
1 : CHAPTER

Elementary
Regression Analysis

In this chapter, we shall study three methods which are capable of gener-
ating estimates of statistical parameters in a wide variety of contexts. These
are the method of moments, the method of least squares and the principle of
maximum likelihood.

We shall study the methods only in relation to the simple linear regression
model; and we shall show that each entails assumptions which may be more or
less appropriate to the context in which we wish to apply the model.

In the case of the regression model, the three methods generate estimating
equations which are formally identical; but this does not justify us in taking a
casual approach to the statistical assumptions which sustain the model. To be
casual in making our assumptions is to invite the danger of misinterpretation
when the results of the estimation are in hand.

We begin with the method of moments, we shall proceed to the method
of least squares, and we shall conclude with a brief treatment of the method of
maximum likelihood.

Conditional Expectations

Let y be a continuously distributed random variable whose probability
density function is f(y). If we wish to predict the value of y without the help
of any other information, then we might take its expected value which is defined
by

E(y) =
∫
yf(y)dy.

The expected value is a so-called minimum-mean-square-error (m.m.s.e.)
predictor. If π is the value of a prediction, then the mean-square error is given
by

(1)

M =
∫

(y − π)2f(y)dy

= E
{
(y − π)2

}
= E(y2)− 2πE(y) + π2;

1



D.S.G. POLLOCK : ECONOMETRIC THEORY

and, using the methods of calculus, it is easy to show that this quantity is
minimised by taking π = E(y).

Now let us imagine that y is statistically related to another random variable
x whose value we have already observed. For the sake of argument, let us
assume that we know the form of the joint distribution of x and y which is
f(x, y). Then the minimum-mean-square-error prediction of y is given by the
conditional expectation

(2) E(y|x) =
∫
y
f(x, y)
f(x)

dy

wherein

(3) f(x) =
∫
f(x, y)dy

is the so-called marginal distribution of x. We may state this proposition
formally in a way which will assist us in proving it:

(4) Let ŷ = ŷ(x) be the conditional expectation of y given x which
is also expressed as ŷ = E(y|x). Then we have E{(y − ŷ)2} ≤
E{(y − π)2}, where π = π(x) is any other function of x.

Proof. Consider

(5)
E
{
(y − π)2

}
= E

[{
(y − ŷ) + (ŷ − π)

}2
]

= E
{
(y − ŷ)2

}
+ 2E

{
(y − ŷ)(ŷ − π)

}
+ E

{
(ŷ − π)2

}
.

In the second term, there is

(6)

E
{
(y − ŷ)(ŷ − π)

}
=
∫
x

∫
y

(y − ŷ)(ŷ − π)f(x, y)∂y∂x

=
∫
x

{∫
y

(y − ŷ)f(y|x)∂y
}

(ŷ − π)f(x)∂x

= 0.

Here the second equality depends upon the factorisation f(x, y) = f(y|x)f(x)
which expresses the joint probability density function of x and y as the product
of the conditional density function of y given x and the marginal density func-
tion of x. The final equality depends upon the fact that

∫
(y − ŷ)f(y|x)∂y =

E(y|x) − E(y|x) = 0. Therefore E{(y − π)2} = E{(y − ŷ)2} + E{(ŷ − π)2} ≥
E{(y − ŷ)2}, and the assertion is proved.
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We might note that the definition of the conditional expectation implies
that

(7)

E(xy) =
∫
x

∫
y

xyf(x, y)∂y∂x

=
∫
x

x

{∫
y

yf(y|x)∂y
}
f(x)∂x

= E(xŷ).

When the equation E(xy) = E(xŷ) is rewritten as

(8) E
{
x(y − ŷ)

}
= 0,

it may be described as an orthogonality condition. This condition indicates
that the prediction error y − ŷ is uncorrelated with x. The result is intuitively
appealing; for, if the error were correlated with x, then we should not be using
the information of x efficiently in forming ŷ.

If the joint distribution of x and y is a normal distribution, then we can
make rapid headway in finding an expression for the function E(y|x). In the
case of a normal distribution, we have

(9) E(y|x) = α+ βx,

which is to say that the conditional expectation of y given x is a linear function
of x. Equation (9) is described as a linear regression equation; and we shall
explain this terminology later.

The object is to find expressions for α and β which are in terms of the first-
order and second-order moments of the joint distribution. That is to say, we
wish to express α and β in terms of the expectations E(x), E(y), the variances
V (x), V (y) and the covariance C(x, y).

Admittedly, if we had already pursued the theory of the Normal distri-
bution to the extent of demonstrating that the regression equation is a linear
equation, then we should have already discovered these expressions for α and
β. However, our present purposes are best served by taking equation (9) as
our starting point; and we are prepared to regard the linearity of the regression
equation as an assumption in its own right rather than as a deduction from the
assumption of a normal distribution.

