
THE THEORY OF POINT ESTIMATION

A point estimator uses the information available in a sample to obtain a single
number that estimates a population parameter. There can be a variety of estimators
of the same parameter that derive from different principles of estimation, and it
is necessary to choose amongst them. Therefore, criteria are required that will
indicate which are the acceptable estimators and which of these is the best in given
circumstances.

Often, the choice of an estimate is governed by practical considerations such as
the ease of computation or the ready availability of a computer program. In what
follows, we shall ignore such considerations in order to concentrate on the criteria
that, ideally, we would wish to adopt. The circumstances that affect the choice are
more complicated than one might imagine at first.

Consider an estimator θ̂n based on a sample of size n that purports to estimate
a population parameter θ, and let θ̃n be any other estimator based on the same
sample. If

P (θ − c1 ≤ θ̂n ≤ θ + c2) ≥ P (θ − c1 ≤ θ̃n ≤ θ + c2)

for all values of c1, c2 > 0, then θ̂n would be unequivocally the best estimator.
However, it is possible to show that an estimator has such a property only in very
restricted circumstances.

Instead, we must evaluate an estimator against a list of partial criteria, of
which we shall itemise the principal ones. The first is the criterion of unbiasedness.

(a) θ̂ is an unbiased estimator of the population parameter θ if E(θ̂) = θ.

On it own, this is an insufficient criterion. Thus, for example, we observe that both
a single element xi from a random sample of size n and the average x̄ =

∑
xi/n

of all the sample elements constitute unbiased estimators of the population mean
μ = E(xi). However, the sample average is always the preferred estimator.

This suggests that we must also consider the dispersion of the estimators,
which, in the cases of the examples above, are V (xi) = σ2, which is the population
variance, and V (x̄) = σ2/n, which is some fraction of that variance.

We observe that V (x̄) → 0 and n → ∞. The collapse of its variance, together
with the fact that it is an unbiased estimate of μ, ensures that x̄ converges on μ as
the sample size increases, which is to say that it is a consistent estimator.

Some quite reasonable estimators do not have finite expected values or finite
variances, in which case the criteria that make reference to these moments become
irrelevant.

For example, the obvious estimate of 1/μ, based on a random sample xi ∼
N(μ, σ2); i = 1, . . . , n, is 1/x̄. However, for any finite value of μ there is a finite
probability that x̄ will fall in the arbitrarily small interval [−ε, ε] that contains
zero. Division by zero generates infinity; and, for this reason, the integral that
would, otherwise, define the expectation of 1/x̄ does not converge. For a while,
such pathologies will be ignored, and we shall persist in itemising the criteria.

(b) θ̂ has minimum variance within a given class of estimators if E[{θ̂−E(θ̂)}2]
≤ E[{θ̃ − E(θ̃)}2], where θ̃ is any other estimator of the same class.

However, it is possible that a quite reasonable estimator has no finite variance.
For estimators that do have finite first and second moments, the following criterion
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implies a trade-off between (a) and (b); and it suggests that it may be worthwhile
to accept some bias in return for a reduction in variance.

(c) θ̂ has minimum mean-square error if E({θ̂ − θ}2) ≤ E({θ̃ − θ}2), where θ
is the true parameter value and θ̃ is any other estimator of the same class.

To elucidate this criterion consider the following:

E
(
{θ̂ − θ}2

)
= E

([
{θ̂ − E(θ̂)} − {θ − E(θ̂)}

]2)
= E

[
{θ̂ − E(θ̂)}2

]
− 2E

[
{θ̂ − E(θ̂)}{θ − E(θ̂)

}
] + E

[
{θ − E(θ̂)}2

]
= V (θ̂) + E

[
{θ − E(θ̂)}2

]
.

The final equality follows from the fact that the cross product vanishes, and it
shows that the mean-square error is the sum of the variance and the square of the
bias.

Unfortunately, the criterion on its own is too ambitious, and we must seek the
minimum-mean-square error estimator within a restricted class of estimators, such
as the class of estimators that are linear functions of the sample observations.

If bias is disallowed, then the result is the following criterion:

(d) θ̂ is minimum-variance unbiased estimator of θ if it has E(θ̂) = θ and
if E

(
{θ̂ − θ}2

)
≤ E

(
{θ̃ − θ}2

)
, where θ̃ is any other unbiased estimator

with E(θ̃) = θ.

This criterion is also too ambitious. We can find the minimum variance unbi-
ased estimator or the “best” estimator, as it is sometimes called, only if we happen
to know the functional form of the distribution of the population. If we don’t
know this functional form, then we might be content with finding the “best” linear
unbiased estimator, which is also known as the BLUE estimator.

(e) The “best” or, equivalently, the minimum-variance linear unbiased esti-
mator of θ is a linear function θ̂ of the sample data which has E(θ̂) = θ and
E({θ̂−θ}2) ≤ E({θ̃−θ}2), where θ̃ is any other linear unbiased estimator
with E(θ̃) = θ.

