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Stationary
Stochastic Processes

A sequence is a function mapping from a set of integers, described as the
index set, onto the real line or into a subset thereof. A time series is a sequence
whose index corresponds to consecutive dates separated by a unit time interval.

In the statistical analysis of time series, the elements of the sequence are
regarded as a set of random variables. Usually, no notational distinction is
made between these random variables and their realised values. It is important
nevertheless to bear the distinction in mind.

In order to analyse a statistical time series, it must be assumed that the
structure of the statistical or stochastic process which generates the observa-
tions is essentially invariant through time. The conventional assumptions are
summarised in the condition of stationarity, which is discussed in section 2.2.
The condition has immediate implications for the autocovariance and the au-
tocorrelation functions defined in section 2.3.

A fundamental process, from which many other stationary processes may
be derived, is the so-called white-noise process which consists of a sequence
of uncorrelated random variables, each with a zero mean and the same finite
variance. By passing white noise through a linear filter, a sequence whose
elements are serially correlated can be generated. The filtering operation is
defined in section 2.4.

In fact, virtually every stationary stochastic process may be depicted as
the product of a filtering operation applied to white noise. We demonstrate
this result in section 2.10, after we have introduced the concepts underlying
the spectral representation of a time series.

The spectral representation is rooted in the basic notion of Fourier analysis
which is that well-behaved functions can be approximated over a finite inter-
val, to any degree of accuracy, by a weighted combination of sine and cosine
functions whose harmonically rising frequencies are integral multiples of a fun-
damental frequency. Such linear combinations are described as Fourier sums
or Fourier series. Of course, the notion applies to sequences as well; for any
number of well-behaved functions may be interpolated through the coordinates
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of a finite sequence.
In section 2.6, we provide the Fourier representation of a finite sequence

which is exact. This is extended, in section 2.7, to provide a representation of an
infinite sequence in terms of an infinity of trigonometrical functions whose fre-
quencies range continuously in the interval [0, π]. The trigonometrical functions
and their weighting functions are gathered under a Fourier–Stieltjes integral.
It is remarkable that, whereas a Fourier sum serves only to define a strictly pe-
riodic function, a Fourier integral suffices to represent an aperiodic time series
generated by a stationary stochastic process.

The Fourier integral is also used to represent the underlying stochastic
process. This is achieved by describing the stochastic processes which generate
the weighting functions. There are two such weighting processes, associated
respectively with the sine and cosine functions; and their common variance,
which is a function f(ω), ω ∈ [0, π], is the so-called spectral density function.

The relationship between the spectral density function and the sequence of
autocovariances, which is summarised in the Wiener
–Khintchine theorem, provides a link between the time-domain and the frequency-
domain analyses. In section 2.8, we show how the autocovariances may be
obtained from the Fourier transform of the spectral density function. We
demonstrate, at the end of section 2.10, that the spectral density function
is, conversely, a Fourier transform of the sequence of autocovariances.

Finally, section 2.12 defines the periodogram as a cosine Fourier transform
of the sequence of empirical autocovariances. The periodogram provides a basis
for estimating the spectral density function.

2.2 Stationarity

Consider two vectors of n+ 1 consecutive elements from the process y(t):

yt = [yt, yt+1, . . . , yt+n]′,
yt+k = [yt+k, yt+k+1, . . . , yt+k+n]′.

(1)

Then y(t) is strictly stationary if the joint probability density functions of the
vectors yt and yt+k are the same for any value of k regardless of the size of n.
On the assumption that the first and second-order moments of the distribution
are finite, the condition of stationarity implies that all the elements of y(t) have
the same expected value and that the covariance between any pair of elements
of the sequences is a function only of their temporal separation. Thus,

E(yt) = µ,

C(yt+i, yt+j) = C(yi, yj)
= γ|i−j|.

(2)
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On their own, the conditions of (2) constitute the conditions of weak station-
arity.

A normal process is completely characterised by its mean and its autoco-
variances. Therefore, a normal process y(t) which satisfies the conditions for
weak stationarity is also stationary in the strict sense.