Let us begin by multiplying equation (9) throughout by f(x), and let us
proceed to integrate with respect to x. This gives us the equation

(10) E(y) = α+ βE(x),

whence

(11) α = E(y)− βE(x).
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Equation (10) shows that the regression line passes through the point E(x, y) =
{E(x), E(y)} which is the expected value of the joint distribution.

By putting (11) into (9), we find that

(12) E(y|x) = E(y) + β
{
x− E(x)

}
,

which shows how the conditional expectation of y differs from the unconditional
expectation in proportion to the error of predicting x by taking its expected
value.

Now let us multiply (9) by x and f(x) and then integrate with respect to
x to provide

(13) E(xy) = αE(x) + βE(x2).

Multiplying (10) by E(x) gives

(14) E(x)E(y) = αE(x) + β
{
E(x)

}2
,

whence, on taking (14) from (13), we get

(15) E(xy)− E(x)E(y) = β
[
E(x2)−

{
E(x)

}2
]
,

which implies that

(16)

β =
E(xy)− E(x)E(y)

E(x2)−
{
E(x)

}2

=
E
[{
x− E(x)

}{
y − E(y)

}]
E
[{
x− E(x)

}2
]

=
C(x, y)
V (x)

.

Thus we have expressed α and β in terms of the moments E(x), E(y), V (x)
and C(x, y) of the joint distribution of x and y.

Example. Let x = ξ + η be an observed random variable which combines a
signal component ξ and a noise component η. Imagine that the two components
are uncorrelated with C(ξ, η) = 0, and let V (ξ) = σ2

ξ and V (η) = σ2
η. The

object is to extract the signal from the observation.
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According to the formulae of (12) and (16), the expectation of the signal
conditional upon the observation is

(17) E(ξ|x) = E(ξ) +
C(x, ξ)
V (x)

{
x− E(x)

}
.

Given that ξ and η are uncorrelated, it follows that

(18) V (x) = V (ξ + η) = σ2
ξ + σ2

η

and that

(19) C(x, ξ) = V (ξ) + C(ξ, η) = σ2
ξ .

Therefore

(20) E(ξ|x) = E(ξ) +
σ2
ξ

σ2
ξ + σ2

η

{
x− E(x)

}
.

Estimation by the Method of Moments

It is most unlikely that we should know the values of the various moments
comprised in the formulae for the regression parameters. Nevertheless, we are
often able to estimate them. Imagine that we have a sample of T observations
on x and y : (x1, y1), (x2, y2), . . . , (xT , yT ). Then we can calculate the following
empirical or sample moments:

(21)

x̄ =
1
T

T∑
t=1

xt,

ȳ =
1
T

T∑
t=1

yt,

s2
x =

1
T

T∑
t=1

(xt − x̄)2 =
1
T

T∑
t=1

x2
t − x̄2,

sxy =
1
T

T∑
t=1

(xt − x̄)(yt − ȳ) =
1
T

T∑
t=1

xtyt − x̄ȳ.

The method of moments suggests that, in order to estimate α and β, we
should replace the moments in the formulae of (11) and (16) by the correspond-
ing sample moments. Thus the estimates of α and β are

(22)
α̂ = ȳ − β̂x̄,

β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.
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The justification of the method is that, in many of the circumstances under
which the sample is liable to be generated, we can expect the sample moments
to converge to the true moments of the bivariate distribution, thereby causing
the estimates of the parameters to converge likewise to the true values.

We should be precise about the meaning of convergence in this context.
According to the concept of convergence which is used in mathematical analysis,

(23) A sequence of numbers {an} is said to converge to a limit a if, for
any arbitrarily small real number ε, there exists a corresponding
integer N such that |an − a| < ε for all n ≥ N .

This concept is not appropriate to the case of a stochastic sequence, such
as a sequence of estimates. For, no matter how many observations N have been
incorporated in the estimate aN , there remains a possibility that, subsequently,
an aberrant observation yn will draw the estimate an beyond the bounds of a±ε.
We must adopt a criterion of convergence which allows for this possibility:

(24) A sequence of random variables {an} is said to converge weakly in
probability to a limit a if, for any ε, we have limP (|an−a| > ε) = 0
as n→∞ or, equivalently, limP (|an − a| ≤ ε) = 1.

This means that, by increasing the size of the sample, we can make it virtually
certain that an will ‘fall within an epsilon of a.’ It is conventional to describe
a as the probability limit of an and to write plim(an) = a.

The virtue of this definition of convergence is that it does not presup-
pose that the random variable an has a finite variance or even a finite mean.
However, if an does have finite moments, then we may use the concept of
mean-square convergence.

(25) A sequence of random variables {an} is said to converge in mean
square to a limit a if lim(n→∞)E{(an − a)2} = 0.

We should note that

(26)
E
{(
an − a

)2} = E

{([
an − E(an)

]
−
[
a− E(an)

])2
}

= V (an) + E
[{
a− E(an)

}2
]
;

which is to say that the mean-square error of an is the sum of its variance and
the square of its bias. If an is to converge in mean square to a, then both of
these quantities must vanish.

