solution, we usually seek an analytic expression for x(t).

The function x(t; c), expressing the analytic solution, will comprise a set
of n constants in c = [c1, c2, . . . , cn]′ which can only be determined once we are
given a set of n consecutive values of x(t) which are called initial conditions.
The general analytic solution of the equation α(L)x(t) = u(t) is expressed as
x(t; c) = y(t; c) + z(t), where y(t) is the general solution of the homogeneous
equation α(L)y(t) = 0, and z(t) = α−1(L)u(t) is called a particular solution of
the inhomogeneous equation.

We solve the difference equation in three steps. First, we find the general
solution of the homogeneous equation. Next, we find the particular solution
z(t) which embodies no unknown quantities. Finally, we use the n initial values
of x to determine the constants c1, c2, . . . , cn. We shall discuss in detail only
the solution of the homogeneous equation.
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Solution of the Homogeneous Difference Equation

If λj is a root of the equation α(z) = α0 +α1z+α2z
2 + · · ·+αnz

n = 0 such
that α(λj) = 0, then yj(t) = (1/λj)t is a solution of the equation α(L)y(t) = 0.
We can see this by considering the expression

(33)

α(L)
(

1
λj

)t
= (α0 + α1L+ · · ·+ αnL

n)
(

1
λj

)t
= α0

(
1
λj

)t
+ α1

(
1
λj

)t−1

+ · · ·+ αn

(
1
λj

)t−n
= (α0 + α1λj + · · ·+ αnλ

n
j )
(

1
λj

)t
= α(λj)

(
1
λj

)t
.

Alternatively, consider the factorisation α(L) = α0

∏
i(1− L/λj). Within this

product, we have the term 1− L/λj and, clearly, since

(
1− L

λj

)(
1
λj

)t
=
(

1
λj

)t
−
(

1
λj

)t
= 0,

we must have α(L)(1λj)t = 0.
The general solution, in the case where α(L) = 0 has distinct real roots, is

given by

(34) y(t; c) = c1

(
1
λ1

)t
+ c2

(
1
λ2

)t
+ · · ·+ cn

(
1
λn

)t
,

where c1, c2, . . . , cn are the constants which are determined by the initial con-
ditions.

In the case where two roots coincide at a value of λ, the equation α(L)y(t)
= 0 has the solutions y1(t) = (1/λ)t and y2(t) = t(1/λ)t. To show this, let
us extract the term (1−L/λ)2 from the factorisation α(L) = α0

∏
i(1−L/λj)

given under (25). Then, according to the previous argument, we have (1 −
L/λ)2(1/λ)t = 0, but, also, we have

(35)

(
1− L

λ

)2

t

(
1
λ

)t
=
(

1− 2L
λ

+
L2

λ2

)
t

(
1
λ

)t
= t

(
1
λ

)
t− 2(t− 1)

(
1
λ

)t
+ (t− 2)

(
1
λ

)t
= 0.
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In general, if there are r repeated roots, then (1/λ)t, t(1/λ)t, t2(1/λ)t, . . . ,
tr−1(1/λ)t are all solutions to the equation α(L)y(t) = 0.

The 2nd-order Difference equation with Complex Roots

Imagine that the 2nd-order equation α(L)y(t) = α0y(t) + α1y(t − 1) +
α2y(t−2) = 0 is such that α(z) = 0 has complex roots λ = 1/µ and λ∗ = 1/µ∗.
Let us write

(36)
µ = γ + iδ = κ(cosω + i sinω) = κeiω,

µ∗ = γ − iδ = κ(cosω − i sinω) = κe−iω.

These will appear in a general solution of the difference equation of the form of

(37) y(t) = cµt + c∗(µ∗)t.

This is a real-valued sequence; and, since a real term must equal its own con-
jugate, we require c and c∗ to be conjugate numbers of the form

(38)
c∗ = ρ(cos θ + i sin θ) = ρeiθ,

c = ρ(cos θ − i sin θ) = ρe−iθ.

Thus we have

(39)

cµt + c∗(µ∗)t = ρe−iθ(κeiω)t + ρeiθ(κe−iω)t

= ρκt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρκt cos(ωt− θ).

To analyse the final expression, consider first the factor cos(ωt− θ). This
is a displaced cosine wave. The value ω, which is a number of radians per unit
period, is called the angular velocity or the angular frequency of the wave. The
value f = ω/2π is its frequency in cycles per unit period. The duration of one
cycle, also called the period, is r = 2π/ω.

The term θ is called the phase displacement of the cosine wave, and it
serves to shift the cosine function along the axis of t so that the peak occurs at
the value of t = θ/ω instead of at t = 0.

Next consider the term κt wherein κ = √(γ2 + δ2) is the modulus of the
complex roots. When κ has a value of less than unity, it becomes a damping
factor which serves to attenuate the cosine wave as t increases.

Finally, the factor 2ρ represents the initial amplitude of the cosine wave
which is the value that it assumes when t = 0. Since ρ is just the modulus of
the values c and c∗, this amplitude reflects the initial conditions.
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