
LECTURES IN MATHEMATICAL STATISTICS

DISTRIBUTION THEORY

The Gamma Distribution

Consider the function

(1) Γ(n) =
∫ ∞

0

e−xxn−1dx.

We shall attempt to integrate this. First recall that

(2)
∫

u
dv

dx
= uv −

∫
v
du

dx
dx.

This method of integration is called integration by parts and it can be seen
as a consequence of the product rule of differentiation. Let u = xn−1 and
dv/dx = e−x. Then v = −e−x and

(3)

∫ ∞

0

e−xxn−1dx =
[
−xn−1e−x +

∫
e−x(n − 1)xn−2dx

]∞

0

= (n − 1)
∫ ∞

0

e−xxn−2dx.

We may express the above by writing Γ(n) = (n − 1)Γ(n − 1), from which it
follows that

(4) Γ(n) = (n − 1)(n − 2) · · ·Γ(δ),

where 0 < δ < 1. Examples of the gamma function are

Γ(1/2) =
√

π,(5)

Γ(1) =
∫ ∞

0

e−xdx =
[
− e−x

]∞

0

= 1,(6)

Γ(n) = (n − 1)(n − 2) · · ·Γ(1) = (n − 1)!.(7)

Here it is assumed that n is an integer. The first of these results can be verified
by confirming the following identities:

(8)

√
2π =

∫ ∞

−∞
e−z2/2dz

=
1
2

√
2

∫ ∞

−∞
e−xx−1/2dx =

√
2Γ(1/2).

The first equality is familiar from the integration of the standard normal den-
sity function. The second equality follows when the variable of integration is
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changed from z to x = z2/2, and the final equality invokes the definition of the
gamma function, which is provided by equation (1).

Using the gamma function, we may define a probability density function
known as the Gamma Type 1:

(9) γ1(x) =
e−xxn−1

Γ(n)
0 < x < ∞.

For an integer value of n, the Gamma Type 1 gives the probability distri-
bution of the waiting time to the nth event in a Poisson arrival process of unit
mean. When n = 1, it becomes the exponential distribution, which relates to
the waiting time for the first event.

To define the type 2 gamma function, we consider the transformation z =
βx. Then, by the change-of-variable technique, we have

(10)

γ2(z) = γ1{x(z)}
∣∣∣∣dx

dz

∣∣∣∣
=

e−z/β(z/β)α−1

Γ(α)
1
β

.

Here we have changed the notation by setting α = n. The function is written
more conveniently as

(11) γ2(z;α, β) =
e−z/βzα−1

Γ(α)βα
.

Consider the γ2 distribution where α = r/2 with r ∈ {0, 1.2. . . .} and
β = 2. This is the so-called chi-square distribution of r degrees of freedom:

(12) χ2(r) =
e−x/2x(r/2)−1

Γ(r/2)2r/2
.

Now let w ∼ N(0, 1) and consider w2 = y ∼ g(y). Then A = {−θ < w <
θ} = {0 < y < θ2} defines an event which has the probability P (A) = P{0 <
y < θ2} = 2P{0 < w < θ}. Hence

(13)

P (A) = 2
∫ θ

0

N(w)dw = 2
∫ θ2

0

f{w(y)}dw

dy
dy

= 2
∫ θ2

0

1√
(2π)

e−w2/2dw = 2
∫ θ2

0

1√
(2π)

e−y/2 1
2
y−1/2dy.

Under the integral of the final expression we have

(14) f(y) =
e−y/2y1/2

√
π
√

2
=

e−y/2y1/2

Γ(1/2)21/2
= χ2(2).

2



LECTURES IN MATHEMATICAL STATISTICS

Hence y ∼ χ2(2).

The Moment Generating Function of the Gamma Distribution

Now let us endeavour to find the moment generating function of the γ1

distribution. We have

(15)

Mx(t) =
∫

ext e
−xxn−1

Γ(n)
dx

=
∫

e−x(1−t)xn−1

Γ(n)
dx.

