
5 : CHAPTER

Models with Limited
Dependent Variables

In previous chapters, we have dealt with models where the range of the
dependent variable is unbounded. Now we shall consider imposing both an
upper and a lower bound on the variable. We shall concentrate on a case where
the dependent variable is a binary or dichotomous variable which can take only
the values of zero and one.

A model whose dependent variable has an upper and a lower bound can be
derived from an ordinary regression model by mapping the dependent variable
y through a sigmoid or S-shaped function. As y → −∞, the sigmoid tends
to its lower asymptote whereas, as y → ∞, the sigmoid tends to the upper
asymptote.

A model with a binary dependent variable may be obtained from an or-
dinary regression model by mapping the dependent variable y through a step
function representing a threshold mechanism. When y falls short of the thresh-
old value, the response of the mechanism is to generate a zero. When y exceeds
the threshold, an unit is delivered.

The models of this chapter are of a sophisticated sort which comprise both
a sigmoid function and a threshold mechanism. For conceptual purposes, these
models may be broken into two parts.

The first part is a probability model. Here a systematic value, which
is derived from a set of explanatory variables, is mapped through a sigmoid
function to generate a probability value π which is bounded above by unity
and below by zero.

The second part of the model is a sampling process which generates the
observations by means of the threshold mechanism based on the probability
generated by the first part of the model. In the simplest case, the sampling
process is a point binomial which is akin to the tossing of a biased coin when
heads—the unit outcome—has the probability π and tails—the zero outcome—
has the probability 1−π. In other cases, the sampling process is described by a
binomial distribution, and the outcome is akin to the number of heads resulting
from n tosses of a coin.
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Until recent years, the models of this chapter had been used more com-
monly in the life sciences and in experimental psychology than in economics.
Their belated discovery by economists in the 1970’s led to a veritable flood of
applications in economics throughout the 1980’s.

Probability Models

Imagine that one wishes to explain the occurrence or the non-occurrence
of an event which can affect each of n individuals in a given sample. The binary
or boolean variable yi ∈ {0, 1} serves to indicate whether or not the event has
affected the ith individual.

The object is to find a function of a set of observable variables with which
to express the probability of the occurrence of the event in the case of any
individual. If all the members of a group or a population were affected by the
same global values of the variables, then such a function should enable us to
predict the proportion who experience the event and to predict how this might
change with changing values of the variables.

If we were to record, for each individual, the values of k variables which
influence the probability of the event, then we could express this probability,
in the ith instance, by

(1) P (yi = 1) = π(xi., β),

where xi. = [xi1, . . . , xik] are the variables and β is a vector of parameters. If we
are able to specify the form of the function π, and if the values xi.; i = 1, . . . , n
are sufficiently heterogeneous, then we may hope to derive an estimate of β
from the sample of n individuals. When the same values of x are experienced
by groups of individuals, then we have to observe several groups in varying
circumstances before we can hope to make make such inferences.

It is helpful to regard π as the composition of two mappings:

(2) π = π
{
h(x)

}
.

The function h = h(x) is often a linear function of the observations which takes
the form of hi = xi.β. The function π = π(h) is a distribution function which
fulfils the condition

(3) 0 ≤ π(h) ≤ 1 with π(−∞) = 0 and π(∞) = 1.

There are three common choices for π(h):

(4) (i) The uniform distribution

π(h) =


0, if h ≤ 0;

h, if 0 ≤ h ≤ 1;

1, if 1 ≤ h.
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(ii) The logistic distribution

π(h) =
eh

1 + eh
.

(iii) The normal distribution

π(h) =
∫ h

−∞

1√
2π
e−ζ

2/2dζ.

In the first case, we have a linear probability model, in the second case,
we have a logistic probability model or logit model and, in the third case, we
have a probit model.
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Figure 1. The cumulative standard normal distribution, the plain line,

and the logistic function, the broken line, plotted to the same scale.

The attraction of the probit model is that it is based on a distribution—the
normal distribution—for which there is often a clear statistical interpretation.
A disadvantage of the normal distribution is that there is no closed-form ex-
pression for its integral, which can be a hindrance when it comes to computing
the estimates of the parameters of the function h(x, β). This factor explains
the attraction of the alternative logistic distribution which is far more tractable
from the point of view of computation.