2.3 Autocovariance and autocorrelation functions

The covariance between two elements yt and yt+τ of a process y(t) which
are separated by τ intervals of time, is known as the autocovariance at lag τ
and is denoted by γτ . The autocorrelation at lag τ , denoted by ρτ , is defined
by

ρτ =
γτ
γ0,

(3)

where γ0 is the variance of the process y(t).
The stationarity conditions imply that the autocovariances of y(t) satisfy

the equality
γτ = γ−τ (4)

for all values of τ .
The autocovariance matrix of a stationary process corresponding to the n

elements y0, y1, . . . , yn−1 is given by

Γ =


γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

γ2 γ1 γ0 . . . γn−3

...
...

...
. . .

...
γn−1 γn−2 γn−3 . . . γ0

 . (5)

The sequences {γτ} and {ρτ} are described as the autocovariance and autocor-
relation functions respectively.

2.4 Filtering white noise

A white-noise process is a sequence ε(t) of uncorrelated random variables
with mean zero and common variance σ2

ε . Thus

E(εt) = 0, for all t

E(εt+iεt+j) =
{
σ2
ε , if i = j;

0, if i 6= j.
(6)

By a process of linear filtering, a variety of time series may be constructed
whose elements display complex interdependencies. A finite linear filter, also
called a moving-average operator, is a polynomial in the lag operator of the
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form µ(L) = µ0 +µ1L+ · · ·+µqL
q. The effect of this filter on ε(t) is described

by the equation

y(t) = µ(L)ε(t)
= µ0 + µ1ε(t− 1) + µ2ε(t− 2) + · · ·+ µqε(t− q)

=
q∑
i=0

µiε(t− i).
(7)

The operator µ(L) is also be described as the transfer function which
maps the input sequence ε(t) into the output sequence y(t). Figure 2.1 gives a
pictorial representation.

An operator with an indefinite number of terms in rising powers of L may
also be considered: µ(L) = {µ0 + µ1L+ µ2L

2 + · · ·} . However, for this to be
practical, the coefficients {µ0, µ1, µ2, . . .} must be functions of a limited number
of fundamental parameters. In addition, it is required that∑

i

|µi| <∞. (8)

Given the value of σ2
ε = V {ε(t)}, the autocovariances of the filtered se-

quence y(t) = µ(L)ε(t) may be determined by evaluating the expression

γτ = E(ytyt−τ )

= E

(∑
i

µiεt−i
∑
j

µjεt−τ−j

)
=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

(9)

From equation (6), it follows that

γτ = σ2
ε

∑
j

µjµj+τ ; (10)

and so the variance of the filtered sequence is

γ0 = σ2
ε

∑
j

µ2
j . (11)

The condition under equation (8) guarantees that these quantities are finite, as
is required by the condition of stationarity.

2.5 The z-transform
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In the subsequent analysis, it will prove helpful to present the results in the
notation of the z-transform. The z-transform of the infinite sequence y(t) =
{yt; t = 0,±1,±2, . . .} is defined by

y(z) =
∞∑

τ=−∞
ytz

t. (12)

Here z is usually taken to be a complex number on the perimeter of the unit
circle. Thus z = e−iω with ω ∈ [0, 2π]

If y(t) = µ(L)ε(t) is a moving-average process, then the z-transform is
given by y(z) = µ(z)ε(z) where µ(z) = {µ0 + µ1z + µ2z

2 + · · ·} has the same
form as the operator µ(L), and where ε(z) is the z-transform of the white-noise
sequence.

The z-transform of a sequence of autocovariances is called the autocovari-
ance generating function. For the moving-average process, this is given by

γ(z) = σ2
εµ(z)µ(z−1)

= σ2
ε

∑
i

µiz
i
∑
j

µjz
−j

= σ2
ε

∑
i

∑
j

µiµjz
i−j

=
∑
τ

{
σ2
ε

∑
j

µjµj+τ

}
zτ ; τ = i− j

=
∞∑

τ=−∞
γτz

τ .

(13)

The final equality is by virtue of equation (10).

2.6 The Fourier representation of a sequence

According to the basic result of Fourier analysis, it is always possible to
approximate an arbitrary analytic function defined over a finite interval of the
real line, to any desired degree of accuracy, by a weighted sum of sine and
cosine functions of harmonically increasing frequencies.