Now let w = x(1 − t). Then, by the change-of-variable technique,

(16)

Mx(t) =
∫

e−wwn−1

(1 − t)n−1Γ(n)
1

(1 − t)
dw

=
1

(1 − t)n

∫
e−wwn−1

Γ(n)
dw

=
1

(1 − t)n
.

We have defined the γ2 distribution by

(17) γ2 =
e−x/βxα−1

Γ(α)βα
; 0 ≤ x < ∞.

Hence the moment generating function is defined by

(18)

Mx(t) =
∫ ∞

0

etxe−x/βxα−1

Γ(α)βα
dx

=
∫ ∞

0

e−x(1−βt)/βxα−1

Γ(α)βα
dx.

Let y = x(1 − βt)/β. which gives dy/dx = (1 − βt)/β. Then, by the change of
variable technique we get

(19)

Mx(t) =
∫ ∞

0

e−y

Γ(α)βα

(
βy

1 − βt

)α−1
β

(1 − βt)
dy

=
1

(1 − βt)α

∫
yα−1e−y

Γ(α)
dt

=
1

(1 − βt)α
.
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SAMPLING THEORY

Our methods of statistical inference depend upon the procedure of drawing
random samples from the population whose properties we wish to assess. We
may regard the random sample as a microcosm of the population; and our
inferential procedures can be described loosely as the process of assessing the
properties of the samples and attributing them to the parent population. The
procedures may be invalidated, or their usefulness may be prejudiced, on two
accounts. First, any particular sample may have properties which diverge from
those of the population in consequence of random error. Secondly, the process
of sampling may induce systematic errors which cause the properties of the
samples on average to diverge from those of the populations. We shall attempt
to eliminate such systematic bias by adopting appropriate methods of inference.
We shall also endeavour to assess the extent to which random errors weaken
the validity of the inferences.

(20) A random sample is a set of n random variables x1, x2, . . . , xn which
are distributed independently according to a common probability
density function. Thus xi ∼ f(xi) for all i, and the joint probabil-
ity density function of the sample elements is f(x1, x2, . . . , xn) =
f(x1)f(x2) · · · f(xn).

Consider for example, the sample mean x̄ = (x1 + x2 + · · · + xn)/n We
have

(21) E(x̄) = E

{
1
n

∑
xi

}
=

1
n

n∑
i=1

E(xi) = μ.

The variance of a sum of random variables is given generally by the formula

(22) V
(∑

xi

)
=

∑
i

V (xi) +
∑

i

∑
j

C(xi, xj),

where i �= j. But, the independence of the variables implies that C(xi, xj) = 0
for all i, j; and, therefore,

(23) V (x̄) =
1
n2

V
(∑

xi

)
=

1
n2

∑
V (xi) =

σ2

n
.

Now consider the sample variance defined as

(24) s2 =
1
n

n∑
i=1

(xi − x̄)2.

The may be expanded as follows:

(25)

1
n

n∑
i=1

(xi − x̄)2 =
1
n

n∑
i=1

{(xi − μ) − (x̄ − μ)}2

=
1
n

∑
(xi − μ)2 − 2

n

∑
(xi − μ)(x̄ − μ) + (x̄ − μ)2

=
1
n

∑
(xi − μ)2 − (x̄ − μ)2

.
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It follows that

(26)

E(s2) =
1
n

∑
E(xi − μ)2 − E{(x̄ − μ)2}

=
1
n
{nV (x) + V (x̄)}

= σ2 − σ2

n
= σ2 (n − 1)

n
.

We conclude that the sample variance is a biased estimator of the population
variance. To obtain an unbiased estimator, we use

(27) σ̂2 =
1

n − 1

∑
(xi − x̄)2.

The Sampling Distributions

The processes of inference are enhanced if we can find the distributions of
the various sampling statistics which interest us; for these will give us a better
idea of the sampling error which besets the inferences. The expectations of the
sample moments have already provided use with some of the parameters of these
sampling distributions. We must now attempt to derive their functional forms
from the probability distribution s of the parent populations. The following
theorem is useful in this connection:

(28) Let x = {x1, x2, . . . , xn} be a random vector with a probability den-
sity function f(x) and let u(x) ∼ g(x) be a scalar-valued function
of this vector. Then the moment generating function of g(u) is

M{u, t} = E(eut) =
∫

x

eu(x)tf(x)dx.