In the figure above, the cumulative standard normal distribution and the
logistic function are plotted to the same scale. By applying a scale factor to the
logistic curve it can be made to approximate the normal curve quite closely.
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The choice of the scale factor is not an unequivocal matter. One way
of rescaling the logistic function is to take account of the fact that the cor-
responding density function has a variance of π2/3 which is to be compared
with the unit variance of the standard normal density function. Therefore one
might apply a scale factor of

√
3/π = 0.551 to the logistic function in order to

standardise the dispersion of the distribution.
However, if we consider that the logistic and the normal curves are intended

to provide probability values, then it appears that, instead of equating the
dispersion of the two density functions, we should compare the cumulative
distribution functions. On the basis of such reasoning, Amemiya (1981) has
suggested that it would be more appropriate to apply a scale factor of 0.625
to the logistic function. This improves the approximation of the distribution
functions in the vicinity of z = 0 at the cost of sacrificing the accuracy of their
approximation at extreme values of z.

The Classical Probit Model

The classical example of a probit model concerns the effects of a pesticide
upon a sample of insects. For the ith insect, the lethal dosage is the quantity
δi which is the realised value of a random variable; and it is assumed that, in
the population of these insects, the values ξ = log(δ) are distributed normally
with a mean of µ and a variance of σ2. If an insect is selected at random and
is subjected to the dosage di, then the probability that it will die is P (ξi < xi),
where xi = log di. This is given by

(5) π(xi) =
∫ xi

−∞
N(ξ;µ, σ)dξ.

The function π(x) with x = log(d) also indicates the fraction of a sample of
insects which could be expected to die if all the individuals were subjected to
the same global dosage d.

Let yi = 1 if the ith insect dies and yi = 0 if it survives. Then the situation
of the insect is summarised by writing

(6) yi =
{ 0, if xi ≤ ξi or, equivalently, di ≤ δi;

1, if ξi < xi or, equivalently, δi < di.

By making the assumption that it is the log of the lethal dosage which
follows a normal distribution, rather than the lethal dosage itself, we avoid the
unwitting implication that insects can die from negative dosages. The lethal
dosages are said to have a log-normal distribution.

The log-normal distribution has an upper tail which converges rather
slowly to zero. Therefore the corresponding tail of the cumulative distribu-
tion converges slowly to the upper asymptote of unity, which implies that some
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individuals are virtually immune to the effects of the pesticide. In a laboratory
experiment, one would expect to find, to the contrary, that there is a moderate
dosage which is certain to kill all the insects. In the field, however, there is
always the chance that some insects will be sheltered from the pesticide.

The integral of (5) may be expressed in terms of a standard normal density
function N(ζ; 0, 1) so as to accord with the formulation under (4, iii). Thus

(7)

P (ξi < xi) with ξi ∼ N(µ, σ2)

is equal to

P

(
ξi − µ
σ

= ζi < hi =
xi − µ
σ

)
with ζi ∼ N(0, 1).

Moreover, the standardised variable hi, which corresponds to the dose received
by the ith insect, can be written as

(8)
hi =

xi − µ
σ

= β0 + β1xi,

where β0 = −µ
σ

and β1 =
1
σ
.
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Figure 2. The cumulative log-normal distribution. The logarithm

of the log-normal variate is a standard normal variate.
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Figure 3. If λ = h + ε exceeds the threshold value of zero, then the

step function, indicated by the arrows in the upper digram, delivers y = 1.

When ε ∼ N(0, 1) and h = 0.5, the probability that λ will fall short of the

threshold is 0.3, which is the area of the shaded region in the lower figure.

The Latent-Variable Formulation

In the example above, an individual threshold ξi, whose value is essentially
unobservable, has been attributed to each of the sample elements. In many
applications, it is helpful to think in terms of a universal threshold and to
attribute to each of the sample elements an unobservable latent variable which
either exceeds or falls short of that threshold. Let λi be the value of the latent
variable for the ith individual, and let the threshold be located at zero. Then
we have

(9) yi =
{ 0, if λi ≤ 0;

1, if 0 < λi.
An example is provided by a consumer who weighs the costs and benefits of

an economic decision which might be whether or not to purchase a durable item
via a credit agreement. If the discounted future benefits exceed the discounted
costs, then the net value λi of the prospective purchase is positive, and the
agreement is signed giving yi = 1. Otherwise, with λi ≤ 0, we get yi = 0.

In the case of the probit model, we can set

(10)
λi = h(xi;β)− ζi
where ζi ∼ N(0, 1).
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It follows that

(11)
P (yi = 0) = P (λi ≤ 0)

= P (hi ≤ ζi) = 1− π(hi),

and that

(12)
P (yi = 1) = P (0 < λi)

= P (ζi < hi) = π(hi).

