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Linear Stochastic Models

Stationary Stochastic processes

A temporal stochastic process is simply a sequence of random variables
indexed by a time subscript. Such a process can be denoted by x(t). The
element of the sequence at the point t = τ is xτ = x(τ).

Let x(τ) = [xτ+1, xτ+2, . . . , xτ+n]′ denote n consecutive elements of the
sequence. Then the process is said to be strictly stationary if the joint proba-
bility distribution of the elements does not depend on τ regardless of the size
of n. This means that any two segments of the sequence of equal length have
identical probability density functions. In consequence, the decision on where
to place the time origin is arbitrary; and the argument τ can be omitted. Some
further implications of stationarity are that

(1) E(xt) = µ <∞ for all t and C(xτ+t, xτ+s) = γ|t−s|.

The latter condition means that the covariance of any two elements depends
only on their temporal separation |t − s|. Notice that, if the elements of the
sequence are normally distributed, then the two conditions are sufficient to
establish strict stationarity. On their own, they constitute the conditions of
weak or 2nd-order stationarity.

The condition on the covariances implies that the dispersion matrix of the
vector x = [x1, x2, . . . , xn]′ is a bisymmetric Laurent matrix of the form

(2)

D(x) = E
{
[x− E(x)][x− E(x)]′

}

=


γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

γ2 γ1 γ0 . . . γn−3

...
...

...
. . .

...
γn−1 γn−2 γn−3 . . . γ0

 .

Given that a sequence of observations of a time series represents only a
segment of a single realisation of a stochastic process, one might imagine that
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there is little chance of making valid inferences about the parameters of the
process. However, provided that the process x(t) is stationary and provided
that the statistical dependencies between widely separated elements of the se-
quence are weak, it is possible to estimate consistently those parameters of the
process which express the dependence of proximate elements of the sequence.
If one is prepared to make sufficiently strong assumptions about the nature of
the process, then a knowledge of such parameters may be all that is needed for
a complete characterisation of the process.

Moving Average Processes

The qth-order moving average process, or MA(q) process, is defined by the
equation

(3) y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q),
where ε(t), which has E{x(t)} = 0, is a white-noise process consisting of a
sequence of independently and identically distributed random variables with
zero expectations. The equation is normalised either by setting µ0 = 1 or by
setting V {ε(t)} = σ2

ε = 1. The equation can be written in summary notation
as y(t) = µ(L)ε(t), where µ(L) = µ0 + µ1L+ · · ·+ µqL

q is a polynomial in the
lag operator.

A moving-average process is clearly stationary since any two elements yt
and ys represent the same function of identically distributed vectors εt =
[εt, εt−1, . . . , εt−q]′ and εs = [εs, εs−1, . . . , εs−q]′ . In addition to the condi-
tion of stationarity, it is usually required that a moving-average process should
be invertible such that it can be expressed in the form of µ−1(L)y(t) = ε(t)
where the LHS embodies a convergent sum of past values of y(t). This is an
infinite-order autoregressive representation of the process. The representation
is available only if all the roots of the equation µ(z) = µ0 +µ1z+ · · ·+µqz

q = 0
lie outside the unit circle. This conclusion follows from our discussion of partial
fractions.

As an example, let us consider the first-order moving-average process which
is defined by

(4) y(t) = ε(t)− θε(t− 1) = (1− θL)ε(t).

Provided that |θ| < 1, this can be written in autoregressive form as

(5)
ε(t) = (1− θL)−1y(t)

=
{
y(t) + θy(t− 1) + θ2y(t− 2) + · · ·

}
.

Imagine that |θ| > 1 instead. Then, to obtain a convergent series, we have to
write

(6)
y(t+ 1) = ε(t+ 1)− θε(t)

= −θ(1− L−1/θ)ε(t),
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where L−1ε(t) = ε(t+ 1). This gives

(7)
ε(t) = −θ−1(1− L−1/θ)−1y(t+ 1)

= −θ−1
{
y(t+ 1)/θ + y(t+ 2)/θ2 + y(t− 3)/θ3 + · · ·

}
.

Normally, an expression such as this, which embodies future values of y(t),
would have no reasonable meaning.

