CHAPTER 10

Statistical Distributions

In this chapter, we shall present some probability distributions that play a central
role in econometric theory. First, we shall present the distributions of some
discrete random variables that have either a finite set of values or that take
values that can be indexed by the entire set of positive integers. We shall also
present the multivariate generalisations of one of these distributions.

Next, we shall present the distributions of some continuous random variables
that take values in intervals of the real line or over the entirety of the real line.
Amongst these is the normal distribution, which is of prime importance and for
which we shall consider, in detail, the multivariate extensions.

Associated with the multivariate normal distribution are the so-called sam-
pling distributions that are important in the theory of statistical inference. We
shall consider these distributions in the final section of the chapter, where it will
transpire that they are special cases of the univariate distributions described in
the preceding section.

Discrete Distributions

Suppose that there is a population of N elements, Np of which belong to
class A and N(1—p) to class A°. When we select n elements at random from the
population in n successive trials, we wish to know the probability of the event
that x of them will be in A and that n — x of them will be in A°.

The probability will be affected by the way in which the n elements are
selected; and there are two ways of doing this. Either they can be put aside after
they have been sampled, or else they can be restored to the population. Therefore
we talk of sampling without replacement and of sampling with replacement.

If we sample with replacement, then the probabilities of selecting an element
from either class will the same in every trial, and the size N of the population will
have no relevance. In that case, the probabilities are governed by the binomial
law. If we sample without replacement, then, in each trial, the probabilities of
selecting elements from either class will depend on the outcomes of the previous
trials and upon the size of the population; and the probabilities of the outcomes
from n successive trials will be governed by the hypergeometric law.

Binomial Distribution

When there is sampling with replacement, the probability is p that an ele-
ment selected at random will be in class A, and the probability is 1 —p that it will
be in class A°. Moreover, the outcomes of successive trials will be statistically
independent. Therefore, if a particular sequence has x elements in A in n — x
elements A°, then, as a statistical outcome, its probability will be p*(1 — p)"~7.
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There are altogether nC, = n!/{(n— z)!x!} such sequences, with z elements
in A in n — x elements in A°. These sequences represent a set of mutually
exclusive ways in which the event in question can occur; and their probabilities
can be added to give the probability of the event of which they are the particular
instances. Therefore, the probability of the finding x elements in class A after n
trials is given by the binomial probability function:

n—x

n—=x

(1) b(x;n,p) = (L!)!x!p‘”(l —p)

The number z of the elements in class A is commonly described as the number of
successes, in which case n — x is the number of failures. The archetypal example
of a binomial random variable is the number of heads in n tosses of a coin.

The moment generating function of the binomial distribution is given by

M(z,t) = E(e™) = Ze tmp q
~ !

(2) - n! t\r n—x
- Z x!(n — x)!(p6 )a

r=

= (g +pe)".

By differentiating the function with respect ¢t and then setting ¢ = 0, we can
find the following moments:

E(x) = np,
(3) E(z) = np(q + np),
V(y) = E(z?) — {E(x)}* = npq.
Example. A standardised version of the binomial outcome is obtained by sub-

tracting the mean np and by dividing by the standard deviation ,/npqg. The
result is

) L _a—np _ (¢/n) —p

Vg \pg/n

It will be demonstrated later, in the context of our treatment of the normal
distribution, that, as the number n of the trails increases, the distribution of the
standardised binomial variable tends to the standard normal distribution N (0, 1),
which has a mean of zero and a variance of unity. This theorem justifies the use
of the normal distribution in approximating the binomial probabilities when the
sample size is large.

One application of this result is in testing an hypothesis concerning the
probability of the event that is designated a success. If n is sufficiently large,
then the proportion of successes x/n will be approximately normally distributed
with mean p and variance pg/n . The RHS of equation (4) shows how the
standardised binomial can be expressed in term of proportions. If the value z,
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15: STATISTICAL DISTRIBUTIONS

which is formed on the basis of an hypothesised value of p, is remote from zero,
then the hypothesis will be called into question.

An hypothesis concerning a probability or a proportion within a population
can also be tested in reference to the chi-square distribution of one degree of
freedom, denoted x2(1), which is the distribution of the square of a standard
normal variate. Let p; denote the probability of the event in question and let
p2 = 1 — p; denote the probability of its nonoccurrence. Then the following
statistic has a limiting x?(1) distribution:

_ 2 _ 2
Zg_(ﬂh npl) _l_(l'z npg)

np1 np2
(5) _ (z1 — np1)?p2 + ({z2 — n} + n{l — p2})’m
npip2

_ (2131 - np1)2
np1(1—p1)’

where the final equality is in consequence of n—x5 = 1 and 1—ps = p;. The first
term on the RHS, which takes the form of the classical Pearson goodness-of-fit
statistic, treats the categories of occurrence and non-occurrence (or of success and
failure) in a symmetrical fashion. The final term of the RHS can be recognised as
the square of the term on the RHS of (4). The latter uses an alternative notation
in which py =pand 1 —p; =q.

If the hypothesised values of p; and ps lead to a value of z that is improbably
large, then it is likely that they differ significantly from the true parameter values
of the population.

The Hypergeometric Distribution

There are NC,, = N!/{(N — n)!n!} different ways of selecting n elements
from N. Therefore, there are NC,, different samples of size n that may be selected
without replacement from a population of size N.

