
BIVARIATE DISTRIBUTIONS

Let x be a variable that assumes the values {x1, x2, . . . , xn}. Then, a function
that expresses the relative frequency of these values is called a univariate frequency
function. It must be true that

f(xi) ≥ 0 for all i and
∑

i

f(xi) = 1.

The following table provides a trivial example:

x f(x)
−1 0.25
1 0.75

Let x and y be variables that assume values in the the sets {x1, x2, . . . , xn} and
{y1, y2, . . . , ym}, respectively. Then the function f(xi, yj), which gives the relative
frequencies of the occurrence of the pairs (xi, yj) is called a bivariate frequency
function. It must be true that

f(xi, yj) ≥ 0 for all i and
∑

i

∑
j

f(xi, yj) = 1.

An example of a bivariate frequency table is as follows:

y

x −1 0 1
−1 0.04 0.01 0.20
1 0.12 0.03 0.60

The values of f(xi, yj) are within the body of the table.
The marginal frequency function of x gives the relative frequencies of the values

of xi regardless of the values of yj with which they are associated; and it is defined
by

f(xi) =
∑

j

f(xi, yj); i = 1, . . . , n.

It follows that

f(xi) ≥ 0, and
∑

i

f(xi) =
∑

i

∑
j

f(xi, yj) = 1,

The marginal frequency function f(yj) is defined analogously.
The bivariate frequency table above provides examples of the two marginal

frequency functions:

f(x = −1) = 0.04 + 0.01 + 0.20 = 0.25,

f(x = 1) = 0.12 + 0.03 + 0.60 = 0.75.
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and
f(y = −1) = 0.04 + 0.12 = 0.16,

f(y = 0) = 0.01 + 0.03 = 0.04,

f(y = 1) = 0.20 + 0.60 = 0.80.

The conditional frequency function of x given y = yj gives the relative fre-
quency of the values of xi in the subset of f(x, y) for which y = yj ; and it is given
by

f(xi|yj) =
f(xi, yj)

f(yj)
.

Observe that ∑
i

f(xi|yj) =
∑

i f(xi, yj)
f(yj)

=
f(yj)
f(yj)

= 1.

An example based on the bivariate table is as follows:

f(x|y)

x f(x|y = −1) f(x|y = 0) f(x|y = 1)
−1 0.25 = (0.04/0.16) 0.25 = (0.01/0.04) 0.25 = (0.20/0.80)
1 0.75 = (0.12/0.16) 0.75 = (0.03/0.04) 0.75 = (0.60/0.80)

We may say that x is independent of y if and only if the conditional distribution
of x is the same for all values of y, as it is in this table.

The conditional frequency functions of x are the same for all values of y
if and only if they are all equal to the marginal frequency function of x.

Proof. Suppose that f∗(xi) = f(x|y1) = · · · = f(x|ym). Then

f(xi) =
∑

j

f(xi|yj)f(yj) = f∗(xi)
∑

j

f(yj) = f∗(xi),

which is to say that f∗(xi) = f(xi), Conversely, if the conditionals are all equal to
the marginal, then they must be equal to each other.

Also observe that, if f(xi|yj) = f(xi) for all j and f(yj |xi) = f(yj) for all i, then,
equivalently,

f(xi, yj) = f(xi|yj)f(yj) = f(yj |xi)f(xi) = f(xi)f(yj).

The condition that f(xi, yj) = f(xi)f(yj) constitutes an equivalent definition of
the independence of x and y.

We have been concerned, so far, with frequency functions. These provide the
prototypes for bivariate probability mass functions and for bivariate probability
density functions. The extension to probability mass functions is immediate. For
the case of the density functions, we consider a two-dimensional space R2 which is
defined as the set of all ordered pairs (x, y);−∞ < x, y < ∞, which correspond to
the co-ordinates of the points in a plane of infinite extent.
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We suppose that there is a probability measure defined over R2 such that, for
any A ⊂ R2, P (A) is the probability that (x, y) falls in A. Thus, for example, if
A = {a < x ≤ b, a < x ≤ b}, which is a rectangle in the plane, then

P (A) =
∫ d

y=c

{∫ b

x=a

f(x, y)dx

}
dy.