Similar results apply in the case of sequences, which may be regarded as
functions mapping from the set of integers onto the real line. For a sample of
T observations y0, . . . , yT−1, it is possible to devise an expression in the form

yt =
n∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
, (14)
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wherein ωj = 2πj/T is a multiple of the fundamental frequency ω1 = 2π/T .
Thus, the elements of a finite sequence can be expressed exactly in terms of
sines and cosines. This expression is called the Fourier decomposition of yt and
the set of coefficients {αj , βj ; j = 0, 1, . . . , n} are called the Fourier coefficients.

When T is even, we have n = T/2; and it follows that

sin(ω0t) = sin(0) = 0
cos(ω0t) = cos(0) = 1
sin(ωnt) = sin(πt) = 0
cos(ωnt) = cos(πt) = (−1)t.

(15)

Therefore, equation (14) becomes

yt = α0 +
n−1∑
j=1

{
αj cos(ωjt) + βj sin(ωjt)

}
+ αn(−1)t. (16)

When T is odd, we have n = (T − 1)/2; and then equation (14) becomes

yt = α0 +
n∑
j=1

{
αj cos(ωjt) + βj sin(ωjt)

}
. (17)

In both cases, there are T nonzero coefficients amongst the set
{αj , βj ; j = 0, 1, . . . , n}; and the mapping from the sample values to the co-
efficients constitutes a one-to-one invertible transformation.

In equation (16), the frequencies of the trigonometric functions range from
ω1 = 2π/T to ωn = π; whereas, in equation (17), they range from ω1 = 2π/T
to ωn = π(T − 1)/T . The frequency π is the so-called Nyquist frequency.

Although the process generating the data may contain components of fre-
quencies higher than the Nyquist frequency, these will not be detected when
it is sampled regularly at unit intervals of time. In fact, the effects on the
process of components with frequencies in excess of the Nyquist value will be
confounded with those whose frequencies fall below it.

To demonstrate this, consider the case where the process contains a com-
ponent which is a pure cosine wave of unit amplitude and zero phase whose
frequency ω lies in the interval π < ω < 2π. Let ω∗ = 2π − ω. Then

cos(ωt) = cos{(2π − ω∗)t}
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

(18)

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ < π is described as the alias of ω > π.
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2.7 The spectral representation of a stationary process

By allowing the value of n in the expression (14) to tend to infinity, it is
possible to express a sequence of indefinite length in terms of a sum of sine and
cosine functions. However, in the limit as n → ∞, the coefficients αj , βj tend
to vanish; and therefore an alternative representation in terms of differentials
is called for.

By writing αj = dA(ωj), βj = dB(ωj) where A(ω), B(ω) are step functions
with discontinuities at the points {ωj ; j = 0, . . . , n}, the expression (14) can be
rendered as

yt =
∑
j

{
cos(ωjt)dA(ωj) + sin(ωjt)dB(ωj)

}
. (19)

In the limit, as n → ∞, the summation is replaced by an integral to give the
expression

y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
. (20)

Here, cos(ωt) and sin(ωt), and therefore y(t), may be regarded as infinite se-
quences defined over the entire set of positive and negative integers.

Since A(ω) and B(ω) are discontinuous functions for which no derivatives
exist, one must avoid using α(ω)dω and β(ω)dω in place of dA(ω) and dB(ω).
Moreover, the integral in equation (20) is a Fourier–Stieltjes integral.

In order to derive a statistical theory for the process that generates y(t),
one must make some assumptions concerning the functions A(ω) and B(ω).
So far, the sequence y(t) has been interpreted as a realisation of a stochastic
process. If y(t) is regarded as the stochastic process itself, then the functions
A(ω), B(ω) must, likewise, be regarded as stochastic processes defined over
the interval [0, π]. A single realisation of these processes now corresponds to a
single realisation of the process y(t).

The first assumption to be made is that the functions A(ω) and B(ω)
represent a pair of stochastic processes of zero mean which are indexed on the
continuous parameter ω. Thus

E{dA(ω)} = E{dB(ω)} = 0. (21)

The second and third assumptions are that the two processes are mutu-
ally uncorrelated and that non-overlapping increments within each process are
uncorrelated. Thus

E{dA(ω)dB(λ)} = 0 for all ω, λ,

E{dA(ω)dA(λ)} = 0 if ω 6= λ,

E{dB(ω)dB(λ)} = 0 if ω 6= λ.