This result may enable us to find the moment generating function of a
statistic which is a function of the vector of sample points x = {x1, x2, . . . , xn}.
We might then recognise this moment-generating function as one which pertains
to a know distribution, which gives us the sampling distribution which we are
seeking. We use this method in the following theorems:

(29) Let x1 ∼ N(μ1, σ
2
1) and x2 ∼ N(μ2, σ

2
2) be two mutually indepen-

dent normal variates. Then their weighted sum y = β1x1 + β2x2 is
a normal variate y ∼ N(μ1β1 + μ2β2, σ

2
1β2

1 + σ2
2β2

2).

Proof. From the previous theorem it follows that

(30)

M(y, t) = E{e(β1x1+β2x2)t}

=
∫

x1

∫
x2

eβ1x1teβ1x1tf(x1, x2)dx1dx2

=
∫

x1

eβ1x1tf(x1)dx1

∫
x2

eβ1x1tfx2)dx2,
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since f(x1, x2) = f(x1)f(x2) by the assumption of mutual independence. Thus

(31) M(y, t) = E(eβ1x1t)E(eβ2x2t).

But, if x1 and x2 are normal, then

(32) E(eβ1x1t) = eμ1β1te(σ1β1t)2/2 and E(eβ2x2t) = eμ2β2te(σ2β2t)2/2.

Therefore
M(y, t) = e(μ1β1+μ2β2)te(σ1β1+σ2β2)

2t2/2,

which signifies that y ∼ N(μ1β1 + μ2β2, σ
2
1β2

1 + σ2
2β2

2).

This theorem may be generalised immediately to encompass a weighted com-
bination of an arbitrary number of mutually independent normal variates.

Next we state a theorem which indicates that the sum of a set of indepen-
dent chi-square variates is itself a chi-square variate:

(33) Let x1, x2, . . . , xn be n mutually independent chi-square variates
with xi ∼ χ2(ki) for all i. Then y =

∑n
i=1 xi has the chi-square

distribution with k =
∑

ki degrees of freedom. That is to say,
y ∼ χ2(k).

Proof. We have

(34)
M(y, t) = E{e(x1+x2+···+xn)t}

= E{ex1t}E{ex2t} · · ·E{exnt},

since x1, . . . , xn are mutually independent. But we know from (12) that a χ2(r)
variate has the distribution of a γ2(r/2, 2) variate and that we know that the
moment generating function of the χ2(r) is (1 − 2t)−(r/2). Hence

(35)
M(y, t) = (1 − 2t)−(k1/2)(1 − 2t)−(k2/2) · · · (1 − 2t)−(kn/2)

= (1 − 2t)−(k/2).

Therefore y ∼ χ2(k).
We have already shown that, if x ∼ N(μ, σ2), then {(x − μ)/σ}2 ∼ χ2(1).

From this it follows, in view of the preceding result, that

(36) If {x1, x2, . . . , xn} is a random sample with xi ∼ N(μ, σ2) for all i,
then

y =
n∑

i=1

(
xi − μ

σ

)2

has a chi-square distribution with n degrees of freedom, which can
be expressed by writing y ∼ χ2(n).
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The Decomposition of a Chi-Square

Consider the following identity:

(37)

n∑
i=1

(xi − μ)2 =
n∑

i=1

{(xi − x̄) − (μ − x̄)}2

=
∑

(xi − x̄)2 − 2
∑

(xi − x̄)(μ − x̄) + n(μ − x̄)2

=
∑

(xi − x̄)2 + n(μ − x̄)2.

