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MAXIMUM-LIKELIHOOD ESTIMATION

The General Theory of M-L Estimation

In order to derive an M-L estimator, we are bound to make an assump-
tion about the functional form of the distribution which generates the data.
However, the assumption can often be varied without affecting the form of the
M-L estimator; and the general theory of maximum-likelihood estimation can
be developed without reference to a specific distribution.

In fact, the M-L method is of such generality that it provides a model
for most other methods of estimation. For the other methods tend to generate
estimators which can be depicted as approximations to the maximum-likelihood
estimators, if they are not actually identical to the latter.

In order to reveal the important characteristics of the likelihood estimators,
we should investigate the properties of the log-likelihood function itself.

Consider the case where θ is the sole parameter of a log-likelihood function
logL(y; θ) wherein y = [y1, . . . , yT ] is a vector of sample elements. In seeking to
estimate the parameter, we regard θ as an argument of the function whilst the
elements of y are considered to be fixed. However, in analysing the statistical
properties of the function, we restore the random character to the sample ele-
ments. The randomness is conveyed to the maximising value θ̂ which thereby
acquires a distribution.

A fundamental result is that, as the sample size increases, the likelihood
function divided by the sample size tends to stabilise in the sense that it con-
verges in probability, at every point in its domain, to a constant function.
In the process, the distribution of θ̂ becomes increasingly concentrated in the
vicinity of the true parameter value θ0. This accounts for the consistency of
maximum-likelihood estimation.

To demonstrate the convergence of the log-likelihood function, we shall
assume, as before, that the elements of y = [y1, . . . , yT ] form a random sample.
Then

(1) L(y; θ) =
T∏
t=1

f(yt; θ),

and therefore

(2)
1
T

logL(y; θ) =
1
T

T∑
t=1

log f(yt; θ).

For any value of θ, this represents a sum of independently and identically dis-
tributed random variables. Therefore the law of large numbers can be applied
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to show that

(3) plim(T →∞)
1
T

logL(y; θ) = E
{

log f(yt; θ)
}
.

The next step is to demonstrate that E{logL(y; θ0)} ≥ E{logL(y; θ)},
which is to say that the expected log-likelihood function, to which the sample
likelihood function converges, is maximised by the true parameter value θ0.

The first derivative of log-likelihood function is

(4)
d logL(y; θ)

dθ
=

1
L(y; θ)

dL(y; θ)
dθ

.

This is known as the score of the log-likelihood function at θ. Under conditions
which allow the derivative and the integral to commute, the derivative of the
expectation is the expectation of the derivative. Thus, from (4),

(5)
d

dθ
E
{

logL(y; θ)
}

=
∫
y

{
1

L(y; θ)
dL(y; θ)
dθ

}
L(y; θ0)dy,

where θ0 is the true value of θ and L(y, θ0) is the probability density function
of y. When θ = θ0, the expression on the RHS simplifies in consequence of
the cancellation of L(y, θ) in the denominator with L(y, θ0) in the numerator.
Then we get

(6)
∫
y

dL(y; θ0)
dθ

dy =
d

dθ

∫
y

L(y; θ0)dy = 0,

where the final equality follows from the fact that the integral is unity, which
implies that its derivative is zero. Thus

(7)
d

dθ
E
{

logL(y; θ0)
}

= E

{
d logL(y; θ0)

dθ

}
= 0;

and this is a first-order condition which indicates that the E{logL(y; θ)/T} is
maximised at the true parameter value θ0.

Given that the logL(y; θ)/T converges to E{logL(y; θ)/T}, it follows, by
some simple analytic arguments, that the maximising value of the former must
converge to the maximising value of the latter: which is to say that θ̂ must
converge to θ0.

Now let us differentiate (4) in respect to θ and take expectations. Provided
that the order of these operations can be interchanged, then

(8)
d

dθ

∫
y

d logL(y; θ)
dθ

L(y; θ)dy =
d2

dθ2

∫
y

L(y; θ)dy = 0,
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where the final equality follows in the same way as that of (6). The LHS can
be expressed as

(9)
∫
y

d2 logL(y; θ)
dθ2

L(y; θ)dy +
∫
y

d logL(y; θ)
dθ

dL(y; θ)
dθ

dy = 0

and, on substituting from (4) into the second term, this becomes∫
y

d2 logL(y; θ)
dθ2

L(y; θ)dy +
∫
y

{
d logL(y; θ)

dθ

}2

L(y; θ)dy = 0. (10)

Therefore, when θ = θ0, we get

(11) E

{
−d

2 logL(y; θ0)
dθ2

}
= E

[{
d logL(y; θ0)

dθ

}2
]

= Φ.

This measure is know as Fisher’s Information. Since (7) indicates that the
score d logL(y; θ0)/dθ has an expected value of zero, it follows that Fisher’s
Information represents the variance of the score at θ0.