We are supposing that there are Np element of the population in class A
and N (1 — p) in class A°. Therefore, there are

Np! " N(1—p)!
(Np—az)lz!  {NQ—p)—n—2a}(n—ux)!

(6) {Np}Ca x {N(1 —p)}Chno =

different sets of size n which can be selected from the population that contains
x elements from A and n — x elements from A°.

It follows that, in selecting n elements from the population without replace-
ment, the probability of getting x in class A and n — x in class A€ is

NpCyp x N(1 —p)Cy—y

™) h(w: N, p) = e

This is the hypergeometric probability function. In this case, the moment or
cumulant generating functions are of little help in finding the moments, which
becomes a somewhat tedious and intractable business.

If N is large and n and x are fixed, then selection without replacement is
virtually the same as selection with replacement. Therefore, we should expect the
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hypergeometric distribution to converge to the binomial distribution as N — oo.
From (7), we have

Np)! N(1-p}H N —n)!n!
Moy — DL (N(L-p)) (V=)
® z!(Np—2x)! (n—2){N1—-p)—(n—2x)}! NI
_ ot (Ve (Np—at DH{Ng(Ng—1)-(Ng—(n—2)+1)}
z!(n — z)! N(N—1)(N—2)---(N—n+1) ’

where ¢ = 1—p. In the term on the RHS of the final expression, there are n factors
in both the numerator and the denominator. Therefore, dividing numerator and
denominator by N™ gives

{pp— %) (=5 ) Halg— %) (¢ — ”*ﬁ’l)}.

9) h(z) = nCy

For any fixed = and n, there are

(10) (¥ = o) {plp— )+ p = T} =0

(11) lim(N — o) {q(q — %) (g — L‘H)} = ¢ = (1—p)" 7,

(12) lim(N — o) {(1 - %)(1 - %)-.-(1 - “7];1)} = 1.
Therefore,

(13) h(z; N,n,p) — b(x;n,p) =nCyp®(1 —p)"* as N — co.
That is to say:

(14) If z ~ h(p, N,n), then, when N is large, it is distributed approxi-
mately as b(p,n).

The Poisson Distribution

The Poisson distribution may be derived directly as the probability of a rare
event in a large number of trials, or else it may be derived as a limiting case of
the binomial distribution. We shall begin by taking the latter approach.

Therefore, consider, x ~ b(p;n), where np = p is constant; and let n — oo,
so that p = pu/n — 0. We can set (1 —p)"* = (1—p)"(1—p) * and p = pu/n
in equation (1) to give

(15) ba) = — (ﬁf (1 - ﬁ)n (1 - ﬁ>_m.

(n—z)lz! \n n n

The RHS of this equation may be re-arranged as follows:

(16) b(a:):”—L@—ﬁ)n (1—3)_$.

z! (n —x)n® n n
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The expression may be disassembled for the purpose of taking limits in its com-
ponent parts. The limits in question are

n!

(17) lim(n — oo)m =1,
(18) lim(n — oo)(l - g)n =e ¥,
(19) lim(n — o0) (1 - %)ﬂ —1.

The first of these becomes intelligible when the term in question is written as

n! nn—1)---(n—x+1)
(n —x)In® ne

(D) (22

for each of the factors tends to unity as n increases. On reassembling the parts,
it is found that the binomial function has a limiting form of

(20)

(21) Plaip) = 2"

z!

This is the Poisson probability function.

The Poisson function can be derived by considering a specification for a so-
called emission process or an arrival process. One can imagine a Geiger counter
which registers the impacts of successive radioactive alpha particles upon a thin
metallic film. Let f(z,t) denote the probability of x impacts or arrivals in the
time interval (0,¢]. The following conditions are imposed:

(a) The probability of a single arrival in a very short time interval
(t,t+ At] is f(1, At) = aAt,

(b) The probability of more than one arrival during that time interval is
negligible,
(¢) The probability of an arrival during the time interval is independent of

any occurrences in previous periods.

Certain consequences follow from these assumptions; and it can be shown that
the Poisson distribution is the only distribution that fits the specification.

As a first consequence, it follows from the assumptions that the probability
of there being x arrivals in the interval (0,¢ + At] is

(22) fz,t + At) = f(x,t)f(0,At) + f(x —1,t)f(1, At)
= f(z,t)(1 — aAt) + f(x — 1,t)aAt.

This expression follows from the fact that there are two mutually exclusive ways
in which the circumstance can arise. The first way is when all of the x arrivals
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occur in the interval (0,¢] and none occur in the interval (¢,¢ + At]. The second
way is when x — 1 of the arrivals occur in the interval (0, ] and one arrival occurs
in the interval (¢,¢+ At]. All other possibilities are ruled out by assumption (b).
Assumption (c) implies that the probabilities of these two mutually exclusive or
disjoint events are obtained by multiplying the probabilities of the events of the
two sub-intervals.

The next step in the chain of deductions is to find the derivative of the
function f(z,t) with respect to t. From equation (22), it follows immediately
that

df (z,t)
(23) dt

flz, t+ At) — f(z,t)
At
= a{f(:z: —1,t) — f(x,t)}

The final step is to show that the function

= lim(At — 0)

(24) fla,t) = ~———

satisfies the condition of equation (23). This is a simple matter of confirming
that, according to the product rule of differentiation, we have

df(l',t) ax(at)z_le—at a(at)xe—at

dt x! x!
(25) _ (at):c—le—at (at)me—at
B a{ (z—1)! x! }

:a{f(x—l,t) _f(x7t)}'

Another way of demonstrating the convergence of the binomial to the Poisson
makes use of the cumulant generating functions which are just the logarithms of
the moment generating functions. If x ~ b(p;n), then its cumulant generating
function can be written as

(26) k(z;t) = nlog {1 —p(1—¢€")}
2 t\2 3 )3
p*(1 —e") p°(1—e)
= —p(1 —et) — — s
n{ p(1—e") 5 3
Here, the second equality follows from the Taylor series
2 3 4
(27) log(1+x):{x—%+%_%+...}.