We can show that if x1, . . . , xn constitute a random sample for a normal dis-
tribution, then the variables (xi − x̄); i = 1, . . . , n are statistically independent
of the variable (x̄ − μ). This indicates that the two elements of the L.H.S of
equation (25) are independent. We shall take the result on trust for the mo-
ment and we shall prove it later. Given this result, we are in the position to
state an important result concerning the decomposition of a chi-square variate:

(38) Let {x1, x2, . . . , xn} be a random sample with xi ∼ N(μ, σ2) for all
i. Then

n∑
i=1

(xi − μ)2

σ2
=

n∑
i=1

(xi − x̄)2

σ2
+ n

(x̄ − μ)2

σ2

is a sum of statistically independent terms with

(a)
n∑

i=1

(xi − μ)2

σ2
∼ χ2(n),

(b)
n∑

i=1

(xi − x̄)2

σ2
∼ χ2(n − 1),

(c) n
(x̄ − μ)2

σ2
∼ χ2(2).

Proof. In proving this, we recognise at the start that, if xi ∼ N(μ, σ2) for all
i, then

(39)
x̄ ∼ N(μ, σ2/n) and

√
n

(x̄ − μ)
σ

∼ N(0, 1),

whence n
(x̄ − μ)2

σ2
∼ χ2(2).

Thus we have the result under (36, c). Moreover, we have already established
the result under (36, a); and so it remains to demonstrate the result under (36,
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b). Consider, therefore, the moment generating function of the χ2(n) variate.
This is

(40)

E

[
exp

{
t
∑ (xi − μ)2

σ2

}]
= E

[
exp

{
tn

(x̄ − μ)2

σ2
+ t

∑
(xi − x̄)2

σ2

}]

= E

[
exp

{
tn

(x̄ − μ)2

σ2

}]
E

[
exp

{
t

∑
(xi − x̄)2

σ2

}]
.

Here the statistical independence of the components of the sum has allowed
the expectation to be decomposed into the product of two expectations. Since
the sum on the LHS and the first of the components of the RHS have been
recognised as chi-square variates, we can make use of the know forms of the
moment-generating functions to rewrite the equation as

(41) (1 − 2t)−n/2 = (1 − 2t)−1/2E

[
exp

{
t

∑
(xi − x̄)2

σ2

}]
.

It follows that

(42) E

[
exp

{
t

∑
(xi − x̄)2

σ2

}]
=

(1 − 2t)−n/2

(1 − 2t)−1/2
= (1 − 2t)−(n−1)/2;

and this is the moment generating function of a χ2(n − 1) variate. The result
under (36, b) follows immediately.

The Independence of the Sample Mean and the Sample Variance.

(43) Let {x1, x2, . . . , xn} be a random sample with xi ∼ N(μ, σ2) for all
i. Then

x̄ =
1
n

n∑
i=1

xi and
n∑

i=1

(xi − x̄)2

are statistically independent random variables.

Proof. To prove this proposition we shall adopt a matrix notation. Consider
the summation vector i = [1, 1, . . . , 1]′ comprising n units.

We can use this to construct the matrix operator P = i(i′i)−1i′ = ii′/n.
If x = [x1, x2, . . . , xn]′ is the vector of the sample elements, then Px = x̄i =
[x̄, x̄, . . . , x̄]′ is a vector which contain n repetitions of the sample mean. Also
(I − P )x = x − x̄i is the vector of the deviations of the sample elements from
their mean. Observe that P = P ′ = P 2 and that, likewise, I − P = (I − P )′ =
(I − P )2.

The matrix P is used in constructing the following identity:

(44)
x − μi = P (x − μi) + (I − P )(x − μi)

= (x̄ − μ)i + (x − x̄i).
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The quadratic product of these vectors is

(45)

(x − μi)′(x − μi) = (x − μi)′P (x − μi) + (x − μi)′(I − P )(x − μi)

= n(x̄ − μ)2 +
n∑

i=1

(xi − x̄)2.

We demonstrate the proposition by showing that this can be written as

(46) (x − μi)′(x − μi) = w2
1 + w′

2w2

Where w1 and w2 are mutually independent normal variates by virtue of having
zero covariance. Consider therefore the matrix

(47) C ′ =
[

c′1
C ′

2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
n

1√
n

1√
n

· · · 1√
n

1√
n

1√
2

−1√
2

0 · · · 0 0
1√
2.3

1√
2.3

−2√
2.3

· · · 0 0

...
...