The logistic model can be represented in the same way.
If h = β0 + β1x is a simple linear function and if we set −ζi = εi, then

we get λi = β0 + β1x + εi, which suggests a comparison with the RHS of an
ordinary regression model.

Estimation with Individual Data

Imagine that we have a sample of observations (yi, xi.); i = 1, . . . , n where
yi ∈ {0, 1} for all i. Then, assuming that the events affecting the individuals are
statistically independent and taking πi = π(xi., β) to represent the probability
that the event will affect the ith individual, we can write represent the likelihood
function for the sample as

(13) L(β) =
n∏
i=1

πyii (1− πi)1−yi =
n∏
i=1

(
πi

1− πi

)yi
(1− πi).

This is the product of n point binomials. The log of the likelihood function is
given by

(14) logL =
n∑
i=1

yi log
(

πi
1− πi

)
+

n∑
i=1

log(1− πi).

Differentiating logL with respect to βj , which is the jth element of the param-
eter vector β, yields

(15)

∂ logL
∂βj

=
n∑
i=1

yi
πi(1− πi)

∂πi
∂βj
−

n∑
i=1

1
1− πi

∂πi
∂βj

=
n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂β

.

To obtain the second-order derivatives which are also needed, it is helpful
to write the final expression of (15) as

(16)
∂ logL
∂βj

=
∑{

yi
πi
− 1− yi

1− πi

}
∂πi
∂βj

.
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Then it can be seen more easily that

(17)
∂2 logL
∂βjβk

=
∑
i

{
yi
πi
− 1− yi

1− πi

}
∂2πi
∂βjβk

−
∑
i

{
yi
π2
i

+
1− yi

(1− πi)2

}
∂πi
∂βj

∂πi
∂βk

.

The negative of the expected value of the matrix of second derivatives is the
information matrix whose inverse provides the asymptotic dispersion matrix of
the maximum-likelihood estimates. The expected value of the expression above
is found by taking E(yi) = πi. On taking expectations, the first term of the
RHS of (17) vanishes and the second term is simplified, with the result that

(18) E

(
∂2 logL
∂βjβk

)
=
∑
i

1
πi(1− πi)

∂πi
∂βj

∂πi
∂βk

.

The maximum-likelihood estimates are the values which satisfy the condi-
tions

(19)
∂ logL(β)

∂β
= 0.

To solve this equation requires an iterative procedure. The Newton–Raphson
procedure serves the purpose.

The Newton–Raphson Procedure

A common procedure for finding the solution or root of a nonlinear equa-
tion α(x) = 0 is the Newton–Raphson procedure which depends upon approx-
imating the curve y = α(x) by its tangent at a point near the root. Let this
point be [x0, α(x0)]. Then the equation of the tangent is

(20) y = α(x0) +
∂α(x0)
∂x

(x− x0)

and, on setting y = 0, we find that this line intersects the x-axis at

(21) x1 = x0 −
[
∂α(x0)
∂x

]−1

α(x0).

If x0 is close to the root λ of the equation α(x) = 0, then we can expect x1 to
be closer still. To find an accurate approximation to λ, we generate a sequence
of approximations {x0, x1, . . . , xr, xr+1, . . .} according to the algorithm

(22) xr+1 = xr −
[
∂α(xr)
∂x

]−1

α(xr).
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Figure 4. If x0 is close to the root of the equation

α(x) = 0, then we can expect x1 to be closer still.

The Newton–Raphson procedure is readily adapted to the problem of find-
ing the value of the vector β which satisfies the equation ∂ logL(β)/∂β = 0
which is the first-order condition for the maximisation of the log-likelihood
function. Let β consist of two elements β0 and β1. Then the algorithm by
which the (r + 1)th approximation to the solution is obtained from the rth
approximation is specified by

(23)


β0

β1


(r+1)

=


β0

β1


(r)

−


∂2 logL
∂β2

0

∂2 logL
∂β0β1

∂2 logL
∂β1β0

∂2 logL
∂β2

1


−1

(r)


∂ logL
∂β0

∂ logL
∂β1

 .

It is common to replace the matrix of second-order partial derivatives in
this algorithm by its expected value which is the negative of information matrix.
The modified procedure is known as Fishers’s method of scoring. The algebra
is often simplified by replacing the derivatives by their expectations, whereas
the properties of the algorithm are hardly affected.