It is straightforward to generate the sequence of autocovariances from a
knowledge of the parameters of the moving-average process and of the variance
of the white-noise process. Consider

(8)

γτ = E(ytyt−τ )

= E
{∑

i

µiεt−i
∑
j

µjεt−τ−j
}

=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

Since ε(t) is a sequence of independently and identically distributed random
variables with zero expectations, it follows that

(9) E(εt−iεt−τ−j) =
{ 0, if i 6= τ + j;

σ2
ε , if i = τ + j.

Therefore

(10) γτ = σ2
ε

∑
j

µjµj+τ .

Now let τ = 0, 1, . . . , q. This gives

(11)

γ0 = σ2
ε(µ

2
0 + µ2

1 + · · ·+ µ2
q),

γ1 = σ2
ε(µ0µ1 + µ1µ2 + · · ·+ µq−1µq),

...
γq = σ2

εµ0µq.

Also, γτ = 0 for all τ > q.
The first-order moving-average process y(t) = ε(t) − θε(t − 1) has the

following autocovariances:

(12)

γ0 = σ2
ε(1 + θ2),

γ1 = −σ2
εθ,

γτ = 0 if τ > 1.
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Thus, for a vector y = [y1, y2, . . . , yT ]′ of T consecutive elements from a first-
order moving-average process, the dispersion matrix is

(13) D(y) = σ2
ε


1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 −θ . . . 0
0 −θ 1 + θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + θ2

 .

In general, the dispersion matrix of a qth-order moving-average process has q
subdiagonal and q supradiagonal bands of nonzero elements and zero elements
elsewhere.

It is also helpful to define an autocovariance generating function which is a
power series whose coefficients are the autocovariances γτ for successive values
of τ . This is denoted by

(14) γ(z) =
∑
τ

γτz
τ ; with τ = {0,±1,±2, . . .} and γτ = γ−τ .

The generating function is also called the z-transform of the autocovariance
function.

The autocovariance generating function of the qth-order moving-average
process can be found quite readily. Consider the convolution

(15)

µ(z)µ(z−1) =
∑
i

µiz
i
∑
j

µjz
−j

=
∑
i

∑
j

µiµjz
i−j

=
∑
τ

(∑
j

µiµj+τ

)
zτ , τ = i− j.

By referring to the expression for the autocovariance of lag τ of a moving-
average process given under (10), it can be seen that the autocovariance gen-
erating function is just

(16) γ(z) = σ2
εµ(z)µ(z−1).

Autoregressive Processes

The pth-order autoregressive process, or AR(p) process, is defined by the
equation

(17) α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = ε(t).
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This equation is invariably normalised by setting α0 = 1, although it would
be possible to set σ2

ε = 1 instead. The equation can be written in summary
notation as α(L)y(t) = ε(t), where α(L) = α0 + α1L + · · · + αpL

p. For the
process to be stationary, the roots of the equation α(z) = α0 + α1z + · · · +
αpz

p = 0 must lie outside the unit circle. This condition enables us to write
the autoregressive process as an infinite-order moving-average process in the
form of y(t) = α−1(L)ε(t).

As an example, let us consider the first-order autoregressive process which
is defined by

(18)
ε(t) = y(t)− φy(t− 1)

= (1− φL)y(t).

Provided that the process is stationary with |φ| < 1, it can be represented in
moving-average form as

(19)
y(t) = (1− φL)−1ε(t)

=
{
ε(t) + φε(t− 1) + φ2ε(t− 2) + · · ·

}
.

The autocovariances of the process can be found by using the formula of (10)
which is applicable to moving-average process of finite or infinite order. Thus

(20)

γτ = E(ytyt−τ )

= E
{∑

i

φiεt−i
∑
j

φjεt−τ−j
}

=
∑
i

∑
j

φiφjE(εt−iεt−τ−j);

and the result under (9) indicates that

(21)

γτ = σ2
ε

∑
j

φjφj+τ

=
σ2
εφ

τ

1− φ2
.

For a vector y = [y1, y2, . . . , yT ]′ of T consecutive elements from a first-order
autoregressive process, the dispersion matrix has the form

(22) D(y) =
σ2
ε

1− φ2


1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

φ2 φ 1 . . . φT−3

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1

 .
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To find the autocovariance generating function for the general pth-order
autoregressive process, we may consider again the function α(z) =

∑
i αiz

i.
Since an autoregressive process may be treated as an infinite-order moving-
average process, it follows that

(23) γ(z) =
σ2
ε

α(z)α(z−1)
.