Convergence in mean square is a stronger condition than convergence in
probability in the sense that it implies the latter. Whenever an estimator
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converges in probability to the value of the parameter which it purports to
represent, then we say that it is a consistent estimator.

Regression and the Eugenic Movement

The theory of linear regression has its origins in the late 19th century when
it was closely associated with the name of the English eugenicist Francis Galton
(1822–1911).

Galton was concerned with the hereditibility of physical and mental char-
acteristics; and he sought ways of improving the genetic quality of the human
race. His disciple Karl Pearson, who espoused the same eugenic principles as
Galton and who was a leading figure in the early development of statistical
theory in Britain, placed Galton’s contributions to science on a par with those
of Charles Darwin who was Galton’s cousin.

Since the 1930’s, the science of eugenics has fallen into universal disrepute,
and its close historical association with statistics has been largely forgotten.
However it should be recalled that one of the premier journals of statistical
theory, which now calls itself Biometrika, began life as The Annals of Eugenics.
The thoughts which inspired the Eugenic Movement still arise, albeit that they
are expressed, nowadays, in different guises.

One of Galton’s studies which is best remembered concerns the relationship
between the heights of fathers and the heights of their sons. The data which
was gathered was plotted on a graph and was found to have a distribution
which resembles a bivariate normal distribution.

It might be supposed that the best way to predict the height of a son is to
take the height of the father. In fact, such a method would lead of a systematic
over-estimation of the height of the sons if their fathers were above-average
height. In the terminology of Galton, we actually witness a regression of the
son’s height towards “mediocrity ”.

Galton’s terminology suggests a somewhat unbalanced point of view. The
phenomenon of regression is accompanied by a corresponding phenomenon of
progression whereby fathers of less than average height are liable to have sons
who are taller than themselves. Also, if the distribution of heights is to remain
roughly the same from generation to generation and if it is not to loose its
dispersion, then there are bound to be cases which conflict with the expectation
of an overall reversion towards the mean.

A little reflection will go a long way toward explaining the phenomenon of
reversion; for we need only consider the influence of the mother’s height. If we
imagine that, in general, men of above-average height show no marked tendency
to marry tall women, then we might be prepared to attribute an average height
to the mother, regardless of the father’s height. If we acknowledge that the
two parents are equally influential in determining the physical characteristics
of their offspring, then we have a ready explanation of the tendency of heights

7



D.S.G. POLLOCK : ECONOMETRIC THEORY

to revert to the mean. To the extent that tall people choose tall partners, we
shall see a retardation of the tendency; and the characteristics of abnormal
height will endure through a greater number of generations.

The Bivariate Normal Distribution

Most of the results in the theory of regression which we have developed so
far can be obtained by examining the functional form of the bivariate normal
distribution. Let x and y be the two variables. Let us denote their means by

(27) E(x) = µx, E(y) = µy,

their variances by

(28) V (x) = σ2
x, V (y) = σ2

y

and their covariance by

(29) C(x, y) = ρσxσy.

Here

(30) ρ =
C(x, y)√
V (x)V (y)

,

which is called the correlation coefficient of x and y, provides a measure of the
relatedness of these variables.

The Cauchy–Schwarz inequality indicates that −1 ≤ ρ ≤ 1. If ρ = 1, then
there is an exact positive linear relationship between the variables whereas, if
ρ = −1, then there is an exact negative linear relationship, Neither of these ex-
treme cases is admissible in the present context for, as we may see by examining
the following formulae, they lead to the collapse of the bivariate distribution.

The bivariate distribution is specified by

(31) f(x, y) =
1

2πσxσy
√

1− ρ2
expQ(x, y),

where

(32) Q =
−1

2(1− ρ2)

{(
x− µx
σx

)2

− 2ρ
(
x− µx
σx

)(
y − µy
σy

)
+
(
y − µy
σy

)2
}

is a quadratic function of x and y.

8



REGRESSION ANALYSIS

The function can also be written as

(33) Q =
−1

2(1− ρ2)

{(
y − µy
σy

− ρx− µx
σx

)2

− 1
2

(
x− µx
σx

)2
}
.

Thus we have

(34) f(x, y) = f(y|x)f(x),

where

(35) f(x) =
1

σx
√

2π
exp

{
− (x− µx)2

2σ2
x

}
,

and

(36) f(y|x) =
1

σy
√

2π(1− ρ2)
exp

{
− (y − µy|x)2

2σ2
y(1− ρ)2

}
,

with

(37) µy|x = µy +
ρσy
σx

(x− µx).

Equation (37) is the linear regression equation which specifies the value
of E(y|x) = µy|x in terms of x; and it is simply the equation (12) in another
notation. Equation (36) indicates that the variance of y about its conditional
expectation is

(38) V (y|x) = σ2
y(1− ρ2).

Since (1− ρ2) ≤ 1, it follows that variance of the conditional predictor E(y|x)
is less than that of the unconditional predictor E(y) whenever ρ 6= 0—which is
whenever there is a correlation between x and y. Moreover, as this correlation
increases, the variance of the conditional predictor diminishes.