The sample mean x̄ =
∑

xi/n is the minimum-variance unbiased estimator of
μ in the normal population with a p.d.f. N(μ, σ2). Also, x̄ is certainly the best
linear unbiased estimator, regardless of the functional form of the distribution of
the parent population.

Stochastic Convergence

We are also interested in the asymptotic properties of the estimates as n → ∞.
In fact, for estimators with complicated sample distributions and for estimators
that lack finite moments, we may have to depend entirely upon as assessment of
their relative asymptotic properties. Such estimators have distributions that tend
to limiting distributions, as n → ∞, that are usually normal. We can compare the
estimates by comparing their limiting distributions.
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It is a simple matter to define what is meant by the convergence of a sequence
{an} of nonstochastic elements. We say that the sequence is convergent or, equiv-
alently, that it tends to a limiting constant a if, for any small positive number ε,
there exists a number N = N(ε) such that |an − a| < ε for all n > N . This is
indicated by writing lim(n → ∞)an = a or, alternatively, by stating that an → a
as n → ∞.

The question of the convergence of a sequence of random variables is less
straightforward, and there are a variety of modes of convergence. Let {xt} be a
sequence of random variables and let c be a constant. Then

(f) xt converges to c weakly in probability, written xt
P−→ c or plim(xt) = c, if,

for every ε > 0,
lim(t → ∞)P (|xt − c| > ε) = 0,

(g) xt converges to c strongly in probability or almost certainly,
written xt

a.s.−→ c, if, for every ε > 0,

lim(τ → ∞)
( ⋃

t>τ

P (|xt − c| > ε
)

= 0,

(h) xt converges to c in mean square, written xt
m.s.−→ c, if

lim(t → ∞)E(|xt − c|2) = 0.

In the same way, we define the convergence of a sequence of random variables to a
random variable. Thus

(j) A sequence {xt} of random variables is said to converge to a random variable
in the sense of (f), (g) or (h) if the sequence {xt −x} converges to zero in that
sense.

Of these three criteria of convergence, weak convergence in probability is
the most commonly used in econometrics. The other criteria are too stringent.
Consider the criterion of almost sure convergence which can also be written as
lim(τ → ∞)P (

⋂
t>τ |xt − c| ≤ ε) = 1. This requires that, in the limit, all the

elements of {xt} with t > τ should lie simultaneously in the interval [c − ε, c + ε]
with a probability of one.

The condition of weak convergence in probability requires much less: it requires
only that single elements, taken separately, should have a probability of one of lying
in this interval. Clearly

If xt converges almost certainly to c, then it converges to c weakly in proba-
bility. Thus xt

a.s.−→ c implies xt
P−→ c.

The disadvantage of the criterion of mean-square convergence is that it requires
the existence of second-order moments; and, in many econometric applications, it
cannot be guaranteed that an estimator will possess such moments. In fact,
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If xt converges in mean square, then it also converges weakly in probability, so
that xt

m.s.−→ c implies xt
P−→ c.

A theorem that finds considerable use in econometrics is Slutsky’s theorem
concerning the probability limits of variables that are continuous functions of other
random variables that have well-defined probability limits:

If g(xt) is a continuous function and if plim(xt) = c is a constant, then
plim{g(xt)} = g{plim(xt)}.
The concept of convergence in distribution has equal importance in economet-

rics with the concept of convergence in probability. It is fundamental to the proof
of the central limit theorem.

(c) Let {xt} be a sequence of random variables and let {Ft} be the corresponding
sequence of distribution functions. Then xt is said to converge in distribution
to a random variable x with a distribution function F , written xt

D−→ x, if Ft

converges to F at all points of continuity of the latter.

This means simply that, if x∗ is any point in the domain of F such that F (x∗)
is continuous, then Ft(x∗) converges to F (x∗) in the ordinary mathematical sense.
We call F the limiting distribution or asymptotic distribution of xt.

Weak convergence in probability is sufficient to ensure a convergence in distri-
bution. Thus

If xt converges to a random variable x weakly in probability, it also converges
to x in distribution. That is, xt

P−→ x implies xt
D−→ x.

The Central Limit Theorem

Under very general conditions, the distribution of an estimator will tend to a
normal distribution as the sample size increases. This can be the case even when
the distribution of the estimator does not possess finite moments for any finite
size of sample. This is a remarkable and counterintuitive fact; and it has caused
considerable confusion amongst econometricians in the past.

There a wide variety of central limit theorems which adopt different assump-
tions. We shall consider only the simplest of such theorems that makes rather
strong assumptions. Its proof depends upon showing that the moment generating
function of the distribution of the statistic in question converges on that of a normal
distribution. Then, it follows that the distribution of the statistic will converge to a
normal distribution. Before we can embark on a proof, we need to find the moment
generating function of a normally distributed random variable.