Setting p = u/n, where p is fixed, gives

2

Fv(ﬂf,t)zn{—ﬂ(l—et)—2’#(1_675)2_...}

(28) " )

= —p(l-e) -5 (=€) =
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As n — oo, there is p — 0, because p is fixed, and the RHS tends to

(i) = (e 1)

(29) 2 43

=L t-l-a-l-i-l---- )
and each cumulant k1, ko, ... = u has the value of the mean. Thus
(30) lim(n — co)k(z;t) = p(ef — 1).

Now consider  ~ P(u). Then

(31) K(z,t) =log E (')
_ S tx efuux
= log {Z e = }
=0
B etcc,um
zlog{e “Z o }

etazlux 2\ 2 3
(32 D D D e T TR

But, if A = e'u, then

and therefore
(33)

Since (30) and (33) are identical, we can deduce the following:

(34) If © ~ b(p,n), then p = E(x) = np and, for fixed pu, there is
lim(n — oo)k(x;t) = p(e’ — 1) which is the cumulant generating
function of x ~ P(u). Therefore, x is asymptotically distributed

as the Poisson P(u) for large n.

Finally, we have the following

(35) If z ~ P(p1) is independent of zo ~ P(us), then y = (z1 + z2) ~

Py + pz).

Proof. For z; ~ P(u1), there is x(x1;t) = pi(et —1). For xo ~ P(us2), there is

k(x2;t) = pa(e! —1). Now, if x1 and x5 are independent, then

k(x1 + x25t) = K(x15t) + K(22; 1)

) — (i + )€~ D).

This is the cumulant generating function of the P(uq + p2) distribution.
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Corollary. If x; ~ P(u;);1 = 1,...,n is a sequence of n mutually independent
Poisson variates, then > x; ~ P(>_ u;). Moreover, and if y; = p for all ¢, then

n Nz =7 ~ P(u).

The Multinomial Distribution

In the binomial distribution, there are two mutually exclusive outcomes, A
and A°. In the multinomial distribution, there are k£ mutually exclusive outcomes
A1, As, ..., Ag, one of which must occur in any trial. The probabilities of these
outcomes are denoted by p1,p2,...,pk.

In a sequence of n trials, there will be 1 instances of A1, x5 of A5 and so on,
including x; instances of Ag; and the sum of these instances is x1+zo+- - +xr =
n. Since the outcomes of the trails are statistically independent, the probability
that a particular sequence will arise which has these numbers of instances is
given by the product pi'ps5?---p,*. However, the number of such sequences is
n!/{xilzs! - xp!}; and, together, they represent the set of mutually exclusive
ways in which the numbers can occur. It follows that the multinomial probability
function is given by

n! .
(37) M(x1,2,. .., 2) = mpgflpgz Rt
The following results concerning the moments may be derived in a straight-

forward manner:

(38) E(x;) = p; = npy,
(39) V(zs) = 04 = npi(1 — pi),
(40) C(l’i,xj) = 045 = —Npipj, i # J.

Example. The multinomial distribution provided the basis of one of the earliest
statistical tests, which is Pearson’s goodness-of-fit test. If the number n of the
trails is large enough, then the distribution of the random variable

(41) Zk: )

=1

will be well approximated by a chi-square distribution of £—1 degrees of freedom.
This statistic is an evident generalisation of the binomial statistic of (5).

If p1,...,pr are given a set of hypothesised probability values, then the
validity of the hypothesis can be gauged via the resulting value of z2. If 22
exceeds a critical value, the hypothesis is liable to be rejected. By this mean,
we can determine, for example, whether a sample comes from a multinomial
distribution of known parameters.

We are also able to test whether two multinomial distributions are the same
without any prior knowledge of their parameters

To understand how such comparisons may be conducted, let us begin by
considering two independent multinomial distributions, the first of which has
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the parameters ni,pi1,p21,...,Pr1, and the second of which has the parame-
ters no, p12, P22, ---,Pk2. Lhe observed frequencies may be denoted likewise by
T11,%21,...,TE1 and x19,X29,...,Tke. For each distribution, we may consider

forming a statistic in the manner of equation (41); and these statistics would be
treated as if they were x?(k — 1) variates. In view of their mutual independence,
their sum, which is denoted by

2k (15 — npi )2
(42 Sy b

j=1i=1 "iPij

would be treated as a chi-square x?(2k — 2) variate of 2k — 2 degrees of freedom—
which is the sum of the degrees of freedom of its constituent parts. It should be
recognised, however, that these variables embody the probability parameters p;;
about which we have no direct knowledge.