There is, of course, a perfect symmetry between the arguments x and y in
the bivariate distribution. Thus, if we choose to factorise the joint probability
density function as f(x, y) = f(x|y)f(y), then, to obtain the relevant results,
we need only interchange the x’s and the y’s in the formulae above.

We should take note of the fact that x and y will be statistically inde-
pendent random variables that are uncorrelated with each other if and only
if their joint distribution can be factorised as the product of their marginal
distributions: f(y, y) = f(y)f(y). In the absence of statistical independence,
the joint distribution becomes the product of a conditional distribution and

9



D.S.G. POLLOCK : ECONOMETRIC THEORY

a marginal distribution: f(y, x) = f(y|x)f(x). The arguments of these two
distributions will retain the properties of statistical independence. That is to
say, the random variables ε = y − µy|x and ν = x − µx are, by construction,
statistically independent with C(ε, ν) = 0.

Least-Squares Regression Analysis

Galton’s analysis, which described the regression relationship between the
heights of fathers and their sons, was an exercise in descriptive statistics which
was wrought upon a given set of data. There can be no presumption that, for
a different race of men living in a different environment, the same parameters
would be uncovered. It is only as an experiment in thought that we may vary
the value of the explanatory variable x and watch the concomitant variation of
y. The heights of individual men are not subject to experimental manipulation.

Econometrics, in contrast to descriptive statistics, is often concerned with
functional regression relationships which purport to describe the effects of ma-
nipulating the instruments of economic policy such as interest rates and rates
of taxation. In such cases, it is no longer appropriate to attribute a statistical
distribution to the explanatory variable x which now assumes the status of a
control variable. Therefore it is necessary to derive the formulae of regression
analysis from principles which make no reference to the joint distribution of
the variables. The principle of least squares is appropriate to this purpose.

Before admitting this change of emphasis, we should offer some words of
caution. For it seems that many of the errors of applied econometrics arise when
an analyst imagines that, in fitting a regression equation, he has uncovered a
causal connection.

The data which is used in inferring a regression relationship is part of an
historical record of the evolution of the economy; and it is never certain that
the same statistical relationships would have prevailed in other circumstances.
Nor is it clear that they will prevail in the future.

An econometric analysis if often conducted with a view to guiding the
actions of a regulatory agent. However, such actions are liable to alter the
statistical relationships prevailing amongst economic variables. An assertion
that a particular relationship will endure through time and that it will be
unaffected by regulatory intercessions ought to be greeted with skepticism.
Yet, in such matters, applied econometricians are often eager to suspend their
disbelief.

To assist the application of the method of least squares, the regression
equation, which has been defined by E(y|x) = α+ βx, can be written, alterna-
tively, as

(39) y = α+ xβ + ε,
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where ε = y−E(y|x) is a random variable with E(ε) = 0 and V (ε) = σ2. This
equation may be used to depict a functional relationship between an indepen-
dent variable x and a dependent variable y. The relationship is affected by a
disturbance ε which is independent of x and which might be taken to represent
the effect of a large number of variables of minor importance which are not
taken into account explicitly in describing the relationship.

Imagine that there is a sample of observations (x1, y1), . . . , (xT , yT ) and
that, from these data, we wish to estimate the parameters α and β. The
principle of least squares suggests that we should do so by choosing the values
which minimise the quantity

(40)

S =
T∑
t=1

ε2
t

=
T∑
t=1

(yt − α− xtβ)2.

This is the sum of squares of the vertical distances—measured parallel to the
y-axis—of the data points from an interpolated regression line.

Differentiating the function S with respect to α and setting the results to
zero for a minimum gives

(41)
−2
∑

(yt − α− βxt) = 0, or, equivalently,

ȳ − α− βx̄ = 0.

This generates the following estimating equation for α:

(42) α(β) = ȳ − βx̄.

Next, by differentiating with respect to β and setting the result to zero, we get

(43) −2
∑

xt(yt − α− βxt) = 0.

On substituting for α from (42) and eliminating the factor −2, this becomes

(44)
∑

xtyt −
∑

xt(ȳ − βx̄)− β
∑

x2
t = 0,

whence we get

(45)

β̂ =
∑
xtyt − T x̄ȳ∑
x2
t − T x̄2

=
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.
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This expression is identical to the one under (22) which we have derived from
the method of moments. By putting β̂ into the estimating equation for α under
(42), we derive the same estimate α̂ for the intercept parameter as the one to
be found under (22).

The method of least squares does not automatically provide an estimate
of σ2 = E(ε2

t ). To obtain an estimate, we may invoke the method of moments
which, in view of the fact that the regression residuals et = yt−α̂−β̂xt represent
estimates of the corresponding values of εt, suggests an estimator in the form
of

(46) σ̃2 =
1
T

∑
e2
t .