For an alternative way of finding the autocovariances of the pth-order process,
consider multiplying

∑
i αiyt−i = εt by yt−τ and taking expectations to give

(24)
∑
i

αiE(yt−iyt−τ ) = E(εtyt−τ ).

Taking account of the normalisation α0 = 1, we find that

(25) E(εtyt−τ ) =

{
σ2
ε , if τ = 0;

0, if τ > 0.

Therefore, on setting E(yt−iyt−τ ) = γτ−i, equation (24) gives

(26)
∑
i

αiγτ−i =

{
σ2
ε , if τ = 0;

0, if τ > 0.

The second of these is a homogeneous difference equation which enables us to
generate the sequence {γp, γp+1, . . .} once p starting values γ0, γ1, . . . , γp−1 are
known. By letting τ = 0, 1, . . . , p in (26), we generate a set of p+ 1 equations
which can be arrayed in matrix form as follows:

(27)


γ0 γ1 γ2 . . . γp
γ1 γ0 γ1 . . . γp−1

γ2 γ1 γ0 . . . γp−2

...
...

...
. . .

...
γp γp−1 γp−2 . . . γ0




1
α1

α2
...
αp

 =


σ2
ε

0
0
...
0

 .
These are called the Yule–Walker equations, and they can be used either for
generating the values γ0, γ1, . . . , γp from the values α1, . . . , αp, σ

2
ε or vice versa.

Example. To illustrate the two uses of the Yule–Walker equations, let us
consider the second-order autoregressive process. In that case, we have

(28)

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

α0

α1

α2

 =

α2 α1 α0 0 0
0 α2 α1 α0 0
0 0 α2 α1 α0



γ2

γ1

γ0

γ1

γ2


=

α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

 γ0

γ1

γ2

 =

σ2
ε

0
0

 .
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Given α0 = 1 and the values for γ0, γ1, γ2, we can find σ2
ε and α1, α2. Con-

versely, given α0, α1, α2 and σ2
ε , we can find γ0, γ1, γ2. It is worth recalling at

this juncture that the normalisation σ2
ε = 1 might have been chosen instead

of α0 = 1. This would have rendered the equations more easily intelligible.
Notice also how the matrix following the first equality is folded across the axis
which divides it vertically to give the matrix which follows the second equality.
Pleasing effects of this sort often arise in time-series analysis.

Autoregressive Moving Average Processes

The autoregressive moving-average process of orders p and q, which is
referred to as the ARMA(p, q) process, is defined by the equation

(29)
α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p)

= µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

The equation is normalised by setting α0 = 1 and by setting either µ0 = 1
or σ2

ε = 1. A more summary expression for the equation is α(L)y(t) = µ(L)ε(t).
Provided that the roots of the equation α(z) = 0 lie outside the unit circle,
the process can be represented by the equation y(t) = α−1(L)µ(L)ε(t) which
corresponds to an infinite-order moving-average process. Conversely, provided
the roots of the equation µ(z) = 0 lie outside the unit circle, the process can
be represented by the equation µ−1(L)α(L)y(t) = ε(t) which corresponds to an
infinite-order autoregressive process.

By considering the moving-average form of the process, and by noting the
form of the autocovariance generating function for such a process which is given
by equation (16), it can be seen that the autocovariance generating function
for the autoregressive moving-average process is

(30) γ(z) = σ2
ε

µ(z)µ(z−1)
α(z)α(z−1)

.

This generating function, which is of some theoretical interest, does not
provide a practical means of finding the autocovariances. To find these, let us
consider multiplying the equation

∑
i αiyt−i =

∑
i µiεt−i by yt−τ and taking

expectations. This gives

(31)
∑
i

αiγi−τ =
∑
i

µiδi−τ ,

where γi−τ = E(yt−iyt−τ ) and δi−τ = E(εt−iyt−τ ). Since εt−i is uncorrelated
with yt−τ whenever it is subsequent to the latter, it follows that δi−τ = 0 if
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τ > i. Since the index i in the RHS of the equation (31) runs from 0 to q, it
follows that

(32)
∑
i

αiγi−τ = 0 if τ > q.