This is a double integral, which is performed in respect of the two variables in
succession and in either order. Usually, the braces are omitted, which is allowable
if care is taken to ensure the correct correspondence between the integral signs and
the differentials.

Example. Let (x, y) be a random vector with a p.d.f of

f(x, y) =
1
8
(6 − x − y); 0 ≤ x ≤ 2; 2 ≤ y ≤ 4.

It needs to be confirmed that this does integrate to unity over the specified range
of (x, y). There is

1
8

∫ 2

x=0

∫ 4

y=2

(6 − x − y)dydx =
1
8

∫ 2

x=0

[
6y − xy − y2

2

]4

2

dx

=
1
8

∫ 2

x=0

(6 − 2x) dx =
1
8

[
6x − x2

]2

0
=

8
8

= 1.

Moments of a bivariate distribution. Let (x, y) have the p.d.f. f(x, y). Then,
the expected value of x is defined by

E(x) =
∫

x

∫
y

xf(x, y)dydx =
∫

x

xf(x)dx, if x is continuous, and by

E(x) =
∑

x

∑
y

xf(x, y) =
∑

x

xf(x), if x is discrete.

Joint moments of x and y can also be defined. For example, there is∫
x

∫
y

(x − a)r(y − b)sf(x, y)dydx,

where r, s are integers and a, b are fixed data. The most important joint moment
for present purposes is the covariance of x and y, defined by

C(x, y) =
∫

x

∫
y

{x − E(x)}{y − E(y)}f(x, y)dydx.

If x, y are statistically independent, such that f(x, y) = f(x)f(y), then
their joint moments can be expressed as the products of their separate
moments.

3



Thus, for example, if x, y are independent then

E{[x − E(x)]2[y − E(y)]2} =
∫

x

∫
y

[x − E(x)]2[y − E(y)]2f(x)f(y)dydx

=
∫

x

[x − E(x)]2f(x)dx

∫
y

[y − E(y)]2f(y)dy = V (x)V (y).

The case of the covariance of x, y, when these are independent, is of prime impor-
tance:

C(x, y) = E{[x − E(x)][y − E(y)]} =
∫

x

[x − E(x)]f(x)dx

∫
y

[y − E(y)]f(y)dy

= {[E(x) − E(x)][E(y) − E(y)]} = 0.

These relationships are best expressed using the notation of the expectations
operator. Thus

C(x, y) = E{[x − E(x)][y − E(y)]} = E[xy − E(x)y − xE(y) + E(x)E(y)]
= E(xy) − E(x)E(y) − E(x)E(y) + E(x)E(y)
= E(xy) − E(x)E(y).

Since E(xy) = E(x)E(y) if x, y are independent, it follows, in that case, that
C(x, y) = 0. Observe also that C(x, x) = E{[x − E(x)]2} = V (x).

Now consider the variance of the sum x + y. This is

V (x + y) = E
{
[(x + y) − E(x + y)]2

}
= E

{
[{x − E(x)} + {y − E(y)}]2

}
= E

{
[x − E(x)]2 + [y − E(y)]2 + 2[x − E(x)][y − E(y)]

}
= V (x) + V (y) + 2C(x, y).

If x, y are independent, then C(x, y) = 0 and V (x + y) = V (x) + V (y). It is
important to note that

If x, y are independent, then the covariance is C(x, y) = 0. However, the
condition C(x, y) = 0 does not, in general, imply that x, y are independent.

A particular case in which C(x, y) = 0 does imply the independence of x, y is when
both these variables are normally distributed.

The correlation coefficient. To measure the relatedness of x and y, we use the
correlation coefficient, defined by

Corr(x, y) =
C(x, y)√
V (x)V (y)

=
E{[x − E(x)][y − E(y)]})√

E{[x − E(x)]2}E{[y − E(y)]2}
.