In fact, this is a biased estimator with

(47) E

(
σ̃2

T

)
=
(
T − 2
T

)
σ2;

so it is common to adopt the unbiased estimator

(48) σ̂2 =
∑
e2
t

T − 2
.

We shall have occasion to demonstrate the unbiasedness of this estimator
later. To understand the result on an intuitive level, one may recall that the
unbiased estimator of the variance of a distribution, which is constructed from
a random sample, is σ̂2 = (T −1)−1

∑
(xt− x̂)2. If the mean of the distribution

µ were known and were used in place x̄, then one should divide by T instead
of T − 1 to form σ̂2 = T−1

∑
(xt − µ)2. The effect of using the datum x̄ in

place of the unknown mean µ would to reduce the measure of dispersion.To
compensate, the measure is scaled by the factor T/(T − 1). In the context of
the regression equation, where two parameters are estimated, the scale factor
T/(T − 2) is used.

Properties of the Least-Squares Estimator

Now we shall reveal some of the properties of the least-squares estimators
which follow from the assumptions which we have made so far. We shall also
consider the likelihood that these assumptions will be fulfilled in practice, as
well as some consequences of their violation.

We have assumed that the disturbance term ε is a random variable with

(49) E(εt) = 0, and V (εt) = σ2 for all t.
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We have avoided making statistical assumptions about x since we are un-
willing to assume that its assembled values will manifest the sort of the reg-
ularities which are inherent in a statistical distribution. Therefore, we cannot
express the assumption that ε is independent of x in terms of a joint distribution
of these quantities; and, in particular, we should not assert that C(x, ε) = 0.
However, if we are prepared to regard the xt as predetermined values which
have no effect on the εt, then we can say that

(50) E(xtεt) = xtE(εt) = 0, for all t.

In place of an assumption attributing a finite variance to x, we may assert
that

(51) lim(T →∞)
1
T

T∑
t=1

x2
t = mxx <∞.

For the random sequence {xtεt}, we assert that

(52) plim(T →∞)
1
T

T∑
t=1

xtεt = 0.

To see the effect of these assumptions, let us substitute the expression

(53) yt − ȳ = β(xt − x̄) + εt − ε̄

in the expression for β̂ found under (45). By rearranging the result, we have

(54) β̂ = β +
∑

(xt − x̄)εt∑
(xt − x̄)2

.

The numerator of the second term on the RHS is obtained with the help of the
identity

(55)

∑
(xt − x̄)(εt − ε̄) =

∑
(xtεt − x̄εt − xtε̄+ x̄ε̄)

=
∑

(xt − x̄)εt.

From the assumption under (50), it follows that

(56) E
{
(xt − x̄)εt

}
= (xt − x̄)E(εt) = 0 for all t.

Therefore

(57)
E(β̂) = β +

∑
(xt − x̄)E(εt)∑

(xt − x̄)2

= β;
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and β̂ is seen to be an unbiased estimator of β.
The consistency of the estimator follows, likewise, from the assumptions

under (51) and (52). Thus

(58)
plim(β̂) = β +

plim
{
T−1

∑
(xt − x̄)εt

}
plim

{
T−1

∑
(xt − x̄)2

}
= β;

and β̂ is seen to be a consistent estimator of β.
The consistency of β̂ depends crucially upon the assumption that the dis-

turbance term is independent of, or uncorrelated with, the explanatory variable
or regressor x. In many econometric contexts, we should be particularly wary
of this assumption. For, as we have suggested earlier, the disturbance term is
liable to be compounded from the variables which have been omitted from the
equation which explains y in terms of x. In a time-dependent context, these
variables are liable to be correlated amongst themselves; and there may be
scant justification for assuming that they are not likewise correlated with x.

There are other reasons of a more subtle nature for why the assumption of
the independence of ε and x may be violated. The following example illustrates
one of the classical problems of econometrics.

Example. In elementary macroeconomic theory, a simple model of the econ-
omy is postulated which comprises two equations:

y = c+ i,(59)

c = α+ βy + ε.(60)

Here y stands for the gross product of the economy, which is also the income of
consumers, i stands for investment and c stands for consumption. An additional
identity s = y− c or s = i, where s is savings, is also entailed. The disturbance
term ε, which is omitted from the usual presentation in economics textbooks,
is assumed to be independent of the variable i.

On substituting the consumption function of (60) into the income identity
of (59) and rearranging the result, we find that

(61) y =
1

1− β
(
α+ i+ ε

)
,

from which

(62) yt − ȳ =
1

1− β
(
it − ī+ εt − ε̄

)
.
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The ordinary least-squares estimator of the parameter β, which is called
the marginal propensity to consume, gives rise to the following equation:

(63) β̂ = β +
∑

(yt − ȳ)εt∑
(yt − ȳ)2

.

Equation (61), which shows that y is dependent on ε, suggests that β̂ cannot
be a consistent estimator of β.

To determine the probability limit of the estimator, we must assess the
separate probability limits of the numerator and the denominator of the term
on the RHS of (63).