Given the q+1 nonzero values δ0, δ1, . . . , δq, and p initial values γ0, γ1, . . . , γp−1

for the autocovariances, the equations can be solved recursively to obtain the
subsequent values {γp, γp+1, . . .}.

To find the requisite values δ0, δ1, . . . , δq, consider multiplying the equation∑
i αiyt−i =

∑
i µiεt−i by εt−τ and taking expectations. This gives

(33)
∑
i

αiδτ−i = µτσ
2
ε ,

where δτ−i = E(yt−iεt−τ ). The equation may be rewritten as

(34) δτ =
1
α0

(
µτσ

2
ε −

∑
i=1

δτ−i
)
,

and, by setting τ = 0, 1, . . . , q, we can generate recursively the required values
δ0, δ1, . . . , δq.

Example. Consider the ARMA(2, 2) model which gives the equation

(35) α0yt + α1yt−1 + α2yt−2 = µ0εt + µ1εt−1 + µ2εt−2.

Multiplying by yt, yt−1 and yt−2 and taking expectations gives

(36)

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

α0

α1

α2

 =

 δ0 δ1 δ2
0 δ0 δ1
0 0 δ0

µ0

µ1

µ2

 .
Multiplying by εt, εt−1 and εt−2 and taking expectations gives

(37)

 δ0 0 0
δ1 δ0 0
δ2 δ1 δ0

α0

α1

α2

 =

σ2
ε 0 0
0 σ2

ε 0
0 0 σ2

ε

µ0

µ1

µ2

 .
When the latter equations are written as

(38)

α0 0 0
α1 α0 0
α2 α1 α0

 δ0δ1
δ2

 = σ2
ε

µ0

µ1

µ2

 ,
8
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they can be solved recursively for δ0, δ1 and δ2 on the assumption that that
the values of α0, α1, α2 and σ2

ε are known. Notice that, when we adopt the
normalisation α0 = µ0 = 1, we get δ0 = σ2

ε . When the equations (36) are
rewritten as

(39)

α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

 γ0

γ1

γ2

 =

µ0 µ1 µ2

µ1 µ2 0
µ2 0 0

 δ0δ1
δ2

 ,
they can be solved for γ0, γ1 and γ2. Thus the starting values are obtained
which enable the equation

(40) α0γτ + α1γτ−1 + α2γτ−2 = 0; τ > 2

to be solved recursively to generate the succeeding values {γ3, γ4, . . .} of the
autocovariances.

Minimum Mean-Square Error Prediction

Imagine that y(t) is a stationary stochastic process with E{y(t)} = 0.
We may be interested in predicting values of this process several periods into
the future on the basis of its observed history. This history is contained in
our so-called information set. In practice, the latter is always a finite set
{yt, yt−1, . . . , yt−p} representing the recent past. Nevertheless, in developing
the theory of prediction, it is also useful to consider an infinite information set
{yt, yt−1, . . . , yt−p, . . .} representing the entire past.

We shall denote the prediction of yt+m which is made at the time t by
ŷt+m|t or by ŷt+m when it is clear that we a predicting m steps ahead.

The criterion by which we usually judge the performance of an estimator or
predictor ŷ of a random variable y is its mean-square error defined by E{(y −
ŷ)2}. If all of the available information on y is summarised in its marginal
distribution, then the minimum mean-square error prediction is simply the
expected value E(y). However, if y is statistically related to another random
variable x whose value we can observe, and if we know the form of the joint
distribution of x and y, then the minimum mean-square error prediction of y
is the conditional expectation E(y|x). We may state this proposition formally:

(41) Let ŷ = ŷ(x) be the conditional expectation of y given x which
is also expressed as ŷ = E(y|x). Then we have E{(y − ŷ)2} ≤
E{(y − π)2}, where π = π(x) is any other function of x.

Proof. Consider

(42)
E{(y − π)2} = E[{(y − ŷ) + (ŷ − π)}2]

= E{(y − ŷ)2}+ 2E{(y − ŷ)(ŷ − π)}+ E{(ŷ − π)2}

9
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In the second term, we have

(43)

E{(y − ŷ)(ŷ − π)} =
∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫
x

{∫
y

(y − ŷ)f(y|x)∂y
}

(ŷ − π)f(x)∂x

= 0.