Now, consider the hypothesis that p;1 = p;o = p; for all categories A;;i =
1,...,k, which is the hypothesis that the two multinomial distributions are the
same. This hypothesis allows estimates of the probabilities to be obtained ac-
cording to the formula

Ti1 + T2
n1 + N2

(43) pi =

Given the constraint that p; + - -- + pr = 1, it follows that there are only k — 1
independent parameters to be estimated, which consume altogether k£ —1 degrees
of freedom. When the estimates are put in place of the unknown parameters, a
statistic is derived in the form of

2 [xm ni{ (@1 + zi2) /(01 + ”2)}]2
(44) Z Z nj{ Ti1 + 252)/(n1 + ”2)}

j=11i=1

which has an approximating y2(k — 1) distribution. The statistic serves to test
the hypothesis that the two multinomial distributions are the same, and the
hypothesis will be rejected if the value of the statistic exceeds a critical number.

The Univariate Normal Distribution

The normal or Gaussian distribution is undoubtedly the most important of
the continuous distributions. The normal probability density function is given
by

(45) N, 0%) = ﬁ%

where ;1 and o2 are respectively the mean and the variance of the distribution, as
will be demonstrated later. The standard normal distribution, which is denoted
by N(x;0,1), has 4 =0 and 0% = 1.

We wish to show that the integral of the standard normal density function
is unity over the real line. In fact, there is no closed-form analytic expression

—("17—/1)2/2027
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for this integral, and so we must work, instead, with the square of the integral.
Consider, therefore, the product

(46)

The variables in this double integral can be changed to polar coordinates by the
substitution of z = psin @ and y = pcos, which allows it to be written as

00 27 00
I’ = / / pe_pQ/Zdep = 27T/ pe_92/2dp
o Jo 0

= 27r/ e Ydw = 2.
0

The change-of-variable technique entails the Jacobian factor, which is the de-
terminant of the matrix of the transformation from (6, p) to (z,y). This takes
the value of p. The final integral is obtained via a change of variables that sets
p?/2 = w; and it takes the value of unity—see equation (64). Since I = (27)'/2
is the integral of the function exp{x?/2}, the upshot is that the standrds normal
density function N(z;0,1) = (27)~ /2 exp{z?/2} integrates to unity over the
range of x.

The moment generating function of the standard normal N(z;0,1) distribu-
tion is defined by

(47)

Mz, 1) = B(e™) = /_OO em\/%

1 2

_ - (= —2:ct)/2d

= e xX.
/_oo v 21

By completing the square, it is found that

e_x2/2d:c

(48)

2% — 20t = 2% — 2t + 12 — 12

49
(49) = (x —t)* — %

Therefore, the moment generating function of the standard normal distribution
is given by

2 o 1 2
M(z,t) = e /2/ e~ @2y
(50) —oo V2T
=l /2,
If y ~ N(u,0?) is a normal variate with parameters p and o2, then it can be
expressed as y = ox + p, where x ~ N(0,1) is a standard normal variate. Then

the moment generating function is
(51) M(y,t) = " M(z, ot) = e+ ¢)/2,
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By differentiating the function with respect ¢t and then setting ¢ = 0, we can find
the following moments:

E(y) = u,
(52) B(y*) = o® + 1%,
V(y) = E(z*) - {E(x)}* = 0.
Example. The normal distribution with p = np and 02 = npq, where ¢ = 1 —p,

provides an approximation for the binomial b(x; n, p) distribution when n is large.
This result can be demonstrated using the moment generating functions. Let
rT—pu T —np
(53) - 5
The moment generating function for z is
M(z,t) = e "/ M(x,t/0)

— e—ut/a(q _'_pet/a)n.

t/o

(54)

Taking logs and expanding the exponential term pe*/“ gives

2
¢ t 1 /t\?> 1 /t\°
(55) logM(z,t) =~ tnlog [14+p3 (Z) v 5 (=) +5 (=) ¢ |,
o o 20\ o 3!\ o

where we have used p + ¢ = 1. The logarithm on the RHS is in the form of
log(1 + z), where z stands for the sum within the braces {,} times p. This is
amenable to the Maclaurin expansion of (27) on the condition that |z| < 1. Since
o = /npq increases indefinitely with n, the condition is indeed fulfilled when n is
sufficiently large. The Maclaurin expansion gives rise to the following expression:

A () ra () ]

t
log M(z,t) = el +n
o

(56)

2\ 42
t
log M(z,t) = (—H—f—@)t%—n (—B—i-p—) o+
(57) ?
— — + e
Here, the second equality follows because the coefficient of ¢ is zero and that of
t2/2! is unity. Moreover, the coefficients associated with {t3,¢%,...} all tend to

zero as n increases. Thus lim(n — oo)log M (z,t) = t?/2; from which it follows
that

(58) lim(n — OO)M(,Z’ t) _ et2/2

This is the moment generating function of the standard normal distribution,
given already by (50); and thus the convergence of z in distribution to a standard
normal is demonstrated.

11
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The Gamma Distribution

Consider the function
(59) I'(n) = / e 2" .
0

This can be evaluated using integration by parts. The formula is

d d
(60) /uédw = uv — /v%daz,
which can be seen as a consequence of the product rule of differentiation. Let
u=2""! and dv/dx = e~®. Then v = —e~% and
/ e " ey = [—xn_le_m + /e_m(n —1)a" 2dx
0 0

(o1 §
=(n— 1)/0 e " 2 dx.

We may express the result above by writing I'(n) = (n — 1)I'(n — 1), from which
it follows, by iteration, that

(62) P(n) = (n— 1)(n —2) - T(8),
where 0 < § < 1. Examples of the gamma function are
(63) r(1/2) = V7,

(64) (1) = /Ooo e~ dy = [— e—fﬂr 1

(65) 'n)=n—-1)n-2)---I'(1) = (n — 1)

Here, in (65), it is assumed that n is an integer. The first of these results can be
verified by confirming the following identities:

Vor = /OO 6_22/2d2’
(66) P
- g /_OO e 1 2dy = V21 (1/2).