(22)
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The final assumption is that the variance of the increments is given by

V {dA(ω)} = V {dB(ω)} = 2dF (ω)
= 2f(ω)dω.

(23)

We can see that, unlike A(ω) and B(ω), F (ω) is a continuous differentiable
function. The function F (ω) and its derivative f(ω) are the spectral distribu-
tion function and the spectral density function, respectively.

In order to express equation (20) in terms of complex exponentials, we
may define a pair of conjugate complex stochastic processes:

dZ(ω) =
1
2
{dA(ω)− idB(ω)},

dZ∗(ω) =
1
2
{dA(ω) + idB(ω)}.

(24)

Also, we may extend the domain of the functions A(ω), B(ω) from [0, π] to
[−π, π] by regarding A(ω) as an even function such that A(−ω) = A(ω) and by
regarding B(ω) as an odd function such that B(−ω) = −B(ω). Then we have

dZ∗(ω) = dZ(−ω). (25)

From conditions under (22), it follows that

E{dZ(ω)dZ∗(λ)} = 0 if ω 6= λ,

E{dZ(ω)dZ∗(ω)} = f(ω)dω.
(26)

These results may be used to reexpress equation (20) as

y(t) =
∫ π

0

{
(eiωt + e−iωt)

2
dA(ω)− i (e

iωt − e−iωt)
2

dB(ω)
}

=
∫ π

0

{
eiωt
{dA(ω)− idB(ω)}

2
+ e−iωt

{dA(ω) + idB(ω)}
2

}
=
∫ π

0

{
eiωtdZ(ω) + e−iωtdZ∗(ω)

}
.

(27)

When the integral is extended over the range [−π, π], this becomes

y(t) =
∫ π

−π
eiωtdZy(ω) (28)

This is commonly described as the spectral representation of the process y(t).
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2.8 The autocovariances and the spectral density function

The sequence of the autocovariances of the process y(t) may be expressed
in terms of the spectrum of the process. From equation (28), it follows that
the autocovariance yt at lag τ = t− k is given by

γτ = C(yt, yk) = E

{∫
ω

eiωtdZy(ω)
∫
λ

e−iλkdZy(−λ)
}

=
∫
ω

∫
λ

eiωte−iλkE{dZy(ω)dZ∗y (λ)}

=
∫
ω

eiωτE{dZy(ω)dZ∗y (ω)}

=
∫
ω

eiωτfy(ω)dω.

(29)

Here the final equalities are derived by using the results (24) and (25). This
equation indicates that the Fourier transform of the spectrum is the autoco-
variance function.

Setting τ = 0 in equation (29) gives

γ0 =
∫
ω

fy(ω)dω, (30)

which is the variance of y(t). This equation shows how the variance or ‘power’of
the process is distributed amongst the cyclical components of which it is com-
posed.

It is easy to see that a flat spectrum corresponds to the autocovariance
function which characterises a white-noise process ε(t). Let fε = fε(ω) be the
flat spectrum. Then, from equation (30), it follows that

γ0 =
∫ π

−π
fε(ω)dω

= 2πfε,
(31)

and, from equation (29), it follows that

γτ =
∫ π

−π
fε(ω)eiωτdω

= fε

∫ π

−π
eiωτdω

= 0.

(32)
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These are the same as the conditions under (6) which have served to define a
white-noise process. When the variance is denoted by σ2

ε , the expression for
the spectrum of the white-noise process becomes

fε(ω) =
σ2
ε

2π
. (33)

2.9 Canonical factorisation of the spectral density function

Let y(t) be a stationary stochastic process whose spectrum is fy(ω). Since
fy(ω) ≥ 0, it is always possible to find a complex function µ(ω) such that

fy(ω) =
1
2π
µ(ω)µ∗(ω). (34)

For a wide class of stochastic processes, the function µ(ω) may be constructed
in such a way that it can be expanded as a one-sided Fourier series:

µ(ω) =
∞∑
j=0

µje
−iωj . (35)