In the case of the simple probit model, where there is no closed-form ex-
pression for the likelihood function, the probability values, together with the
various derivatives and expected derivatives to be found under (15) to (18),
which are needed in order to implement one or other of these estimation pro-
cedures, may be evaluated with the help of tables which can be read into the
computer.

Recall that the probability values π are specified by the cumulative normal
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distribution

(24) π(h) =
∫ h

−∞

1√
2π
e−ζ

2/2dζ.

We may assume, for the sake of a simple illustration, that the function h(x) is
linear:

(25) h(x) = β0 + β1x.

Then the derivatives ∂πi/∂βj become

(26)
∂πi
∂β0

=
∂πi
∂h

.
∂h

∂β0
= N{h(xi)} and

∂πi
∂β1

=
∂πi
∂h

.
∂h

∂β1
= N{h(xi)}xi,

where N denotes the normal density function which is the derivative of π.

Estimation with Grouped Data

In the classical applications of probit analysis, the data was usually in the
form of grouped observations. Thus, to assess the effectiveness of an insecticide,
various levels of dosage dj ; j = 1, . . . , J would be administered to batches of nj
insects. The numbers mj =

∑
i yij killed in each batch would be recorded and

their proportions pj = mj/nj would be calculated.
If a sufficiently wide range of dosages are investigated, and if the numbers

nj in the groups are large enough to allow the sample proportions pj accurately
to reflect the underlying probabilities πj , then the plot of pj against xj =
log dj should give a clear impression of the underlying distribution function
π = π{h(x)}.

In the case of a single experimental variable x, it would be a simple matter
to infer the parameters of the function h = β0 + β1x from the plot. According
to the model, we have

(27) π(h) = π(β0 + β1x).

From the inverse h = π−1(π) of the function π = π(h), one may obtain the
values hj = π−1(pj). In the case of the probit model, this is a matter of
referring to the table of the standard normal distribution. The values of π or p
are found in the body of the table whilst the corresponding values of h are the
entries in the margin. Given the points (hj , xj) for j = 1, . . . J , it is a simple
matter to fit a regression equation in the form of

(28) hj = b0 + b1xj + ej .
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In the early days of probit analysis, before the advent of the electronic com-
puter, such fitting was often performed by eye with the help of a ruler.

To derive a more sophisticated and efficient method of estimating the pa-
rameters of the model, we may pursue a method of maximum-likelihood. This
method is a straightforward generalisation of the one which we have applied to
individual data.

Consider a group of n individuals which are subject to the same probability
P (y = 1) = π for the event in question. The probability that the event will
occur in m out of n cases is given by the binomial formula:

(29) B(m,n, π) =
(
n

m

)
πm(1− π)n−m =

n!
m!(n−m)!

πm(1− π)n−m.

If there are J independent groups, then the joint probability of their outcomes
m1, . . . ,mj is the product

(30) L =
J∏
j=1

(
nj
mj

)
π
mj
j (1− πj)nj−mj =

J∏
j=1

(
nj
mj

)(
πj

1− πj

)mj
(1− πj)nj .

Therefore the log of the likelihood function is

(31) logL =
J∑
j=1

{
mj log

(
πj

1− πj

)
+ nj log(1− πj) + log

(
nj
mj

)}
.

Given that πj = π(xj., β), the problem is to estimate β by finding the value
which satisfies the first-order condition for maximising the likelihood function
which is

(32)
∂ logL(β)

∂β
= 0.

To provide a simple example, let us take the linear logistic model

(33) π =
eβ0+β1x

1 + eβ0+β1x
.

The so-called log-odds ratio is

(34) log
(

π

1− π

)
= β0 + β1x.

Therefore the log-likelihood function of (31) becomes

(35) logL =
J∑
j=1

{
mj(β0 + β1xj)− nj log(1− eβ0+β1xj ) + log

(
nj
mj

)}
,
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and its derivatives in respect of β0 and β1 are

(36)

∂ logL
∂β0

=
∑
j

{
mj − nj

(
eβ0+β1xj

1 + eβ0+β1xj

)}
=
∑
j

(mj − njπj),

∂ logL
∂β1

=
∑
j

{
mjxj − njxj

(
eβ0+β1xj

1 + eβ0+β1xj

)}
=
∑
j

xj(mj − njπj).

The information matrix, which, together with the above derivatives, is used in
estimating the parameters by Fishers’s method of scoring, is provided by

(37)

[ ∑
jmjπj(1− πj)

∑
jmjxjπj(1− πj)∑

jmjxjπj(1− πj)
∑
jmjx

2
jπj(1− πj)

]
.
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