
4 : APPENDIX

The Geometry of the Plane

This appendix sets forth some algebraic geometry which can be applied
to the problems of chapter 2. It culminates in a derivation of the errors-in-
variables estimator according to the principle of least squares.

Vectors, points and line segments

A point in the plane is primarily a geometric object; but, if we introduce
a coordinate system, then it may be described in terms of an ordered pair of
numbers.

In constructing a coordinate system, it is usually convenient to introduce
two perpendicular axes and to use the same scale of measurement on both axes.
The point of intersection of these axes is called the origin and it is denoted by
0. The point on the first axis at a unit distance from the origin 0 is denoted by
e1 and the point on the second axis at a unit distance from 0 is denoted by e2.

An arbitrary point a in the plane can be represented by its coordinates a1

and a2 relative to these axes. The coordinates are obtained by the perpendicular
projections of the point onto the axes. If we are prepared to identify the
point with its coordinates, then we may write a = (a1, a2). According to this
convention, we may also write e1 = (1, 0) and e2 = (0, 1).

a1

a2 a = (a1, a2)

e2 = (0, 1)

e1 = (1, 0)

Figure 1. The coordinates of a vector a relative to two perpendicular axes
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The directed line segment running from the origin 0 to the point a is de-
scribed as a geometric vector which is bound to the origin. The ordered pair
(a1, a2) = a may be described as an algebraic vector. In fact, it serves little
purpose to make a distinction between these two entities—the algebraic vector
and the geometric vector—which may be regarded hereafter as alternative rep-
resentations of the same object a. The unit vectors e1 = (1, 0) and e2 = (0, 1),
which serve, in fact, to define the coordinate system, are described as the basis
vectors.

The sum of two vectors a = (a1, a2) and b = (b1, b2) is defined by

(1)
a+ b = (a1, a2) + (b1, b2)

= (a1 + b1, a2 + b2).

The geometric representation of vector addition corresponds to a parallelogram
of forces. Forces, which have both magnitude and direction, may be represented
by directed line segments whose lengths correspond to the magnitudes. Hence
forces may be described as vectors; and, as such, they obey the law of addition
given above.

0

b

a

a + b

Figure 2. The parallelogram law of vector addition

If a = (a1, a2) is a vector and λ is a real number, which is also described
as a scalar, then the product of a and λ is defined by

(2)
λa = λ(a1, a2)

= (λa1, λa2).

The geometric counterpart of multiplication by a scalar is a stretching or a
contraction of the vector which affects its length but not its direction.

The axes of the coordinate system are provided by the lines E1 = {λe1}
and E2 = {λe2} which are defined by letting λ take every possible value. In
terms of the basis vectors e1 and e2, the point a = (a1, a2) can be represented
by

(3)
a = (a1, a2)

= a1e1 + a2e2.
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Norms, inner products and angles

The length or norm of a vector a = (a1, a2) is

(4) ‖a‖ =
√
a2

1 + a2
2;

and this may be regarded either as an algebraic definition or as a consequence
of the geometric theorem of Pythagoras.

The inner product of two vectors a = (a1, a2) and b = (b1, b2) may be
defined by

(5)

〈a, b〉 =
1
2

{
‖a‖2 + ‖b‖2 − ‖a− b‖2

}
=

1
2

{
(a2

1 + a2
2) + (b21 + b22)−

[
(a1 − b1)2 + (a2 − b2)2

]}
= a1b1 + a2b2.

For an alternative notation we may use

(6) a′b = 〈a, b〉.

θ

0
b

a

|| b ||

|| a
 ||

||  a − b ||

Figure 3. The law of cosines.

To provide an equivalent definition for the inner product, we may prove
the law of cosines. From the diagram, by Pythagoras,

(7)
‖a− b‖2 = ‖a‖2 sin2 θ +

{
‖b‖ − ‖a‖ cos θ

}2

= ‖a‖2 sin2 θ + ‖b‖2 + ‖a‖2 cos2 θ − 2‖a‖.‖b‖ cos θ

= ‖a‖2 + ‖b‖2 − 2‖a‖.‖b‖ cos θ.

