
PROBABILITY DISTRIBUTIONS: (continued)

The Standard Normal Distribution. Consider the function g(z) = e−z2/2,
where −∞ < z < ∞. There is g(z) > 0 for all z and also∫

e−z2/2dz =
1√
2π

.

It follows that
f(z) =

1√
2π

e−z2/2

constitutes a p.d.f., which we call the standard normal and which we may denote
by N(z; 0, 1). The normal distribution, in general, is denoted by N(x;µ, σ2); so, in
this case, there are µ = 0 and σ2 = 1.

The standard normal distribution is tabulated in the back of virtually every
statistics textbook. Using the tables, we may establish confidence intervals on the
ranges of standard normal variates. For example, we can assert that we are 95
percent confident that z will fall in the interval [−1.96, 1.96]. There are infinitely
many 95% confidence intervals that we could provide, but this one is the smallest.

Only the standard Normal distribution is tabulated, because a non-standard
Normal variate can be standardised; and hence the confidence interval for all such
variates can be obtained from the N(0, 1) tables.

The change of variables technique. Let x be a random variable with a known
p.d.f. f(x) and let y = y(x) be a monotonic transformation of x such that the
inverse function x = x(y) exists. Then, if A is an event defined in terms of x, there
is an equivalent event B defined in terms of y such that if x ∈ A, then y = y(x) ∈ B
and vice versa. Then, P (A) = P (B) and, under very general conditions, we can
find the the p.d.f of y denoted by g(y).

First, consider the discrete random variable x ∼ f(x). Then, if y ∼ g(y), it
must be the case that ∑

y∈B

g(y) =
∑
x∈A

f(x).

But we may express x as a function of y, denoted by x = x(y). Therefore,∑
y∈B

g(y) =
∑
y∈B

f{x(y)},

whence g(y) = f{x(y)}.
Now consider the continuous case. If g(y) exists, then we may write∫

y∈B

g(y)dy =
∫

x∈A

f(x)dx.

Using the change of variable technique, we may express x in the second integral as
a function of y to give the following identity:∫

y∈B

g(y)dy =
∫

x∈B

f{x(y)}dx

dy
dy.
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If y = y(x) is a monotonically decreasing transformation, then dx/dy < 0, and
f{x(y)} > 0, and so f{x(y)}dx/dy < 0 cannot represent a p.d.f since Axiom 1
requires that g(y) ≥ 0. Our recourse is simply to change the sign on the y-axis.
Thus, if dx/dy < 0, we may replace it by its modulus |dx/dy| > 0. Thus, in general,
we have

g(y) = f{x(y)}
∣∣∣∣dx

dy

∣∣∣∣ .

Example 1. Let

x ∼ b(n = 3, p = 2/3) =
3!

x!(3 − x)!

(
2
3

)x (
1
3

)3−x

; x = 0, 1, 2, 3,

and let y = x2 so that x(y) =
√

y. Then

y ∼ g(y)) =
3!

(
√

y)!(3 −√
y)!

(
2
3

)√
y (

1
3

)3−√
y

; y = 0, 1, 4, 9.

Example 2. Let x ∼ f(x) = 2x; 0 ≤ x ≤ 1. Let y = 8x3, which implies that
x = (y/8)1/3 = y1/3/2 and dx/dy = y−2/3/6. Then,

g(y) = f{x(y)}
∣∣∣∣dx

dy

∣∣∣∣ = 2
(

y1/3

2

) ∣∣∣∣y−2/3

6

∣∣∣∣ =
y−1/3

6
.

Example 3. Let

z ∼ N(0, 1) =
1√
2π

e−z2/2 = f(z),

and let y = zσ + µ, so that z = (y − µ)/σ is the inverse function and dz/dy = σ−1

is its derivative. Then,

g(y) = f{z(y)}
∣∣∣∣dz

dy

∣∣∣∣ =
1√
2π

exp

{
−1

2

(
y − µ

σ

)2
}

1
σ

=
1√

2πσ2
exp

{
−1

2
(y − µ)2

σ2

}
.

Expectations of a random variable. If x ∼ f(x), then the expected value of x
is

E(x) =
∫

x

xf(x)dx if x is continuous, and

E(x) =
∑

x

xf(x) if x is discrete.

Example 1. The expected value of the binomial distribution b(x;n, p) is

E(x) =
∑

x

xb(x;n, p) =
n∑

x=0

x
n!