Notice that this is a number without units.
It can be shown that −1 ≤ Corr(x, y) ≤ 1. If Corr(x, y) = 1, then there is

a perfect positive correlation between x and y, which means that they lie on a
straight line of positive slope. If Corr(x, y) = −1, then there is a perfect negative
correlation; and the straight line has a negative slope. In other cases, there is a
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scatter of points in the plane; and, if Corr(x, y), then there is no linear relationship
between x and y.

These results concerning the range of the correlatison cofficient follow from a
version of the Cauchy–Schwarz inequality, which will be established at the end of
the next section.

REGRESSION AND CONDITIONAL EXPECTATIONS

Linear conditional expectations. If x, y are correlated, then a knowledge of one
of them enables us to make a better prediction of the other. This knowledge can
be used in forming conditional expectations.

In some cases, it is reasonable to make the assumption that the conditional
expectation E(y|x) is a linear function of x:

E(y|x) = α + xβ. (i)

This function is described as a linear regression equation. The error from predicting
y by its conditional expectation can be denoted by ε = y − E(y|x); and therefore
we have

y = E(y|x) + ε

= α + xβ + ε.

Our object is to express the parameters α and β as functions of the moments of
the joint probability distribution of x and y. Usually, the moments of the distribu-
tion can be estimated in a straightforward way from a set of observations on x and
y. Using the relationship that exits between the parameters and the theoretical
moments, we should be able to find estimates for α and β corresponding to the
estimated moments.

We begin by multiplying equation (i) throughout by f(x), and by integrating
with respect to x. This gives the equation

E(y) = α + βE(x), (ii)

whence
α = E(y) − βE(x). (iii)

These equations shows that the regression line passes through the point E(x, y) =
{E(x), E(y)} which is the expected value of the joint distribution.

By putting (iii) into (i), we find that

E(y|x) = E(y) + β
{
x − E(x)

}
,

which shows how the conditional expectation of y differs from the unconditional
expectation in proportion to the error of predicting x by taking its expected value.

Now let us multiply (i) by x and f(x) and then integrate with respect to x to
provide

E(xy) = αE(x) + βE(x2). (iv)

Multiplying (ii) by E(x) gives

E(x)E(y) = αE(x) + β
{
E(x)

}2
, (v)
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whence, on taking (v) from (iv), we get

E(xy) − E(x)E(y) = β
[
E(x2) −

{
E(x)

}2
]
,

which implies that

β =
E(xy) − E(x)E(y)

E(x2) −
{
E(x)

}2

=
E

[{
x − E(x)

}{
y − E(y)

}]
E

[{
x − E(x)

}2
]

=
C(x, y)
V (x)

.

(vi)

Thus, we have expressed α and β in terms of the moments E(x), E(y), V (x) and
C(x, y) of the joint distribution of x and y.

It should be recognised that the prediction error ε = y −E(y|x) = y − α − xβ
is uncorrelated with the variable x. This is shown by writing

E
[{

y − E(y|x)
}
x
]

= E(yx) − αE(x) − βE(x2) = 0, (vii)

where the final equality comes from (iv). This result is readily intelligible; for, if
the prediction error were correlated with the value of x, then we should not be
using the information of x efficiently in predicting y.

This section may be concluded by proving a version of the Cauchy–Schwarz
inequality that establishes the bounds on Corr(x, y) = C(x, y)/

√
V (x)V (y), which

is the coefficent of the correlation of x and y. Consider the variance of the prediction
error

E
([

{y − E(y)} − β{x − E(x)}
]2) = V (y) − 2βC(x, y) + β2V (x) ≥ 0.

Setting β = C(x, y)/V (x) gives

V (y) − 2
{C(x, y)}2

V (x)
+

{C(x, y)}2

V (x)
≥ 0.

whence

V (x)V (y) ≥ {C(x, y)}2.