Recall that the probability density function of a normally distributed random
variable x with a mean of E(x) = μ and a variance of V (x) = σ2 is

N(x;μ, σ2) =
1√

(2πσ2)
e−

1
2 (x−μ)2/σ2

.

We need only consider the case where μ = 0 and σ2 = 1. Then, we have a standard
normal, denoted by N(z; 0, 1), and the corresponding moment generating function

4



is defined by

Mz(t) = E(ezt) =
∫

ezt 1√
2π

e−
1
2 z2

dz

= e
1
2 t2 .

To demonstrate this result, the exponential terms may be gathered and rearranged
to give

exp
{
zt

}
exp

{
− 1

2z
2
}

= exp
{
− 1

2z
2 + zt

}
= exp

{
− 1

2 (z − t)2
}

exp
{

1
2 t

2
}
.

Then
Mz(t) = e

1
2 t2

∫
1√
2π

e−
1
2 (z−t)2dz

= e
1
2 t2 ,

where the final equality follows from the fact that the expression under the integral
is the N(z;μ = t, σ2 = 1) probability density function, which integrates to unity.

We are now is a position to state and to prove the Lindberg–Levy version of
the central limit theorem which is as follows:

Let xt; t = 1, 2, . . . , n be a sequence of independent and identically distributed
random variables with E(xt) = μ and V (xt) = σ2. Then

zn =
√

n

(
x̄ − μ

σ

)
=

1√
n

n∑
t=1

(
xt − μ

σ

)

converges in distribution to z ∼ N(0, 1). Equivalently, the limiting distribution
of

√
n(x̄ − μ) is the normal distribution N(0, σ2).

Proof. First we recall that the moment generating function of the standard normal
variate z ∼ N(0, 1) is Mz(t) = exp{t2/2}. We must show that the moment gener-
ating function Mn of zn converges to Mz as n → ∞. Let us write zn = n−1/2

∑
zt,

where zt = (xt − μ)/σ has E(zt) = 0 and E(z2
t ) = 1. The moment generating

function of zt can now be written as

M0(t) = 1 + tE(zt) +
t2E(z2

t )
2

+ o(t2)

= 1 +
t2

2
+ o(t2),

where o(t)2 denotes a term that is of an order smaller than t2. Since zn = n−1/2
∑

zt

is a sum of independent and identically distributed random variables, it follows that
its moment-generating function can be written, in turn, as

Mn

( t√
n

)
=

[
M0

( t√
n

)]n

=
[
1 +

t2

2n
+ o

( t2

n

)]n

.
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Letting n → ∞, and bearing in mind that

ex = lim(n → ∞)
(
1 +

x

n

)n

,

we find that lim(n → ∞)Mn = exp{t2/2} = Mz, which proves the theorem.

Maximum Likelihood Estimation

There are various principles of estimation that can be adopted. Those that are
favoured are liable, in general, to produce estimates with desirable properties. The
principle of maximum-likelihood estimation is a leading example.

Let x1, x2, . . . , xn be a random sample from a population with a probability
density function f(x, θ). The joint p.d.f of the sample will be

L(x1, x2, . . . , xn) =
n∏

i=1

f(x, θ).

The principle of maximum likelihood suggests that we should choose for an
estimate the value of θ that maximises the function L given the sample values
x1, x2, . . . , xn. That is to say, it proposes that the highest possible probability
measure should be attributed to the sample that has actually transpired.

However, since L is regarded as a function of θ rather than a function of the
sample values, it is describes as a likelihood function rather than as a probability
density function.

Under normal circumstances, the maximum-likelihood estimate θ̂ can be found
by solving the equation dL/dθ = 0, which is the first-order condition for a maxi-
mum, or by solving the equivalent equation d log L/dθ = 0. Since log L is a mono-
tonic transformation of L, the minimising value of θ is the same for both functions.

Example. Let x1, x2, . . . , xn be a random sample from a population with a normal
p.d.f. N(μ, σ2). Then

L(x1, x2, . . . , xn) =
n∏

i=1

N(xi;μ, σ2) =
n∏

i=1

1√
2πσ2

e−
1
2 (xi−μ)/σ2

= (2πσ2)−n/2 exp

{∑
i

−1
2
(xi − μ)/σ2

}
.

Taking natural logarithms gives

lnL = −n

2
ln(2π) − n

2
ln(σ2) − 1

2σ2

∑
i

(xi − μ)2.

To find the ML estimator of μ, we solve

∂L

∂μ
=

1
σ2

∑
i

(xi − μ) = 0, from which μ̂ =
1
n

∑
i

xi = x̄.
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To find the ML estimator of σ2, we evaluate

∂L

∂σ2
= − n

2σ2
+

1
2σ4

∑
i

(xi − μ)2 = 0.

Multiplying the equation by 2σ4/n and rearranging shows that

σ2(μ) =
1
n

∑
i

(xi − μ)2,

whence, on substituting the ML estimate of μ̂ = x̄ for μ, we get

σ̂2 =
1
n

∑
i

(xi − x̄)2.
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