The following results are available:

(64)

lim
1
T

T∑
t=1

(it − ī)2 = mii = V (i),

plim
1
T

T∑
t=1

(yt − ȳ)2 =
mii + σ2

(1− β)2
= V (y),

plim
1
T

T∑
t=1

(yt − ȳ)εt =
σ2

1− β = C(y, ε).

The results indicate that

(65)
plim β̂ = β +

σ2(1− β)
mii + σ2

=
βmii + σ2

mii + σ2
;

and it can be seen that the limiting value of β̂ has an upward bias which
increases as the ratio σ2/mii increases.

On the assumption that the model is valid, it is easy to understand why
the parameter of the regression of c on y exceeds the value of the marginal
propensity to consume. We can do so by considering the extreme cases.

Imagine, first, that σ2 = V (ε) = 0. Then the only source of variation in y
and c is the variation in i. In that case, the parameter of the regression of c on
y will coincide with β. This is illustrated in Figure 1. Now imagine, instead,
that i is constant and that the only variations in c and y are due ε which is
disturbs consumption. Then the expected value of consumption is provided by
the equation c = y− i in which the coefficient associated with y is unity. Figure
2 illustrates this case. Assuming now that both mii > 0 and σ2 > 0, it follows

15
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45o
α

i1

i2

y1 y2

c, y

y

y = c + i

c = α + βy

c  + i1

c  + i2

Figure 1. If the only source of variation in y is the variation in i, then

the observations on y and c will delineate the consumption function.

45o
α

ε

i
y1 y2

c

y

c = y  − i

c = α + βy

c = α + βy  + ε

Figure 2. If the only source of variation in y are the disturbances

to c, then the observations on y and c will line along a 45◦ line.
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that the value of the regression parameter must lie somewhere in the interval
[β, 1].

Although it may be inappropriate for estimating the structural parameter
β, the direct regression of c on y does provide the conditional expectation
E(c|y); and this endows it with a validity which it retains even if the Keynesian
model of (59) and (60) is misspecified.

In fact, the simple Keynesian model of (59) and (60) is more an epigram
than a serious scientific theory. Common sense dictates that we should give
more credence to the estimate of the conditional expectation E(c|y) than to
a putative estimate of the marginal propensity to consume devised within the
context of a doubtful model.

The Method of Maximum Likelihood

The method of maximum-likelihood constitutes a principle of estimation
which may be applied to a wide variety of problems. One of the attractions
of the method is that, granted the fulfilment of the assumptions on which it
is based, it can be shown that the resulting estimates have optimal properties.
In general, it can be shown that, at least in large samples, the variance of the
resulting estimates is the least that can be achieved by any method.

The cost of using the method is precisely the need to make the assumptions
which are necessary to sustain it. It is often difficult to assess, without a
great deal of further analysis, the extent to which the desirable properties of
the maximum-likelihood estimators survive when these assumptions are not
fulfilled. In the case of the regression model, there is considerable knowledge
on this account, some of which will be presented in later chapters.

The model to which we apply the method is the regression model with
independently and identically distributed disturbances which follow a normal
probability law. The probability density functions of the individual distur-
bances εt; t = 1, . . . , T are given by

(66) N(εt; 0, σ2) =
1√

2πσ2
exp

(
− ε2

t

2σ2

)
.

Since the ε’s are assumed to be independently distributed, their joint probabil-
ity density function (p.d.f.) is

(67)
T∏
t=1

N(εt; 0, σ2) = (2πσ2)−T/2 exp

(
−1
2σ2

T∑
t=1

ε2

)
.

If we regard the elements x1, . . . , xT as a given set of numbers, then it follows
that the conditional p.d.f. of the sample y1, . . . , yT is

(68) f(y1, . . . , yT |x1, . . . , xT ) = (2πσ2)−T/2 exp

{
−1
2σ2

T∑
t=1

(yt − α− βxt)
}
.
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The principle of maximum likelihood suggests that we should estimate α,
β and σ2 by choosing the values which maximise the probability measure which
is attributed to the sample y1, . . . , yT . That is to say, one chooses to regard
the events which have generated the sample as the most likely of all the events
which could have occurred.

Notice that, when α, β and σ2 are the arguments of the function f rather
than its parameters, and when y1, . . . , yT are data values rather than random
variables, the function is no longer a probability density function. For this
reason, we are apt to call it a likelihood function instead and to denote it by
L(α, β, σ2).

The log of the likelihood function, which has the same maximising values
as the original function, is

(69) logL = −T
2

log(2π)− T

2
log(σ2)− 1

2σ2

T∑
t=1

(yt − α− βxt)2.

It is clear that, given the value of σ2, the likelihood is maximised by the values
α̂ and β̂ which minimise the sum of squares; and we already have expressions
for α̂ and β̂ under (42) and (45) respectively.

We may obtain the maximum-likelihood estimator for σ2 from the following
first-order condition:

(70)
∂ logL
∂σ2

= − T

2σ2
+

1
2σ4

T∑
t=1

(yt − α− βxt)2 = 0.