The first equality is familiar from the integration of the standard normal density
function. The second equality follows when the variable of integration is changed
from 2 to x = 22/2, and the final equality invokes the definition of the gamma
function, which is provided by equation (59).

Using the gamma function, we may define a probability density function
known as the gamma type 1:

(67) m(x;n) = ———; 0<z<o0.
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For an integer value of n, the gamma type 1 gives the probability distribution
of the waiting time to the nth event in a Poisson arrival process of unit mean.
When n = 1, it becomes the exponential distribution, which relates to the waiting
time for the first event.

To define the type 2 gamma function, we consider the transformation z = fzx.
Then, by the change-of-variable technique, we have

12(2) = mle()} | o

A Ol
M) B

(68)

Here we have changed the notation by setting o« = n. The probability function
of the type 2 gamma distribution is written more conveniently as

(69) ( ﬁ) e—z/ﬁza—l
72(%; &, = .
I'(a)pe
An important special case of the =, distribution is when o = r/2 with

r € {0,1,2,...} and 8 = 2. This is the so-called chi-square distribution of r
degrees of freedom:
o= /25,(r/2)—1

(70) X (a;r) = T(2)2 2

Now let us endeavour to find the moment generating function of the ~;
distribution. We have

71
( ) e—m(l—t)l.n—ld
-/ e

Now let w = x(1 — t). Then, by the change-of-variable technique,

e~ Woyn—1 1
M,(t) = / (1 —t)"=1T(n) (1 —t) e

1 e wn !
" = =
1
(1=t

Also, the cumulant generating function is

k(z;t) = —nlog(l —t)

(73) . 2 3
—n< +§+§+---).
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We find, in particular, that
(74) E(x) =V(x) =n.
We have defined the 75 distribution by

(75) AR
Yo = ——=— < < 00.
P T(a)pe

Hence the moment generating function is defined by

0 etmefm/ﬁxafl
Mot = [
) 0 I'(a)pe
_/OO e—w(l—ﬁt)/ﬁl.a—l
0 I'(a) 3>

Let y = z(1 — Bt)/3, which gives dy/dx = (1 — t)/B. Then, by the change-of-
variable technique we get

Mot = /ooo F(eoa_)yﬁa (1 %t)a_l (1 —ﬁﬁﬂ "

(76)

dx.

77 _ y e
7 o | T
B 1
(1=t

It follows that the cumulant generating function is

2 3
(78) ﬁ2t2 /83t3
=« (& Tty )
We find, in particular, that
E(x)=ap
(79)
V(z) = af?

Now consider two independent gamma variates of type 2: x1 ~ ~va(aq, 51)
and xo ~ Y2(ag, F2). Since 1 and zo are independent, the cumulant generating
function of their sum is the sum of their separate generating functions:

k(z1 + x2;t) = k(215 t) + k(225 1)

2t2 3t3 2t2 3t3
= o1 (ﬁlt-i-ﬁlT—f—ﬂlT"f—"')—f—OéQ (ﬁ2t+ﬁ27+%+"'>.

(80)

14
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If 1 = B2 = (3, then

2t2 3t3
(81) H($1+£E2;t):(061+062) (ﬁt+ﬂT+ﬂT+"');
and so y ~ y2(a1 + ag, #). In particular, if § = 1, then y ~ v1 (a1 + a3). This
result may be generalised for n > 2 independent variables:

(82) If x1,29,...,2, is a set of independent 7,(cy, ) variates, then
doxi ~ (> a4, B) and, in particular, if # =1 and a; = « for all
i=1,...,n, then Y x; ~ vy (na,1), or, equally, > z; ~ 71 (na).

The Beta Distribution

Consider the integral
1
(83) B(m,n) = / ™ N1 — 2)" .
0

This converges for m,n > 0. An alternative form of the B(m,n) function is
obtained from the transformation x = 1/(1 + y), of which the derivative is
dx/dy = —1/(1 +y)?, and the inverse is y = (1 — x)/x. As z — 0, it is found
that y — oo and, when = = 1, there is y = 0. Hence (83) becomes

. 0 1 ynfl _1
&) B(m,n) = /oo I+y)™ T (1+y) (1 +y)2dy

0 n—1
Yy
= — dy.
/oo (L+y)nm Y

In (83), the argument obeys the inequality 0 < x < 1, whereas, in (84), the
argument obeys the inequality 0 < y < oo.

The type 1 beta distribution, which is taken from the integral of (83) is defined
by the following density function:

l.m—l(]_ _ x)n—l .
B(m,n) ’

(85) Bi(x;m,n) = 0<z<l1l, m,n>0.
The type 2 beta distribution, which is taken from the integral (84), is defined by
the density function

yn—l ‘
L+ y)m+nB(m,n)’

(86) Ba(y;m,n) = ( y>0, m,n>0.

In fact, the beta integral of (84) and (85) is related to the the gamma integral
of (59):

(87) B(m,n) =

This formula will be used later.
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Next, we shall prove an important theorem.

(88) If £ ~ y2(a,\) and y ~ 72(6,\) are independent random vari-
ables which have the gamma type 2 distribution, then z/y = z ~
B2(a, 0) is distributed as a beta type 2 variable.