Here the second equality depends upon the factorisation f(x, y) = f(y|x)f(x)
which expresses the joint probability density function of x and y as the product
of the conditional density function of y given x and the marginal density func-
tion of x. The final equality depends upon the fact that

∫
(y − ŷ)f(y|x)∂y =

E(y|x) − E(y|x) = 0. Therefore E{(y − π)2} = E{(y − ŷ)2} + E{(ŷ − π)2} ≥
E{(y − ŷ)2} and our assertion is proved.

We might note that the definition of the conditional expectation implies
that

(44)

E(xy) =
∫
x

∫
y

xyf(x, y)∂y∂x

=
∫
x

x

{∫
y

yf(y|x)∂y
}
f(x)∂x

= E(xŷ).

When the equation E(xy) = E(xŷ) is rewritten as

(45) E {x(y − ŷ)} = 0,

it may be described as an orthogonality condition. This condition indicates
that the prediction error y − ŷ is uncorrelated with x. The result is intuitively
appealing; for, if the error were correlated with x, we should not using the
information of x efficiently in forming ŷ.

The proposition of (41) is readily generalised to accommodate the case
where, in place of the scalar x, we have a vector x = [x1, . . . , xp]′. This gen-
eralisation indicates that the minimum-mean-square-error prediction of yt+m
given the information in {yt, yt−1, . . . , yt−p} is the conditional expectation
E(yt+m|yt, yt−1, . . . , yt−p).

In order to determine the conditional expectation of yt+m given {yt, yt−1,
. . . , yt−p}, we need to known the functional form of the joint probability den-
sity function all of these variables. In lieu of precise knowledge, we are often
prepared to assume that the distribution is normal. In that case, it follows that
the conditional expectation of yt+m is a linear function of {yt, yt−1, . . . , yt−p};
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and so the problem of predicting yt+m becomes a matter of forming a linear
regression. Even if we are not prepared to assume that the joint distribu-
tion of the variables in normal, we may be prepared, nevertheless, to base our
prediction of y upon a linear function of {yt, yt−1, . . . , yt−p}. In that case, we
satisfy the criterion of minimum mean-square error linear prediction by forming
ŷt+m =

∑
φjyt−j+1 from the values φ1, . . . , φp+1 which minimise

(46)
E
{
(yt+m − ŷt+m)2

}
= E

{(
yt+m −

p+1∑
j=1

φjyt−j+1

)2
}

= γ0 − 2
∑
j

φjγm+j−1 +
∑
i

∑
j

φiφjγi−j .

This is a linear least-squares regression problem which leads to a set of p + 1
orthogonality conditions described as the normal equations:

(47)
E{(yt+m − ŷt+m)yt−j+1} = γm+j−1 −

p∑
i=1

φiγi−j

= 0 ; j = 1, . . . , p+ 1.

In matrix terms, we have

(48)


γ0 γ1 . . . γp
γ1 γ0 . . . γp−1

...
...

. . .
...

γp γp−1 . . . γ0




φ1

φ2
...

φp+1

 =


γm
γm+1

...
γm+p

 .
Notice that, for the one-step-ahead prediction of yt+1, these are nothing but
the Yule–Walker equations.

Forecasting with ARMA Models

So far, we have avoided making any specific assumptions about the nature
of the process y(t) other than that it can be represented by an infinite-order
moving average. We are greatly assisted in the business of developing practical
forecasting procedures if we can assume that y(t) is generated by an ARMA
process such that

(49) y(t) =
µ(L)
α(L)

ε(t) = ψ(L)ε(t).

We shall continue to assume, for the sake of simplicity, that the forecasts
are based on the information contained in the infinite set {yt, yt−1, . . . , yt−p, . . .}
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comprising all values that have been taken by the variable up to the present
time t. Knowing the parameters in ψ(L) enables us to recover the sequence
{εt, εt−1, εt−2, . . .} from the sequence {yt, yt−1, yt−2, . . .} and vice versa; so ei-
ther of these can be regarded as our information set.

Let us write the realisations of equation (49) as

(50) yt+m =
m−1∑
i=0

ψiεt+m−i +
∞∑
i=m

ψiεt+m−i.

Here the first term on the RHS embodies disturbances subsequent to the time
t when the forecast is made, and the second term embodies disturbances which
are within the information set {εt, εt−1, εt−2, . . .}. Let us now define a forecast-
ing function, based on the information set, which takes the form of

(51) ŷt+m =
∞∑
i=m

ρiεt+m−i.