This enables us to rewrite our definition of the inner product of a and b as

(8) 〈a, b〉 = ‖a‖.‖b‖ cos θ,
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where θ is the angle between the (geometric) vectors a and b.
If we were to take a strictly algebraic view, then this equation would serve

not as a definition of the inner product, which is already defined in (5) above,
but as a definition of the angle between the algebraic vectors a and b. Notice
that, if θ has the value of a right angle, that is if θ = π/2, then 〈a, b〉 = 0. In
that case the vectors a, b are said to be orthogonal or perpendicular to each
other.

If p and a are two vectors and if θ is the angle between them, then the
component of p in the direction of a is the scalar

(9) c = ‖p‖ cos θ =
〈a, p〉
‖a‖ .

From this definition, we see, in particular, that the components of a vector a
in the direction of the basis vectors e1 and e2 are the Cartesian coordinates

(10) a1 = 〈e1, a〉 and a2 = 〈e2, a〉;

which follows when we use ‖e1‖ = ‖e2‖ = 1.
The (orthogonal) projection of p on a is the vector p̂ = λa of length

c = ‖p‖ cos θ. Thus

(11) p̂ = c
a

‖a‖ = a
〈a, p〉
〈a, a〉 .

Confusion can arise when, as is common, it is the length c of this vector which
is described as the projection.

θ

0
a

p

p̂

|| p
 ||

Figure 4. The perpendicular projection of p on a.

The equation of a line

Let L be a line from the origin 0 and let b be any vector (or point) lying
along L. Then, if x is any other vector in the line, there exists a scalar λ such
that x = λb.
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e2 = (0, 1)

e1 = (1, 0)

θ

0

b

ca

p

x = λb  + p

Figure 5. The line x = λb+ p parallell to b and passing through the point p.

Now let L be a line parallel to b passing through a point p. Then if x is a
point in L it can be expressed as

(12) x = λb+ p,

for some scalar λ. This is called the parametric equation of the line. To derive
an alternative expression, consider a vector a perpendicular to L such that
〈a, b〉 = a′b = 0. On premultiplying the equation (12) by a′, that is to say, by
forming the inner product of a and x, we get

(13)
a′x = λa′b+ a′p

= a′p = c;

and our equation for the line now has the form of

(14) a1x1 + a2x2 = c,

where a1, a2 and c are constants.
Since a is subject only to the condition that a′b = 0, it is not uniquely

determined—clearly, the choice of a also determines the value of the scalar c.
Let us specify that a has unit length such that ‖a‖ =

√
a2

1 + a2
2 = 1. Then it

follows that

(15)
〈a, p〉 = a′p = ‖a‖.‖p‖ cos θ

= ‖p‖ cos θ = c;

from which we see that c, which is the length of the projection of p on a, is the
perpendicular distance of the line L from the origin 0.
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When
√
a2

1 + a2
2 = 1, we say that equation (14) is in canonical form. The

equation is in intercept form when it is written as

(16) a1x1 + a2x2 = 1.

In that case, a1 is the reciprocal of the intercept of the line with the axis of e1:
for then we have

(17) x1 +
a2

a1
x2 =

1
a1
,

whence, with x2 = 0, and we get x1 = 1/a1.

The distance of a point from a line

Let q be a point and let a′x = c, with ‖a‖ = 1, be the equation of the line
L. We wish to find the perpendicular distance from q to L. This is also the
minimum distance.

By the previous argument, the (perpendicular) distance from the origin to
the line which passes through q and which is parallel to L is just a′q = d. But
we already know that the distance from L to the origin is a′x = c. Therefore
it follows that the distance from q to L is

(18) d− c = a′q − c.

e2 = (0, 1)

e1 = (1, 0)

a

b

c

q

d

Figure 6. The distance of a point from a line.
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Simultaneous equations

Consider the equations

(19)
ax+ by = e,

cx+ dy = f,

which describe two lines in the plane. The coordinates (x, y) of the point of
intersection of the lines is the algebraic solution of the simultaneous equations.

The equations may be written in matrix form as

(20)
[
a b
c d

] [
x
y

]
=
[
e
f

]
.

The necessary and sufficient condition for the existence of a unique solution is
that

(21) Det
[
a b
c d

]
= ad− bc 6= 0.

Then the solution is given by

(22)

[
x
y

]
=
[
a b
c d

]−1 [
e
f

]
=

1
ad− bc

[
d −b
−c a

] [
e
f

]
.