Proof. When x ~ v3(a, A) and y ~ 72(6, A) are independently distributed, there
is

a—1,0-1

(89) fla.y) = e

’ AT ()T (6)
Let v = z/y and w = x + y, whence

w vw

(90) y_’U—Fl, x_’U—f—l’
and w,v > 0. Also, let

O Oz - -
(91) g |ow ou|_|vtl (w1

oy oo 7| 1w

ow ov v+1 (’U + ]_)2

be the matrix of partial derivatives of the mapping from (v,w) to (z,y). The
Jacobian of this transformation, which is absolute value of the determinant of
the matrix, is

w

(92) 1= e

It follows that the joint distribution of (v, w) is

9(w,v) = exp {%} {vvfl }a_l {U 1 }9_1 G fl)z Aa+9rga)r(9)

(93) B exp(—w/A)wo+o—1 y o1
Mt (a +6) (14 v)*t?B(a,0)
= Y2(w) X Ba(v).

Here w ~ yo(a + 0, \) and v ~ (35(f3,6) are independent random variables; and,
moreover, v has the required beta type 2 distribution.

The Multivariate Normal Distribution

Let {x1,x9,...,2,} be a sequence of independent random variables each
distributed as N(0,1). Then the joint density function f(z1,z2,...,x,) is given
by the product of the individual density functions:

(94) f(z1, 20, ... 2n) = (2m) ™2 exp {(-L@f+25+ - +22)}.

16
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The sequence of n independent N(0,1) variates constitutes a vector x of
order n, and the sum of squares of the elements is the quadratic ’z. The zero
valued expectations of the elements of the sequence can be gathered in a zero
vector E(z) = 0 of order n, and their unit variances can be represented by the
diagonal elements of an identity matrix of order n which constitutes the variance—
covariance or dispersion matrix of x:

95 D(2) = Bl{z — B@)He - B@)})
= E(zx’) = I.

In this notation, the probability density function of the vector x is the n-variate
standard normal function

(96) N(2;0,1) = (27) "2 exp {—32'z} .

Next, we consider a more general normal density function which arises from
a linear transformation of x followed by a translation of the resulting vector. The
combined transformations give rise to the vector y = Az + p. It is reasonable to
require that A is a matrix of full row rank, which implies that the dimension of y
can be no greater than the dimension of x and that none of the variables within
Ax is expressible as a linear combination of the others. In that case, there is

E(y) =AE(x)+p=p and

(97) D(y) = E[{y — E(y)H{y — E(v)}']
= E[{Ax — E(Az)}{Ax — E(Az)}']
— AD(z)A' = AA = 3.

The density function of y is found via the change-of-variable technique. This
involves expressing x in terms of the inverse function x(y) = A~ (y — u) of which
the Jacobian is

ox
= =AY =37V
(98) Hay A= = [X]

The resulting probability density function of the multivariate normal distribution
is

(99) N(y; 1, 5) = 2m) 2872 exp{—5(y — )27y — )}
We shall now consider the relationships which may subsist between groups of

elements within the vector z. Let the vectors x and F(x) = p and the dispersion
matrix ¥ be partitioned conformably to yield

x1 1 Y11 Y12
100 xr = , = and Y = ,
(100) {ZBQ} H {Mz} {221 Z221
where x7 is of order p, x5 is of order g and p + q¢ = n.

17



D.S.G. POLLOCK: ECONOMETRICS

Consider, first, the case where 3;; = 0 if ¢ # j. Then

[2h o L[t o0
(101) E_{ 0 222} and X —{ 0 |

It follows that, if x ~ N(u,X), then
(102) (@ — )= (@ — 1) = (01 — i) ST @1 — ) + (22 — 12)' S (2 — i)
and
(103) I2] = |211] X [X22]-
Therefore, the density function of  becomes

N(ws 1,5) = (2m)"2|8] 2 expl— 5 (w — S~ — )}
(104 = (2rP RS 2 expl =5 (@ — ) S (o1 — i)}

X (22| Saal 2 expl— (w2 — ) S (02 — )}

which can be written in summary notation as
(105) N(x;p,X) = Ni(x1; 1, 211)Na(z2; pro, Xa2).

Thus the marginal distribution of x; is independent of the marginal distribution
of xI2.
A summary of these findings is as follows:

(106) If 2 ~ N(u,X) can be partitioned as = = [z}, x4]" and if ¥15 = 0,
which is to say that x; and x5 are uncorrelated, then the den-
sity function of z is the product of the marginal density functions
N(x1,p1,%11) and N(x2; g, Yoo); which is to say that x; and x4
are statistically independent.

Next, we shall show how x ~ N(u,X) can be expressed as the product
of a marginal distribution and a conditional distribution. This is a matter of
transforming x into two uncorrelated parts. The relevant transformation, which
affects only the leading subvector of z = [z], x4]’, takes the form of

Y1 =21 — Blﬂ?z,
(107)

Yo = T,

where B’ is a matrix of order p x gq.
The object is to discover a value of B’ for which the following condition of
non-correlation will be satisfied:

(108) El{yr = E(y1) Hy2 — E(y2)}'] = 0.

18
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When it is written in terms of xz; and x5, the condition becomes

0= E[{[z1 — E(z1)] - B'lzs — E(22)]H{xz2 — E(x2)}']

(109) /
= Y12 + B'Xaa.