Then, given that ε(t) is a white-noise process, it follows that the mean square
of the error in the forecast m periods ahead is given by

(52) E{(yt+m − ŷt+m)2} = σ2
ε

m−1∑
i=0

ψ2
i + σ2

ε

∞∑
i=m

(ψi − ρi)2.

Clearly, the mean-square error is minimised by setting ρi = ψi; and so the
optimal forecast is given by

(53) ŷt+m =
∞∑
i=m

ψiεt+m−i.

This might have been derived from the the equation y(t+m) = ψ(L)ε(t+m),
which generates the the true value of yt+m, simply by putting zeros in place of
the unobserved disturbances εt+1, εt+2, . . . , εt+m which lie in the future when
the forecast is made. Notice that, as the lead time m of the forecast increases,
the mean-square error of the forecast tends to the value of

(54) V {y(t)} = σ2
ε

∑
ψ2
i

which is nothing but the variance of the process y(t).
We can also derive the optimal forecast of (45) by specifying that the

forecast error should be uncorrelated with the disturbances up to the time of
making the forecast. For, if the the forecast errors were correlated with some
of the elements of our information set, then, as we have noted before, we would

12
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not be using the information efficiently, and we could not be generating opti-
mal forecasts. To demonstrate this result anew, let us consider the covariance
between the forecast error and the disturbance εt−i:

(55)

E{(yt+m − ŷt+m)εt−i} =
m∑
k=1

ψm−kE(εt+kεt−i)

+
∞∑
j=0

(ψm+j − ρm+j)E(εt−jεt−i)

= σ2
ε(ψm+i − ρm+i).

Here the final equality follows from the fact that

(56) E(εt−jεt−i) =

{
σ2
ε , if i = j,

0, if i 6= j.

If the covariance in (55) is to be equal to zero for all values of i ≥ 0, then we
must have ρi = ψi for all i, which means that our forecasting function must be
the one that we have already specified under (53).

It is helpful, sometimes, to have a functional notation for describing the
process which generates the m-steps-ahead forecast. The notation provided by
Whittle (1963) is widely used. To derive this, let us begin by writing

(57) y(t+m|t) =
{
L−mψ(L)

}
ε(t).

On the LHS, we have not only the lagged sequences ε(t), ε(t − 1), . . . but also
the sequences ε(t + m) = L−mε(t), . . . , ε(t + 1) = L−1ε(t), all of which are
associated with negative powers of L. Let {L−mψ(L)}+ be defined as the part
of the operator containing only positive powers of L. Then we can express the
forecasting function as

(58)
ŷ(t+m|t) = {L−mψ(L)}+ε(t)

=
{
ψ(L)
Lm

}
+

1
ψ(L)

y(t).

The Forecasts as Conditional Expectations

We have already seen that we can regard the optimal (minimum mean-
square error) forecast of yt+m as the conditional expectation of yt+m given the
values of {εt, εt−1, εt−2, . . .} or {yt, yt−1, yt−2, . . .}. Let us denote the forecast
by ŷt+m = Et(yt+m) where the subscript on the operator is to indicate that

13
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the expectation is conditional upon the information available at time t. On
applying the operator to the sequences y(t) and ε(t), we find that

(59)

Et(yt+k) = ŷt+k ; k > 0
Et(yt−j) = yt−j ; j ≥ 0
Et(εt+k) = 0 ; k > 0
Et(εt−j) = εt−j ; j ≥ 0.

In this notation, the forecast m periods ahead is

(60)

Et(yt+m) =
m∑
k=1

ψm−kEt(εt+k) +
∞∑
j=0

ψm+jEt(εt−j)

=
∞∑
j=0

ψm+jεt−j .

In practice, we may generate the forecasts using a recursion based on the
equation

(61)
y(t) = −{α1y(t− 1) + α2y(t− 2) + · · ·+ αpy(t− p)}

+ µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

By taking the conditional expectation of this function, we get

(62)
ŷt+m = −{α1ŷt+m−1 + · · ·+ αpyt+m−p}

+ µmεt + · · ·+muqεt+m−q when 0 < m ≤ p, q,

(63) ŷt+m = −{α1ŷt+m−1 + · · ·+ αpyt+m−p} if q < m ≤ p,

(64)
ŷt+m = −{α1ŷt+m−1 + · · ·+ αpŷt+m−p}

+ µmεt + · · ·+ µqεt+m−q if p < m ≤ q,

and

(65) ŷt+m = −{α1ŷt+m−1 + · · ·+ αpŷt+m−p} when p, q < m.