(n − x)!x!
px(1 − p)n−x.
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We factorise np from the expression under the summation and we begin the sum-
mation at x = 1. On defining y = x − 1, which means setting x = y + 1 in the
expression above, and on cancelling x in the numerator with the leading factor of
x! in the denomimator, we get

E(x) =
n∑

x=0

xb(x;n, p) =
n∑

x=0

n!
(n − x)!(x − 1)!

px(1 − p)n−x

= np
n−1∑
y=0

(n − 1)!
([n − 1] − y)!y!

py(1 − p)[n−1]−y

= np
n−1∑
y=0

b(y;n − 1, p) = np,

where the final equality follows from the fact that we are summing the values of
the binomial distribution b(y;n − 1, p) over its entire domain to obtain a total of
unity.

Example 2. Let x ∼ f(x) = e−x; 0 ≤ x < ∞. Then

E(x) =
∫ ∞

0

xe−xdx.

This must be evaluated by integrating by parts:∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx.

With u = x and dv/dx = e−x, this formula gives∫ ∞

0

xe−xdx = [−xe−x]∞0 +
∫ ∞

0

e−xdx

= [−xe−x]∞0 − [e−x]∞0 = 0 + 1 = 1.

Observe that, since this integral is unity and since xe−x > 0 over the domain of x,
it follows that f(x) = xe−x is also a valid p.d.f.

Expectation of a function of random variable. Let y = y(x) be a function of
x ∼ f(x). The value of E(y) can be found without first determining the p.d.f g(y)
of y. Quite simply, there is

E(y) =
∫

x

y(x)f(x)dx.

If y = y(x) is a monotonic transformation of x, then it follows that

E(y) =
∫

y

yg(y)dy =
∫

y

yf{x(y)}
∣∣∣∣dx

dy

∣∣∣∣ dy

=
∫

x

y(x)f(x)dx,
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which establishes a special case of the result. However, the result is not confined
to monotonic tranformatisons. It is equally valid for functions that are piece wise
monotonic, i.e. ones that have monotonic segments, which includes virtually all of
the functions that we might consider.

The expectations operator. We can economise on notation by defining the
expectations operator E, which is subject to a number of simple rules. They are as
follows:

(a) If x ≥ 0, then E(x) ≥ 0.

(b) If a is a constant, then E(a) = a.

(c) If a is a constant and x is a random variable, then E(ax) = aE(x).

(d) If x, y are random variables, then E(x + y) = E(x) + Ey).

The expectation of a sum is the sum of the expectations. By combining
(c) and (d), we get:

(e) If E(ax + by) = aE(x) + bE(y).

Thus, the expectation operator is a linear operator and

E(
∑

i aixi) =
∑

i aiE(xi).

The moments of a distribution. The rth raw moment of x is defined by the
expectation

E(xr) =
∫

x

xrf(x)dx if x is continuous, and

E(xr) =
∑

x

xrf(x) if x is discrete.

We can take moments with respect to any datum. In the continuous case, the rth
moment about the point a is

E{(x − a)r} =
∫

(x − a)rf(x)dx = µa
r .

Very often, we set a = E(x) = µ. The variance is the second moment of a dis-
tribution about its mean, and it constitutes a measure of the dispersion of the
distribution.:

V (x) = E[{x − E(x)}2] = E[x2 − 2xE(x) + {E(x)}2]

= E(x2) − {E(x)}2.

Here, the second equality follows from the fact that E{xE(x)} = {E(x)}2. It is
easy to see that, by choosing E(x) to be the datum, the measure of the dispersion
is minimised.

We might wish to define the variance operator V . In that case, we should take
note of the following properties

(a) If x is a random variable, then V (x) > 0.
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(b) If a is a constant, then then V (a) = 0.

(c) If a is a constant and x is a random variable, then V (ax) = a2V (x).

To confirm the latter, we may consider

V (ax) = E{[ax − E(ax)]2}
= a2E{[x − E(x)]2} = a2V (x).

If x, y are independently distributed random variables, then V (x+y) = V (x)+V (y).
But this is not true in general.

The variance of the binomial distribution. Consider a sequence of Bernoulli
trials with xi ∈ {0, 1} for all i. The p.d.f of the generic trial is f(xi) = pxi(1−p)1−xi .
Then E(xi) =

∑
xi

xif(xi) = 0.(1 − p) + 1.p = p. It follows that, in n trials, the
expected value of the total score x =

∑
i xi is E(x) =

∑
i E(xi) = np. This is the

expected value of the binomial distribution.
To find the variance of the Bernoulli trial, we use the formula E(x) = E(x2)−

{E(x)}2. For a single trial, there is

E(x2
i ) =

∑
xi=0,1

f(xi) = p, V (xi) = p − p2 = p(1 − p) = pq,

where q = 1− p. The outcome of the binomial random variable is the sum of a set
of n independent and identical Bernoulli trials. Thus, the variance of the sum is
the sum of the variances, and we have

V (x) =
n∑

i=1

V (xi) = npq.
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