It follows that {Corr(x, y)}2 ≤ 1 and, therefore, that −1 ≤ Corr(x, y) ≤ 1.
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Empirical Regressions. Imagine that we have a sample of T observations on x
and y which are (x1, y1), (x2, y2), . . . , (xT , yT ). Then we can calculate the following
empirical or sample moments:

x̄ =
1
T

T∑
t=1

xt,

ȳ =
1
T

T∑
t=1

yt,

S2
x =

1
T

T∑
t=1

(xt − x̄)2 =
1
T

T∑
t=1

(xt − x̄)xt =
1
T

T∑
t=1

x2
t − x̄2,

Sxy =
1
T

T∑
t=1

(xt − x̄)(yt − ȳ) =
1
T

T∑
t=1

(xt − x̄)yt =
1
T

T∑
t=1

xtyt − x̄ȳ,

It seems reasonable that, in order to estimate α and β, we should replace the
moments in the formulae of (iii) and (vi) by the corresponding sample moments.
Thus the estimates of α and β are

α̂ = ȳ − β̂x̄,

β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.

The justification of this estimation procedure, which is know as the method of
moments, is that, in many of the circumstances under which the sample is liable to
be generated, we can expect the sample moments to converge to the true moments
of the bivariate distribution, thereby causing the estimates of the parameters to
converge likewise to their true values.

Often there is insufficient statistical regularity in the processes generating the
variable x to justify our postulating a joint probability density function for x and y.
Sometimes the variable is regulated in pursuit of an economic policy in such a way
that it cannot be regarded as random in any of the senses accepted by statistical
theory. In such cases, we may prefer to derive the estimators of the parameters α
and β by methods which make fewer statistical assumptions about x.

When x is a non stochastic variable, the equation

y = α + xβ + ε

is usually regarded as a functional relationship between x and y that is subject
to the effects of a random disturbance term ε. It is commonly assumed that, in
all instances of this relationship, the disturbance has a zero expected value and a
variance which is finite and constant. Thus

E(ε) = 0 and V (ε) = E(ε2) = σ2.

Also it is assumed that the movements in x are unrelated to those of the disturbance
term.
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The principle of least squares suggests that we should estimate α and β by
finding the values which minimise the quantity

S =
T∑

t=1

(yt − ŷt)2

=
T∑

t=1

(yt − α − xtβ)2.

This is the sum of squares of the vertical distances—measured parallel to the y-
axis—of the data points from an interpolated regression line.

Differentiating the function S with respect to α and setting the results to zero
for a minimum gives

−2
∑

(yt − α − βxt) = 0, or, equivalently,

ȳ − α − βx̄ = 0.

This generates the following estimating equation for α:
α(β) = ȳ − βx̄. (viii)

Next, by differentiating with respect to β and setting the result to zero, we get

−2
∑

xt(yt − α − βxt) = 0. (ix)

On substituting for α from (vii) and eliminating the factor −2, this becomes∑
xtyt −

∑
xt(ȳ − βx̄) − β

∑
x2

t = 0,

whence we get

β̂ =
∑

xtyt − T x̄ȳ∑
x2

t − T x̄2

=
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

.

This expression is identical to the one that we have derived by the method of
moments. By putting β̂ into the estimating equation for α under (viii), we derive
the same estimate α̂ for the intercept parameter as the one obtained by the method
of moments.

It is notable that the equation (ix) is the empirical analogue of the equation
(vii) which expresses the condition that the prediction error is uncorrelated with
the values of x.

The method of least squares does not automatically provide an estimate of
σ2 = E(ε2

t ). To obtain an estimate, we may invoke the method of moments which,
in view of the fact that the regression residuals et = yt−α̂− β̂xt represent estimates
of the corresponding values of εt, suggests an estimator in the form of

σ̃2 =
1
T

∑
e2
t .

In fact, this is a biased estimator with
E

(
T σ̃2

)
=

{
T − 2

}
σ2;

so it is common to adopt the unbiased estimator

σ̂2 =
∑

e2
t

T − 2
.
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