We may prove that

(23)
Det

[
a b
c d

]
= 0 if and only if

a = λc and b = λd for some scalar λ.

Proof. From a = λc and b = λd we derive, by cross multiplication, the
identity λad = λbc, whence ad−bc = 0 and the determinant is zero. Conversely,
if ad − bc = 0, then we can deduce that a = (b/d)c and b = (a/c)d together
with the identity (b/d) = (a/c) = λ, which implies that a = λc and b = λd.

When the determinant is zero-valued one of two possibilities ensues. The
first in when e = λf . Then the two equations describe the same line and there
is infinite number of solutions, with each solution corresponding to a point on
the line. The second possibility is when e 6= λf . Then the equations describe
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parallel lines and there are no solutions. Therefore, we say that the equations
are inconsistent.

It is appropriate to end this section by giving a geometric interpretation
of

(24) Det
[
a1 a2

b1 b2

]
= a1b2 − a2b1.

This is simply the area enclosed by the parallelogram of forces which is formed
by adding the vectors a = (a1, a2) and b = (b1, b2). The result can be estab-
lished by subtracting triangles from the rectangle in the accompanying figure
to show that the area of the shaded region is 1

2 (a1b2−a2b1). The shaded region
comprises half of the area which is enclosed by the parallelogram of forces.

a1b1

a2

b2

b

a

Figure 7. The determinant corresponds to the

area enclosed by the parallelogram of forces.

The least-squares derivation of the E-V-M estimating equations

We have asserted that, in the case where V (η1) = V (η2) and C(η1, η2) = 0,
the estimating equations of the errors-in-variables model could be derived from
the criterion of minimising the error sum of squares

(25)
T∑
t=1

{
(y1t − ξ1t)2 + (y2t − ξ2t)2

}
subject to the constraint that

(26) ξ1β1 + ξ2β2 = α, where β2
1 + β2

2 = 1.

This amounts to minimising the sum of squares of the perpendicular distances
of the points (y1, y2) from the regression line defined by equation (26).
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y1t

η1t

ξ1t

y2t

ξ2t

η2t

α

( y1t , y2t )

( ξ1t , ξ2t )

ξ1β1  + ξ2β2  = α

Figure 8. The perpendicular projection of the point

(y1t, y2t) onto the regression line ξ1β1 + ξ2β2 = α.

From previous results in this appendix, it follows that the minimand may
be expressed as

(27)
T∑
t=1

(
β1y1t + β2y2t − α

)2
.

To evaluate this criterion, we may form the following lagrangean expression:

(28) L =
T∑
t=1

(
β1y1t + β2y2t − α

)2 − µ(β2
1 + β2

2 − 1).

Differentiating with respect to α and setting the result to zero for a minimum
gives

(29)
∂L

∂α
= −2

∑(
β1y1t + β2y2t − α

)
= 0,

whence, on dividing by 2T and rearranging, we get the estimating equation for
α:

(30) α(β1, β2) = β1ȳ1 + β2ȳ2.
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By substituting the latter into the criterion function, we may form a concen-
trated function which has β1 and β2 as its sole arguments:

(31) Lc =
T∑
t=1

{
β1(y1t − ȳ1) + β2(y2t − ȳ2)

}2 − µ(β2
1 + β2

2 − 1).

The first-order conditions for the minimum are

(32)

∂Lc

∂β1
= 2

∑
β1(y1t − ȳ1)2 + 2

∑
β2(y1t − ȳ1)(y2t − ȳ2)− 2µβ1 = 0,

∂Lc

∂β2
= 2

∑
β1(y2t − ȳ2)(y1t − ȳ1) + 2

∑
β2(y2t − ȳ2)2 − 2µβ2 = 0.

Having divided both equations throughout by 2T , we may assemble them in
the following matrix format

(33)

{[
s11 s12

s21 s22

]
− λ

[
1 0

0 1

]}[
β1

β2

]
=

[
0

0

]
,

wherein s11, s12 and s22 are the moments defined in (18). Equation (33) is
precisely the estimating equation which has been given under (2.25). Apart
from the proliferation of symbols, there should be no difficulty in deriving the
estimating equation under (2.24) from the generalised least-squares criterion
function under (2.28).
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