MULTIVARIATE DISTRIBUTIONS

Each element a random vector x = [x1,29,...,x,] describes an aspect of a statistical outcome. We
write x € R"™ to signify that x is a point in a real n-space.

A function f(x) = f(x1,x2,...,z,) assigning a probability measure to every point in R™ is called a
multivariate p.d.f.

Consider the partitioned vector
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The marginal p.d.f, of x1 is
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whereas the conditional p.d.f of x; given x5 is
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The expected value of the ith element of x is

Ba) = [ fla)da
/ /xzfxl,... Ndzy, . d,
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where f(x;) is the marginal distribution of z;.

The expected value E(z) of the vector x = [x1,x2,...,2,]" is the vector containing the expected values

of the elements:
E(z) = [E(x1), E(x2), ..., E(z,)]
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The variance-covariance matrix or dispersion matrix of x is a matrix D(x) = ¥ = [0;;] containing the
variances and covariances of the elements:
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The variance—covariance matrix is specified in terms of the vector x by writing

D) = B{ [~ B(@)] [z - B(=)]'}
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By forming the outer product within the braces, we get the matrix
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On applying the expectation operator to each of the elements, we get the matrix of variances and
covariances.



Quadratic products of the dispersion matrix. The inner product of the summation vector + =

[1,1,...,1) with x = [x1,z2,...,x,]" is the sum of the elements of x:
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The variance of the sum of the elements of a random vector z is given by
V(i/z)=1/D(x).

This is written more explicitly as
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Quadratic products may be represented in scalar notation in a various ways:
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To generalise this, let x = [z1,x2,...,2,]" be a vector of random variables and a = [a1, a9, . ..

a vector of constants.

Then, the variance of the weighted sum a’z =), a;z; is V(a'x) = o’ D(z)a:
a'D(x)a = a’E{ [z — E(z)] [z — E(a:)}/}

= {[a’x—E(a'z)] [ax—E(ax)}/}
= E{ ld'x — E(a’a;)]2} =V(d'z).
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This demonstrates that D(z) = ¥ = [0;] is a positive semi-definite matrix with such, for any vector a

of the appropriate order, there is
a'Ya >0, since D(d'z)=V(dz) >0,
on account of the non-negativity of all variances.

In scalar notation, there is
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