By multiplying throughout by 2σ4/T and rearranging the result, we get the
following estimating equation:

(71) σ2(α, β) =
1
T

T∑
t=1

(yt − α− βxt)2.

By putting α̂ and β̂ in place, we obtain the estimator σ̃2 = σ2(α̂, β̂) = T−1
∑
et

already given under (46).

The General Theory of M-L Estimation

In order to derive an M-L estimator, we are bound to make an assump-
tion about the functional form of the distribution which generates the data.
However, the assumption can often be varied without affecting the form of the
M-L estimator; and the general theory of maximum-likelihood estimation can
be developed without reference to a specific distribution.

In fact, the M-L method is of such generality that it provides a model
for most other methods of estimation. For the other methods tend to generate
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estimators which can be depicted as approximations to the maximum-likelihood
estimators, if they are not actually identical to the latter.

In order to reveal the important characteristics of the likelihood estimators,
we should investigate the properties of the log-likelihood function itself.

Consider the case where θ is the sole parameter of a log-likelihood function
logL(y; θ) wherein y = [y1, . . . , yT ] is a vector of sample elements. In seeking to
estimate the parameter, we regard θ as an argument of the function whilst the
elements of y are considered to be fixed. However, in analysing the statistical
properties of the function, we restore the random character to the sample ele-
ments. The randomness is conveyed to the maximising value θ̂ which thereby
acquires a distribution.

A fundamental result is that, as the sample size increases, the likelihood
function divided by the sample size tends to stabilise in the sense that it con-
verges in probability, at every point in its domain, to a constant function.
In the process, the distribution of θ̂ becomes increasingly concentrated in the
vicinity of the true parameter value θ0. This accounts for the consistency of
maximum-likelihood estimation.

To demonstrate the convergence of the log-likelihood function, we shall
assume, as before, that the elements of y = [y1, . . . , yT ] form a random sample.
Then

(72) L(y; θ) =
T∏
t=1

f(yt; θ),

and therefore

(73)
1
T

logL(y; θ) =
1
T

T∑
t=1

log f(yt; θ).

For any value of θ, this represents a sum of independently and identically dis-
tributed random variables. Therefore the law of large numbers can be applied
to show that

(74) plim(T →∞)
1
T

logL(y; θ) = E
{

log f(yt; θ)
}
.

The next step is to demonstrate that E{logL(y; θ0)} ≥ E{logL(y; θ)},
which is to say that the expected log-likelihood function, to which the sample
likelihood function converges, is maximised by the true parameter value θ0.

The first derivative of log-likelihood function is

(75)
d logL(y; θ)

dθ
=

1
L(y; θ)

dL(y; θ)
dθ

.
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This is known as the score of the log-likelihood function at θ. Under conditions
which allow the derivative and the integral to commute, the derivative of the
expectation is the expectation of the derivative. Thus, from (75),

(76)
d

dθ
E
{
logL(y; θ)

}
=
∫
y

{
1

L(y; θ)
dL(y; θ)
dθ

}
L(y; θ0)dy,

where θ0 is the true value of θ and L(y, θ0) is the probability density function
of y. When θ = θ0, the expression on the RHS simplifies in consequence of
the cancellation of L(y, θ) in the denominator with L(y, θ0) in the numerator.
Then we get

(77)
∫
y

dL(y; θ0)
dθ

dy =
d

dθ

∫
y

L(y; θ0)dy = 0,

where the final equality follows from the fact that the integral is unity, which
implies that its derivative is zero. Thus

(78)
d

dθ
E
{
logL(y; θ0)

}
= E

{
d logL(y; θ0)

dθ

}
= 0;

and this is a first-order condition which indicates that the E{logL(y; θ)/T} is
maximised at the true parameter value θ0.

Given that the logL(y; θ)/T converges to E{logL(y; θ)/T}, it follows, by
some simple analytic arguments, that the maximising value of the former must
converge to the maximising value of the latter: which is to say that θ̂ must
converge to θ0.

Now let us differentiate (75) in respect to θ and take expectations. Pro-
vided that the order of these operations can be interchanged, then

(79)
d

dθ

∫
y

d logL(y; θ)
dθ

L(y; θ)dy =
d2

dθ2

∫
y

L(y; θ)dy = 0,

where the final equality follows in the same way as that of (77). The LHS can
be expressed as

(80)
∫
y

d2 logL(y; θ)
dθ2

L(y; θ)dy +
∫
y

d logL(y; θ)
dθ

dL(y; θ)
dθ

dy = 0

and, on substituting from (75) into the second term, this becomes∫
y

d2 logL(y; θ)
dθ2

L(y; θ)dy +
∫
y

{
d logL(y; θ)

dθ

}2

L(y; θ)dy = 0. (81)
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Therefore, when θ = θ0, we get

(82) E

{
−d

2 logL(y; θ0)
dθ2

}
= E

[{
d logL(y; θ0)

dθ

}2
]

= Φ.