We can see from (65) that, for m > p, q, the forecasting function becomes a
pth-order homogeneous difference equation in y. The p values of y(t) from
t = r = max(p, q) to t = r− p+ 1 serve as the starting values for the equation.

14
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The behaviour of the forecast function beyond the reach of the starting
values can be characterised in terms of the roots of the autoregressive operator.
We can assume that none of the roots of α(L) = 0 lie inside the unit circle. If all
of the roots are less than unity, then ŷt+m will converge to zero asm increases. If
one of the roots of α(L) = 0 is unity, then we have and ARIMA(p, 1, q) model;
and the general solution of the homogeneous equation of (65) will include a
constant term which represents the product of the unit root with an coefficient
which is determined by the starting values. Hence the the forecast will tend to
a nonzero constant. If two of the roots are unity, then the the general solution
will embody a linear time trend which is the asymptote to which the forecasts
will tend. In general, if d of the roots are unity, then the general solution will
comprise a polynomial in t of order d− 1.

The forecasts can be updated easily once the coefficients in the expansion
of ψ(L) = µ(L)/α(L) have been obtained. Consider

(66)
ŷ(t+1)+m = {ψmεt+1 + ψm+1εt + ψm+2εt−1 + · · ·} and

ŷt+(m+1) = {ψm+1εt + ψm+2εt−1 + · · ·}.

The first of these is the forecast for m periods ahead made at time t+ 1 whilst
the second is the forecast for m + 1 periods ahead made at time t. We can
easily see that

(67) ŷ(t+1)+m = ŷt+(m+1) + ψmεt+1,

where εt+1 = ŷt+1 − yt+1 is the current disturbance at time t+ 1. The later is
also the prediction error of the one-step-ahead forecast made at time t.

Example. Consider the AR(41) process. We have

(68) y(t+m) = φy(t+m− 1) + ε(t+m).

On applying the operator Et to this equation we obtain the following:

(69)

ŷ(t+ 1) = φy(t)

ŷ(t+ 2) = φŷ(t+ 1) = φ2y(t)
...

ŷ(t+m) = φŷ(t+m− 1) = φmy(t).

Given that y(t) = ε(t)/(1−φL) = {ε(t)+φε(t−1)+φ2ε(t−2)+ · · ·}, it follows
from (44) that

(70) E{(yt+m − ŷt+m)2} = σ2
ε

{
1 + φ2 + φ4 + · · ·+ φ2(m−1)

}
.

15
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As m→∞, this tends to σ2
ε/(1− φ2) which is just the variance of the AR(41)

process.

Example.(Exponential Smoothing). A common forecasting procedure is expo-
nential smoothing. This depends upon taking a weighted average of past values
of the time series with the weights following a geometrically declining pattern.
The function generating the one-step-ahead forecasts can be written as

(71)
ŷ(t+ 1) =

(1− θ)
1− θL y(t)

= (1− θ)
{
y(t) + θy(t− 1) + θ2y(t+ 2) + · · ·

}
.

On multiplying both sides of this equation by 1− θL and rearranging, we get

(72) ŷ(t+ 1) = θŷ(t) + (1− θ)y(t),

which shows that the current forecast for one step ahead is a convex combina-
tion of the previous forecast and the value that actually transpired.

It is possible to show that the method of exponential smoothing corre-
sponds to the optimal forecasting procedure for the ARIMA(0, 1, 1) model
(1− L)y(t) = (1− θL)ε(t). To see this, let us consider the ARMA(1, 1) model
y(t)− φy(t− 1) = ε(t)− θε(t− 1). This gives

(73)

ŷ(t+ 1) = φy(t)− θε(t)

= φy(t)− θ (1− φL)
1− θL y(t)

=
{(1− θL)φ− (1− φL)θ}

1− θL y(t)

=
(φ− θ)
1− θL y(t)

On setting φ = 1, which converts the ARMA(1, 1) model to an ARIMA(0, 1, 1)
model, we obtain precisely the forecasting function of (60).
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