
HYPOTHESIS TESTING

We have already described how the sample information is used to estimate the
parameters of the underlying population distributions. Now, we intend to use our
sample information to test existing presumptions regarding the values of parame-
ters. More generally, we are concerned with testing hypotheses regarding the state
of nature.

The initial presumptions, which are formed without the benefit of the statistical
evidence, constitute the null or prior hypothesis, denoted by H0. The alternative
hypothesis, denoted by H1, is what we shall assert if we reject H0 in the light of
the statistical evidence.

Together, H0 and H1 ought to comprises all possibilities. Thus, the set Ω of
all states of nature is partitioned as Ω = {Ω0 ∪ Ω1; Ω0 ∩ Ω1 = ∅} in a manner
corresponding the hypotheses. The decision to maintain the null hypotheses after
the evidence has been reviewed will be denoted by d0; and the decision to reject it
in favour of the alternative hypothesis will be denoted by d1.

The procedure for testing an hypothesis will depend upon our forming a test
statistic x from a random sample. The decision will depend upon the value of the
statistic. Let S = {C∪CC ;C∩CC = ∅} be the sample space comprising all possible
values of x. This is partitioned into the critical region C and its complement, which
is the non-critical region CC . Then, the decision rule is as follows:

x ∈ CC =⇒ d0,

x ∈ C =⇒ d1.

Since x is a random variable, it has a finite probability of falling in either
region, regardless of the true state of nature; and there are two ways in which the
test procedure might mislead us, which are the errors indicated in the following
table:

d0 d1

Ω0 Type I error
Ω1 Type II error

Here we have

Type I error: falsely rejecting the null hypothesis,

Type II error: falsely maintaining the null hypothesis.

We must adopt test procedures that minimise the probabilities of making the
errors. We are constrained by a situation where reducing the probability of one
type of error increases the probability of the other type. If we could reduce the
probabilities both types of errors at the same time, then our test procedure would
be an inefficient one that should replaced by another. (In the language of economics,
the efficient tests constitute a Pareto-optimal choice set.)

Unless we have both a prior probability measure defined over Ω and a loss
function or utility function relating to the costs of making the errors, we are bound
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to adopt a rule of thumb in fixing the probability of the Type I error before at-
tempting to minimise the probability of the Type II error. Conventionally, we fix
the probability of the Type I error at 1%, 5% or 10%, depending on the context of
test procedure.

A two-tailed test for the mean. Let x ∼ N(μ, σ2), where σ2 is known and
μ ∈ Ω lies somewhere on the real line, which means that Ω = (−∞,∞). Let
the null hypothesis be H0 : μ = μ0, so that the alternative hypothesis is simply
H1 : μ 	= μ0. Let x1, . . . , xn be a random sample with xi ∼ N(μ, σ2) for all i. The
test statistic is

∑
i xi/n = x̄ ∼ N(μ, σ2/n). Then, under the null hypothesis

z =
x̄ − μ0

σ/
√

n
∼ N(0, 1)

is a standard normal variate; and the test procedure is summarised as follows:
∣
∣
∣
∣
x̄ − μ0

σ/
√

n

∣
∣
∣
∣ ≥ β =⇒ d1,

∣
∣
∣
∣
x̄ − μ0

σ/
√

n

∣
∣
∣
∣ < β =⇒ d0.

It remains to determine the probability of the Type I error that we are pre-
pared to accept. In this case, the critical region comprises the two tails of the
normal distribution; and the sum of their areas, which denotes the probability of
rejecting the null hypothesis, is conventionally called the size of the critical region
or, alternatively, the significance level of the test. Having chosen this value, we can
look in the back of the book to find the corresponding value for β. What we have
described is called a two-tailed test.

A one-tailed test for the mean. Let x ∼ N(μ, σ2), where σ2 is known, and let
Ω = (μ;μ0 ≤ μ < ∞), which is to say that the null hypothesis is H0 : μ = μ0 and
the alternative hypothesis is H1 : μ > μ0. Let x1, . . . , xn be a random sample with
xi ∼ N(μ, σ2) for all i. Then, to test the hypothesis, we use x̄ =

∑
i xi/n as the

test statistic; and we shall reject H0 if x̄ is significantly greater than μ0 such as to
render the hypothesis implausible. We have complete faith in our specification of
Ω and, therefore, it would not make sense to reject H0 if x̄ were anything less than
μ0. Under the null hypothesis,

z =
x̄ − μ0

σ/
√

n
∼ N(0, 1)

is a standard normal variate; and the test procedure is as follows:

x̄ − μ0

σ/
√

n
< β =⇒ d0,

x̄ − μ0

σ/
√

n
≥ β =⇒ d1.

If we adopt a Q×100% level of significance, then we must use the table in the back
of the book to find the value of β for which P (z > β) = Q.

Example. A certain type of seed grows to a plant of an expected height of 8.5
ins. A sample of 49 seeds, grown under new conditions with a different fertiliser,
produces plants with an average height of 8.8 ins. Using a 5% level of significance
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and making the assumption that the standard deviations of the heights is σ = 1 inch
and that it is unaffected by the new conditions, you are asked to determine whether
there has been a significant increase in the heights. Given x̄ = 8.8, there is

z =
x̄ − μ0

σ
√

n
=

8.8 − 85
1/7

= 2.1.

Under the null hypothesis, this is assumed to be a value sampled from a standard
normal N(0, 1) distribution. The critical value that isolates the upper 5% tail of
the distribution is β = 1.645. This is exceeded by the value of z; and so we are
inclined to reject the null hypothesis that the fertiliser has had no effect.

Type II errors. If there is a simple an a wholly specific alternative hypothesis,
then we are able to calculate the probability of the Type II error. Let x ∼ N(μ, σ2)
and let the null hypothesis be H0 : μ = μ0 and the alternative hypothesis be
Hq : μ = μ1. Then

The probability of a Type I error is P (d1|μ = μ0) = P (x̄ > μ0 +βσ/
√

n), when
x̄ ∼ (μ0, σ

2/n).

The probability of a Type II error is P (d0|μ = μ1) = P (x̄ ≤ μ1 + βσ/
√

n),
when x̄ ∼ (μ1, σ

2/n).
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