The solution is B’ = ¥15%5,"; and thus the transformation is given by

] L, —ZeEn ] [xn]
e P R e |

Now, if z ~ N(u,X), then it follows that y ~ N(Qu,Q¥Q’), where

I, -5 2y = I 0
) — [ 124499 11 12 _p
QXQ {0 I, ] {221 Yoo | | =255 201 I,

(111) 1
_ [211 — Y2255 221 O }

0 Yoo

The condition of non-correlation implies that y; and y- are statistically inde-
pendent. Therefore, the joint distribution of y; and ys is the product of their
marginal distributions: N(y) = N(y1) x N(y2) -

Next, we use the change-of-variable technique to recover the distribution of
x from that of y. We note that the Jacobian of the transformation from x to y is
unity (since its matrix is triangular with units on the principal diagonal). Thus,
by using the inverse transformation z = z(y), we can write the distribution of x
as
(112)

N(z;p, %) = N{y(z); E(y), Q¥Q"}

= N{y1(2); E(y1), 211 — $12855 Zo1} X N{ya2(2); E(y2), Xaa},

wherein, there are

y1(z) = 21 — B'xo,

E(y1) = 1 — B'pa,
(113)

y2(xr) = xo and

E(yz) = M2

The second of the factors on the RHS of (112) is the marginal distribution of
x9 = ya(x). Since the product of the two factors is the joint distribution of x;
and xo, the first of the factors on the RHS must be the conditional distribution
of x1 given x,.

A summary of these results is as follows:

(114) If x ~ N(u,X), is partitioned as z = [z}, 25])" with u = [}, pb]
partitioned conformably, then the marginal distribution of xo is
N (x2; 2, Xa2) and the conditional distribution of z; given zs, is
N(yl;E{y1}7 211 — 21222_21221), where Y1 = 1 — B/.TQ with B’ =
21222_21, and where E{y;} = p1 — B us.
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Within the conditional distribution, there is the quadratic form

(115) 1 — E(y1)])'[S11 — $1235 Sa1 ]~ Hys — E(y1))].
This contains the term

e=uy1— E(n)
(116) =T — M1 —B/(IL‘Q —Mg)
=T —E(Q?l’l’g).

The conditional expectation, which is
(117) E(z1]zs) = E(z1) + B' (22 — pa),

is commonly described as the equation of the regression of x1 on xo, whilst B’ is
the matrix of the regression parameters. The quantity denoted by ¢ is described
as the vector of prediction errors or regression disturbances.

The Chi-square Distribution

Chi-square distribution is a special case of a type 2 gamma distribution. The
type 2 gamma has been denoted by 2 (a, (3), and its functional form is given by
equation (69). When o = r/2 and § = 2, the v, density function becomes the
probability density function of a chi-square distribution of r degrees of freedom:

e—x/2x(r/2)—1

20 ) —
(118) X (x;r) = T(r/2)2/2
The importance of the chi-square is in its relationship with the normal dis-
tribution: the chi-square of one degree of freedom represents the distribution of
the quadratic exponent (x—u)?/0? of the univariate normal N (x; u, 02) function.
To demonstrate the relationship, let us consider the integral of a univariate
standard normal N(z;0,1) function, over the interval [—6,0] together with the
integral of the density function of v = 22 over the interval [0,62%]. We can use
the change-of-variable technique to find the density function of v. The following
relationship must hold:

6 6>
(119) /_QN(z)dx:2/O N{z(0)} % do.

To be more explicit, we can use 22 = v and dz/dv = v~/2/2 in writing the
following version of the equation:

1 2/2 ” 1 /2, —1/2
e * /1 %dy = ——e YT du
/9 \/27T Y /0 \/27‘(’
/02 e—v/2,—1/2
= ——dv
o I(1/2)Vv2

20
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The derivative of the integral on the RHS is the density function of a 2 (v;1/2,2)
variate evaluated at v = 02. Thus, if z ~ N(0,1), then 22 = v ~ ,(1/2,2) =

2
X (1).

The cumulant generating function of the x?(n) distribution is the cumulant
generating function of the v2(n/2,2), which is obtained from equation (78). Thus,

(121) k(zt) = g(2t+4t2/2+8t3/3+---).
For this, it can be deduced that

E(x) =n,

(122) V(z) = 2n.

The outstanding feature of the chi-square distribution is its reproducing
property:
(123) Let 71 ~ x%(q) and z2 ~ x?(r) be independent chi-square variates

of ¢ and r degrees of freedom respectively. Then 1 + 25 = y ~
x2(q + r) is a chi-square variate of ¢ + r degrees of freedom.

Proof. Given that z; and x5 are statistically independent, the moment gener-
ating function of their sum is the product of their separate moment generating
functions. Thus

M(y,t) = E{e(mﬁ'“)t}

(124) = E{e""V EB{e™}.

We know that a x?(r) variate has a yo(r/2,2) distribution, and we know that
the moment generating function of the latter is (1 — 2¢)~("/2). Hence

(125) M(y,t) = (1 —2¢)~ /D1 —20)~ /D) = (1 — 2)~(at7),
This is the moment generation function of the x?(q + r) distribution. Therefore,

y~x(qg+r).

The chi-square is the essential part of the distribution of the maximum-
likelihood estimator of the variance o2 of a normal distribution. We have already
shown that, if 2 ~ N(u,0?), then {(x — pu)/o}? ~ x?(1). From this it follows, in
view of the preceding result, that

(126) If {z1,22,...,2,} is a random sample with x; ~ N(u,0?) for all 4,

then
n oy 2
- g
=1

(2

has a chi-square distribution with n degrees of freedom, which can be
expressed by writing y ~ x2(n).