Clearly, the information measure increases with the size of the sample. To
obtain a measure of the information about θ which is contained, on average, in
a single observation, we may define φ = Φ/T

The importance of the information measure Φ is that its inverse provides
an approximation to the variance of the maximum-likelihood estimator which
become increasingly accurate as the sample size increases. Indeed, this is the
explanation of the terminology. The famous Cramèr–Rao theorem indicates
that the inverse of the information measure provides a lower bound for the
variance of any unbiased estimator of θ. The fact that the asymptotic variance
of the maximum-likelihood estimator attains this bound, as we shall proceed
to show, is the proof of the estimator’s efficiency.

The Asymptotic Distribution of the M-L Estimator

The asymptotic distribution of the maximum-likelihood estimator is es-
tablished under the assumption that the log-likelihood function obeys certain
regularity conditions. Some of these conditions are not readily explicable with-
out a context. Therefore, instead of itemising the conditions, we shall make
an overall assumption which is appropriate to our own purposes but which is
stronger than is strictly necessary. We shall image that logL(y; θ) is an analytic
function which can be represented by a Taylor-series expansion about the point
θ0:

(12)
logL(θ) = logL(θ0) +

d logL(θ0)
dθ

(θ − θ0) +
1
2
d2 logL(θ0)

dθ2
(θ − θ0)2

+
1
3!
d3 logL(θ0)

dθ3
(θ − θ0)3 + · · · .
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In pursuing the asymptotic distribution of the maximum-likelihood esti-
mator, we can concentrate upon a quadratic approximation which is based the
first three terms of this expansion. The reason is that, as we have shown, the
distribution of the estimator becomes increasingly concentrated in the vicinity
of the true parameter value as the size of the sample increases. Therefore the
quadratic approximation becomes increasingly accurate for the range of values
of θ which we are liable to consider. It follows that, amongst the regularity con-
ditions, there must be at least the provision that the derivatives of the function
are finite-valued up to the third order.

The quadratic approximation to the function, taken at the point θ0, is

(13) logL(θ) = logL(θ0) +
d logL(θ0)

dθ
(θ − θ0) +

1
2
d2 logL(θ0)

dθ2
(θ − θ0)2.

Its derivative with respect to θ is

(14)
d logL(θ)

dθ
=
d logL(θ0)

dθ
+
d2 logL(θ0)

dθ2
(θ − θ0).

By setting θ = θ̂ and by using the fact that d logL(θ̂)/dθ = 0, which follows
from the definition of the maximum-likelihood estimator, we find that

(15)
√
T (θ̂ − θ0) =

{
− 1
T

d2 logL(θ0)
dθ2

}−1{ 1√
T

d logL(θ0)
dθ

}
.

The argument which establishes the limiting distribution of
√
T (θ̂ − θ0)

has two strands. First, the law of large numbers is invoked in to show that

(16) − 1
T

d2 logL(y; θ0)
dθ2

= − 1
T

∑
t

d2 log f(yt; θ0)
dθ2

must converge to its expected value which is the information measure φ = Φ/T .
Next, the central limit theorem is invoked to show that

(17)
1√
T

d logL(y; θ0)
dθ

=
1√
T

∑
t

d log f(yt; θ0)
dθ

has a limiting normal distribution which is N(0, φ). This result depends cru-
cially on the fact that Φ = Tφ is the variance of d logL(y; θ0)/dθ. Thus the
limiting distribution of the quantity

√
T (θ̂ − θ0) is the normal N(0, φ−1) dis-

tribution, since this is the distribution of φ−1 times an N(0, φ) variable.
Within this argument, the device of scaling θ̂ by

√
T has the purpose of

preventing the variance from vanishing, and the distribution from collapsing,
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as the sample size increases indefinitely. Having completed the argument, we
can remove the scale factor; and the conclusion which is to be drawn is the
following:

(18) Let θ̂ be the maximum-likelihood estimator obtained by solving
the equation d logL(y, θ)/dθ = 0, and let θ0 be the true value of
the parameter. Then θ̂ is distributed approximately according to
the distribution N(θ0,Φ−1), where Φ−1 is the inverse of Fisher’s
measure of information.

In establishing these results, we have considered only the case where a
single parameter is to estimated. This has enabled us to proceed without
the panoply of vectors and matrices. Nevertheless, nothing essential has been
omitted from our arguments. In the case where θ is a vector of k elements, we
define the information matrix to be the matrix whose elements are the variances
and covariances of the elements of the score vector. Thus the generic element
of the information matrix, in the ijth position, is

(19) E

{
−∂

2 logL(θ0)
∂θi∂θj

}
= E

{
∂ logL(θ0)

∂θi
.
∂ logL(θ0)

∂θj

}
.
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