...
...

...
1√

(n−1)n

1√
(n−1)n

1√
(n−1)n

· · · −(n−1)√
(n−1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be seen that C ′C = CC ′ = I is the identity matrix. Moreover

(48)
CC ′ = c1c′1 + C2C

′
2

= P + (I − P ).

Now if the vector (x − μi) ∼ N(0, σ2I) has a multivariate spherical normal
distribution, which is to say that its elements are statistically independent,
then the same must be true of the vector

(49) C ′(x − μi) =
[

c′1(x − μi)

C ′
2(x − μi)

]
=

[
w1

w2

]
.

Finally, we recognise that

(50)

w1 = c′1(x − μi) =
√

n(x̄ − μ) and

w′
2w2 = (x − μi)C2C

′
2(x − μi) =

n∑
i=1

(xi − x̄)2

must therefore be statistically independent, which proves the proposition.

Student’s t Distribution and Fisher’s F Distribution

Two distributions which are of prime importance in statistical inference
are the t and the F
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(51) Let z ∼ N(0, 1) be a standard normal variate, and let w ∼ χ2(n)
be a chi-square variate of n degrees of freedom distributed indepen-
dently of z. Then

t =
{

z

/√
w

n

}
∼ t(n)

is said to have a t distribution of n degrees of freedom.

We shall endeavour to find the functional form of the t(n) distribution.
Consider the density functions of z and w which are respectively

(52) N(z; 0, 1) =
1√
2π

e−z2/2 and χ2(w;n) =
e−w/2w(n/2)−1

Γ(n/2)2n/2
.

On account of the independence of z and w, we can write their joint density
function as

(53) ψ(z, w) =
1√
2π

e−z2/2e−w/2w(n/2)−1

Γ(n/2)2n/2
,

which is the product of the two density functions. We can proceed to find a
joint density function γ(t, w) by applying the change of variable technique to
ψ(z, w). Consider the transformation of {(z, w);−∞ < z < ∞; 0 < w < ∞}
into {(t, w);−∞ < t < ∞; 0 < w < ∞}. In view of the relationship z =
t
√

w/
√

n, we derive the following Jacobian which is the determinant of the
matrix of the derivatives of the inverse transformation mapping from (t, w) to
(z, w):

(54)

∣∣∣∣∣∣∣

∂z

∂t

∂z

∂w

∂w

∂t

∂w

∂w

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

√
w√
n

t

2
√

wn

0 1

∣∣∣∣∣∣∣
=

√
w√
n

.

Therefore

(55)

γ(t, w) = ψ{z(t, w), w}|J |

=
1√
2π

e−t2w/(2n)e−w/2w(n/2)−1

Γ(n/2)2n/2

√
w√
n

.

By simplifying, we get

(56)

γ(t, w) = ψ{z(t, w), w}|J |

=
w(n−1)/2

√
πnΓ(n/2)2(n+1)/2

exp
{
− w

2

(
1 +

t2

n

)}
.

Let us define q = w(1 + t2/n)/2. Then

(57) w =
2q

(1 + t2/n)
and

dw

dq
=

2
(1 + t2/n)

,

10
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and we may write

(58)

g(t) =
∫ ∞

0

γ
{
t, w(q)

}dw

dq
dq

=
∫ ∞

0

1√
πnΓ(n/2)2(n+1)/2

(
2q

1 + t2/n

)(n−1)/2

e−q

(
2

1 + t2/n

)
dq

=
1√

πnΓ(n/2)
1

(1 + t2/n)(n+1)/2

∫ ∞

0

e−qq(n−1)/2dq.

But, by definition. the value of the integral is Γ{(n + 1)/2}, so

(59) g(t) =
Γ{(n + 1)/2}√

πnΓ(n/2)
1

(1 + t2/n)(n+1)/2
.

This gives us the functional form of Student’s t distribution.
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