There is a straightforward extension of this result which makes use of matrix
notation. Thus, if y ~ N(u,X) has multivariate normal distribution, and if
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C'C = %71 then x = C(y — p) ~ N(0,1,). In that case, 2’z ~ x?(n). But
v’ = (y —p)C'Cly — pn) = (y — p)'S"Hy — u), so we can make the following
statement:

(127) If, y ~ N(u,X) is an normal vector with n elements, then the
quadratic product (y — u)’S71(y — u) ~ x?(n) is a chi-square
variate on n degrees of freedom.

Example. Consider a multinomial distribution with probabilities pq, ..., pk.
The numbers z1,...,x, of the sample points that fall into each of the k cate-
gories have binomial marginal distributions which tend to normal distributions
as the numbers increase. The joint distribution of the numbers will tend to a
multivariate normal distribution with a mean vector u; and a dispersion matrix
Y, whose elements are specified under (38)—(40):

np1 p(1—p1)  —pip2 ... —Dibk

npa —pap1 p2(l—p2) ... —papi
(128) M = . N Ek =N . . .

npy —PprP1 —PprD2 oo pr(l—pr)

Since x1 4+ x2 + - - - + xx = n, there are are only k — 1 degrees of freedom amongst
the k variables and, therefore, in describing the joint distribution, we may omit
the last of these variables which is the kth. Accordingly, we may omit the last
element of pj and the last row and column of ;. The resulting matrix and
vector may be denoted simply by p = pr—1 and X = Y.

The inverse of ¥ is

-1 1 1 1 1
P DPE Pk Dk
1 1 N 1 1
(129) St S I T SR TR P
1 1 11
— — + =
L Pk Pk Pk—1 Pk

This can be verified directly by forming the product of ¥ and ¥~! and by noting
that the result is an identity matrix. For this, it is necessary to observe that
Pr = 1- Zf:_ll bi

The quadratic function, which is the exponent of the limiting multivariate
normal distribution, is as follows:

(130)
k—1 ( TLp k— —
(z—p)S o —p) = . Z Z — np;)(x; — np;)

=1 =1 7=1
k—1 k—1 2

Y L) { }
i=1 npi i=1

k

—y o)

— np;
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Here, the final equality arises when, in the second term of the penultimate ex-
pression, Z;:ll np; = n — npy, is subtracted from Zf;ll x; = n — . The final
expression on the RHS is the conventional form of Pearson’s goodness-of-fit statis-
tic which has been presented already under (41). The quadratic is distributed as

a x?(k — 1) in the limit as n — oo.

The F Distribution

If  ~ x?(n) and y ~ x?(n) are two independent chi-square variates, then
the F' statistic, which is also called the variance ratio in the appropriate contexts,
is defined as

(131) F= %/%

We proceed to derive the density function of F.
First, if x ~ v2(n/2,2) and y ~ 72(m/2,2) are independent, then according
to (75), the ratio z = x/y has the following type 2 beta distribution:

Z(n/2)—1

(1+ 2)m+n)/2B(n/2,m/2)

(132) Ba(z;m/1,m/2) =

Now consider the transformation v = nF'/m, for which dv/dF = n/m.

n nF/m/2)-1
m {(m + nF)/m}Ym+0/2B(n/2,m/2)
nn/Qmm/ZF(n/2)—1

h(F) =

(133)

(m +nF)m+0)/2B(n/2 m/2)’

which is the probability density function of the F' distribution with n and m
degrees of freedom. If R is distributed as F' with n and m degrees of freedom,
we may write R ~ F(n,m).

“Student’s” ¢ Distribution

Let z ~ N(0,1) be a standard normal variate and let u ~ x?(n) be a chi-
square variate of n degrees of freedom, and let the two variables be statistically
independent. Then Student’s ¢ ratio may be defined as the quotient

T

Since 22 ~ x?(1) has a chi-square distribution of one degree of freedom, it is clear
that 22 = v ~ F(1,n) has an F distribution of 1 and n degrees of freedom. This
relationship allows us to derive the probability density function of Student’s ¢ in
straightforward manner.

To begin, let us observe that the intervals [—7,0] and [0, 7], which are on
the two branches of the ¢ distribution, both map into the interval [0, 7] in the

(134) z=
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domain of the F' distribution. Thus, integrating the ¢ along the positive branch
gives

(135) /OTt(Z)dZ = % 4 ) F(v)dv
- [ 3Ften

An expression for the ¢ density function can be obtained by evaluating the ex-
pression under integral on the RHS. First there is the F' density function:

dv

dz.
dzz

nn/2y=1/2

(n+v)tH/2B(1/2,n/2)

(136) F(v;1l,n) =

Then there is the function v(z) = 22, and, finally, there is the derivative dv/dz =
2z. Putting these together gives the density function of Student’s t distribution
with n degrees of freedom:

1

(137) t(z;m) = n2(1+ 22 fn) D2 B(1/2,n/2)

An alternative expression is available for the density function which relies upon
the fact that

CD2Tm/2)  AT(m/2)
(138) BO/2m/2) = 530 /2y ~ Tlm+ 1)/2)

The alternative form is

I{(n+1)/2}
(139) t(z;n) = T(n/2) /{1 + 22/n}+072"

and since n is an integer, the gamma functions can be written, alternatively, as
factorials.
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