On defining

dZε(ω) =
dZy(ω)
µ(ω)

, (36)

the spectral representation of the process y(t) given in equation (27), may be
rewritten as

y(t) =
∫
ω

eiωtµ(ω)dZε(ω). (37)

Expanding the expression of µ(ω) and interchanging the order of integra-
tion and summation gives

y(t) =
∫
ω

eiωt
(∑

j

µje
−iωj

)
dZε(ω)

=
∑
j

µj

{∫
ω

eiω(t−j)dZε(ω)
}

=
∑
j

µjε(t− j),

(38)

where we have defined
ε(t) =

∫
ω

eiωtdZε(ω). (39)
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The spectrum of ε(t) is given by

E{dZε(ω)dZ∗ε (ω)} = E

{
dZy(ω)dZ∗y (ω)
µ(ω)µ∗(ω)

}
=

fy(ω)
µ(ω)µ∗(ω)

=
1
2π
.

(40)

Hence ε(t) is identified as a white-noise process with unit variance. Therefore
equation (38) represents a moving-average process; and what our analysis im-
plies is that virtually every stationary stochastic process can be represented in
this way.

2.10 Filtering in the frequency domain

It is a straightforward matter to derive the spectrum of a process y(t) =
µ(L)x(t) which is formed by mapping the process x(t) through a linear filter.

Taking the spectral representation of the process x(t) to be

x(t) =
∫
ω

eiωtdZx(ω), (41)

we have
y(t) =

∑
j

µjx(t− j)

=
∑
j

µj

{∫
ω

eiω(t−j)dZx(ω)
}

=
∫
ω

eiωt
(∑

j

µje
−iωj

)
dZx(ω).

(42)

On writing
∑
µje
−iωj = µ(ω), this becomes

y(t) =
∫
ω

eiωtµ(ω)dZx(ω)

=
∫
ω

eiωtdZy(ω).
(43)

It follows that the spectral density function fy(ω) of the filtered process y(t) is
given by

fy(ω)dω = E{dZy(ω)dZ∗y (ω)}
= µ(ω)µ∗(ω)E{dZx(ω)dZ∗x(ω)}
= |µ(ω)|2fx(ω)dω.

(44)
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In the case of the process defined in equation (7), where y(t) is obtained by
filtering a white-noise sequence, the result is specialised to give

fy(ω) = |µ(ω)|2fε(ω)

=
σ2
ε

2π
|µ(ω)|2.

(45)

Let µ(z) =
∑
µjz

j denote the z-transform of the sequence {µj}. Then

|µ(z)|2 = µ(z)µ(z−1)

=
∑
τ

∑
j

µjµj+τz
τ . (46)

It follows that, when z = e−iω, equation (45) can be written as

fy(ω) =
σ2
ε

2π
µ(z)µ(z−1)

=
1
2π

∑
τ

{
σ2
ε

∑
j

µjµj+τ

}
zτ .

(47)

But, according to equation (10), γτ = σ2
ε

∑
j µjµj+τ is the autocovariance of

lag τ of the process y(t). Therefore, the function fy(ω) can be written as

fy(ω) =
1
2π

∞∑
τ=−∞

e−iωτγτ

=
1
2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}
,

(48)

which indicates that the spectral density function is the Fourier transform of the
autocovariance function of the filtered sequence. This is known as the Wiener–
Khintchine theorem. The importance of this theorem is that it provides a link
between the time domain and the frequency domain.

2.11 The Gain and Phase

Reference to Appendix A1.3 shows that the complex-valued function µ(ω),
which is entailed in the process of linear filtering, can be written as

µ(ω) = |µ(ω)|e−iθ(ω). (49)

where

|µ(ω)|2 =
{ ∞∑
j=0

µj cos(ωj)
}2

+
{ ∞∑
j=0

µj sin(ωj)
}2

θ(ω) = arctan
{ ∑

µj sin(ωj)∑
µj cos(ωj)

}
.

(50)
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The function |µ(ω)|, which is described as the gain of the filter, indicates
the extent to which the amplitude of the cyclical components of which x(t) is
composed are altered in the process of filtering.