This measure is know as Fisher’s Information. Since (78) indicates that the
score d logL(y; θ0)/dθ has an expected value of zero, it follows that Fisher’s
Information represents the variance of the score at θ0.

Clearly, the information measure increases with the size of the sample. To
obtain a measure of the information about θ which is contained, on average, in
a single observation, we may define φ = Φ/T

The importance of the information measure Φ is that its inverse provides
an approximation to the variance of the maximum-likelihood estimator which
become increasingly accurate as the sample size increases. Indeed, this is the
explanation of the terminology. The famous Cramèr–Rao theorem indicates
that the inverse of the information measure provides a lower bound for the
variance of any unbiased estimator of θ. The fact that the asymptotic variance
of the maximum-likelihood estimator attains this bound, as we shall proceed
to show, is the proof of the estimator’s efficiency.

The Asymptotic Distribution of the M-L Estimator

The asymptotic distribution of the maximum-likelihood estimator is es-
tablished under the assumption that the log-likelihood function obeys certain
regularity conditions. Some of these conditions are not readily explicable with-
out a context. Therefore, instead of itemising the conditions, we shall make
an overall assumption which is appropriate to our own purposes but which is
stronger than is strictly necessary. We shall image that logL(y; θ) is an analytic
function which can be represented by a Taylor-series expansion about the point
θ0:

(83)
logL(θ) = logL(θ0) +

d logL(θ0)
dθ

(θ − θ0) +
1
2
d2 logL(θ0)

dθ2
(θ − θ0)2

+
1
3!
d3 logL(θ0)

dθ3
(θ − θ0)3 + · · · .

In pursuing the asymptotic distribution of the maximum-likelihood esti-
mator, we can concentrate upon a quadratic approximation which is based the
first three terms of this expansion. The reason is that, as we have shown, the
distribution of the estimator becomes increasingly concentrated in the vicinity
of the true parameter value as the size of the sample increases. Therefore the
quadratic approximation becomes increasingly accurate for the range of values
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of θ which we are liable to consider. It follows that, amongst the regularity con-
ditions, there must be at least the provision that the derivatives of the function
are finite-valued up to the third order.

The quadratic approximation to the function, taken at the point θ0, is

(84) logL(θ) = logL(θ0) +
d logL(θ0)

dθ
(θ − θ0) +

1
2
d2 logL(θ0)

dθ2
(θ − θ0)2.

Its derivative with respect to θ is

(85)
d logL(θ)

dθ
=
d logL(θ0)

dθ
+
d2 logL(θ0)

dθ2
(θ − θ0).

By setting θ = θ̂ and by using the fact that d logL(θ̂)/dθ = 0, which follows
from the definition of the maximum-likelihood estimator, we find that

(86)
√
T (θ̂ − θ0) =

{
− 1
T

d2 logL(θ0)
dθ2

}−1{ 1√
T

d logL(θ0)
dθ

}
.

The argument which establishes the limiting distribution of
√
T (θ̂ − θ0)

has two strands. First, the law of large numbers is invoked in to show that

(87) − 1
T

d2 logL(y; θ0)
dθ2

= − 1
T

∑
t

d2 log f(yt; θ0)
dθ2

must converge to its expected value which is the information measure φ = Φ/T .
Next, the central limit theorem is invoked to show that

(88)
1√
T

d logL(y; θ0)
dθ

=
1√
T

∑
t

d log f(yt; θ0)
dθ

has a limiting normal distribution which is N(0, φ). This result depends cru-
cially on the fact that Φ = Tφ is the variance of d logL(y; θ0)/dθ. Thus the
limiting distribution of the quantity

√
T (θ̂ − θ0) is the normal N(0, φ−1) dis-

tribution, since this is the distribution of φ−1 times an N(0, φ) variable.
Within this argument, the device of scaling θ̂ by

√
T has the purpose of

preventing the variance from vanishing, and the distribution from collapsing,
as the sample size increases indefinitely. Having completed the argument, we
can remove the scale factor; and the conclusion which is to be drawn is the
following:

(89) Let θ̂ be the maximum-likelihood estimator obtained by solving
the equation d logL(y, θ)/dθ = 0, and let θ0 be the true value of
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the parameter. Then θ̂ is distributed approximately according to
the distribution N(θ0,Φ−1), where Φ−1 is the inverse of Fisher’s
measure of information.

In establishing these results, we have considered only the case where a
single parameter is to estimated. This has enabled us to proceed without
the panoply of vectors and matrices. Nevertheless, nothing essential has been
omitted from our arguments. In the case where θ is a vector of k elements, we
define the information matrix to be the matrix whose elements are the variances
and covariances of the elements of the score vector. Thus the generic element
of the information matrix, in the ijth position, is

(90) E

{
−∂

2 logL(θ0)
∂θi∂θj

}
= E

{
∂ logL(θ0)

∂θi
.
∂ logL(θ0)

∂θj

}
.
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