The function θ(ω), which is described as the phase displacement and which
gives a measure in radians, indicates the extent to which the cyclical compo-
nents are displaced along the time axis.

The substitution of expression (49) in equation (43) gives

y(t) =
∫ π

−π
ei{ωt−θ(ω)}|µ(ω)|dZx(ω). (51)

The importance of this equation is that it summarises the two effects of the
filter.

2.12 Periodogram

Given a set of T observations y0, y1, . . . , yT−1 of the process y(t) one may
define a sequence of empirical autocovariances c0, c1, . . . , cT−1 whose generic
element is

cτ =
1
T

T−1∑
t=τ

(yt−τ − ȳ)(yt − ȳ). (52)

If the process y(t) is stationary and if lim(τ → ∞)γτ = 0, then the empirical
autocovariances represent consistent estimates of the corresponding autoco-
variances γ0, γ1, . . . , γT−1 of the process. Therefore, it would appear that the
spectral density function of the process which is given by equation (48) should
be estimated by a sample spectrum in the form of

f̂(ω) =
1
2π

{
c0 + 2

T−1∑
τ=1

cτ cos(ωτ)
}
. (53)

The periodogram I(ωj) of the sample is defined as the function

I(ωj) =
T

2
{α2

j + β2
j }, (54)

where αj and βj are the Fourier coefficients defined in section 2.5. Given that
these coefficients are

αj = (2/T )
∑
t

yt cos(ωjt) and βj = (2/T )
∑
t

yt sin(ωjt),

it follows that

I(ωj) =
2
T

[{ T−1∑
t=0

yt cos(ωjt)
}2

+
{ T−1∑

t=0

yt sin(ωjt)
}2
]

=
2
T

[{ T−1∑
t=0

(yt − ȳ) cos(ωjt)
}2

+
{ T−1∑

t=0

(yt − ȳ) sin(ωjt)
}2
]
.

(55)
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The second equality follows from the fact that, by construction,∑
cos(ωjt) = 0 for all j. Expanding the expression gives

I(ωj) =
2
T

{∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}

;
(56)

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A−B), we can
rewrite this as

I(ωj) =
2
T

{∑
t

∑
s

cos(ωj [t− s])(yt − ȳ)(ys − ȳ)
}
. (57)

Next, on defining τ = t − s and writing cτ =
∑
t(yt − ȳ)(yt−τ − ȳ)/T , we can

reduce the latter expression to

I(ωj) = 2
{
c0 + 2

T−1∑
t=1

cτ cos(ωjτ)
}
, (58)

and it is clear that the sample spectrum is a scaled version of the periodogram.
In fact, the sample spectrum, as it is defined in equation (53), is not an

adequate estimator of the spectral density function. To understand this, one
must note that the periodogram has a number of ordinates equal to half the
number of elements in the sample. Therefore, the periodogram inherits much of
the volatility which one witnesses in the sequence of sample values y0, . . . , yT−1;
and this feature may be in distinct contrast to the smoothness of the spectral
density function.

To obtain a reasonable estimate of the spectrum from the periodogram or
the sample spectrum, it is necessary to smooth the periodogram by aggregateing
adjacent ordinates. Various smoothing operators are available which may be
applied directly to the ordinates of the periodogram. However, the same effect
may be achieved by applying a differential weighting scheme to the empirical
autocovariances which enter the sample spectrum. Thus, a class of spectral
estimators may be defined which take the form of

fw(ω) =
1
2π

{
w0c0 + 2

R∑
τ=1

wτ cτ cos(ωτ)
}
, (59)

where {w0c0, w1c1, . . . , wRcR} is the sequence of weighted autocovariances.
Amongst such weighting scheme is Parzen’s window defined by

wτ = 1− 6(τ/R)2 + 6(τ/R)3 for 0 ≤ τ ≤ R/2,
wτ = 2{1− (τ/R)}3 for R/2 ≤ τ ≤ R.

(60)
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This scheme takes only the autocovariances up to lag R and discards the re-
mainder. The degree of smoothing is related inversely to the value of R.

Parzen’s window is employed in subsequent chapters where the
smoothed spectra obtained by weighting the autocovariance function are com-
pared with parametric spectra derived by fitting autoregressive and moving
average models.
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