
ELEMENTARY PROBABILITY

Events and event sets. Consider tossing a die. There are six possible outcomes,
which we shall denote by elements of the set {Ai; i = 1, 2, . . . , 6}. A numerical value
is assigned to each outcome or event:

A1 −→ 1,

A2 −→ 2,
...

A6 −→ 6.

The variable x = 1, 2, . . . , 6 that is associated with these outcomes is called a
random variable.

The set of all possible outcomes is S = {A1∪A2∪· · ·∪A6} is called the sample
space. This is distinct from the elementary event set. For example, we can define
the event E ⊂ S to be a matter of getting an even number from tossing the die.
We may denote this event by E = {A2 ∪ A4 ∪ A6}, which is the event of getting a
2 or a 4 or a 6. These elementary events that constitute E are, of course, mutually
exclusive.

The collectison of subsets of S that can be formed by taking unions of the
events within S, and also by taking intersections of these unions, is described as a
sigma field, or a σ-field, and there is also talk of a sigma algebra.

The random variable x is a described as a scalar-valued set function defined
over the sample space S. There are numerous other random variables that we
might care to define in respect of the sample space by identifying other subsets and
assigning numerical values to the corresponding events. We shall do so presently.

Summary measures of a statistical experiment. Let us toss the die 30 times
and let us record the value assumed by the random variable at each toss:

1, 2, 5, 3, . . . , 4, 6, 2, 1.

To summarise this information, we may construct a frequency table:

x f r
1 8 8/30
2 7 7/30
3 5 5/30
4 5 5/30
5 3 3/30
6 2 2/30

30 1

Here,
fi = frequency,

n =
∑

fi = sample size,

ri =
fi

n
= relative frequency.
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In this case, the order in which the numbers occur is of no interest; and, therefore,
there is no loss of information in creating this summary.

We can describe the outcome of the experiment more economically by calcu-
lating various summary statistics.

First, there is the mean of the sample

x̄ =
∑

xifi

n
=

∑
xiri.

The variance is a measure of the dispersion of the sample relative to the mean, and
it is the average of the squared deviations. It is defined by

s2 =
∑ (xi − x̄)2fi

n
=

∑
(xi − x̄)2ri

=
∑

(x2
i − xix̄ − x̄xi + {x̄}2)ri

=
∑

x2
i ri − {x̄}2,

which follows since x̄ is a constant that is not amenable to the averaging operation.

Probability and the limit of relative frequency. Let us consider an indefinite
sequence of tosses. We should observe that, as n → ∞, the relative frequencies will
converge to values in the near neighbourhood of 1/6. We will recognise that the
value pi = 1/6 is the probability of the occurrence of a particular number xi in the
set {xi; i = 1, . . . , 6} = {1, 2, . . . , 6}. We are tempted to define probability simply
as the limit of relative frequency.

It has been recognised that this is an inappropriate way of defining probabil-
ities. We cannot regard such a limit of relative frequency in the same light as an
ordinary mathematical limit. We cannot say, as we can for a mathematical limit,
that, when n exceeds a certain number, the relative frequency ri is bound there-
after to reside within a limited neighbourhood of pi. (Such a neighbourhood is
denoted by the interval (p + εn, p − εn), where εn is a number that gets smaller as
n increases.)

The reason is that there is always a wayward chance that, by a run of aberrant
outcomes, the value of ri will break the bounds of the neighbourhood. All that we
can say is that the probability of its doing so becomes vanishingly small as n → ∞.
But, in making this statement, we have invoked a notion of probability, which is
the very thing that we have intended to define. Clearly, such a limiting process
cannot serve to define probabilities.

We shall continue, for the present, to assume that we understand unquestion-
ably that the probability of any number xi arising from the toss of a fair die is
pi = 1/6 for all i. Indeed, this constitutes our definition of a fair die. We can
replace all of the relative frequencies in the formulae above by the corresponding
probabilities to derive a new set of measures that characterise the idealised notion
of the long run tendencies of these statistics.

Population measures. We define the mathematical expectation or mean of the
random variable associated with a toss of the die to be the number

E(x) = µ =
∑

xipi =
1
6
(1 + 2 + 3 + 4 + 5 + 6) =

21
6

= 3.5.
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Likewise, we may define

V (x) = σ2 =
∑

({xi − E(x)}2pi

=
∑

(x2
i − xiE(x) − E(x)xi + {E(x)}2)pi

=
∑

x2
i pi − {E(x)}2,

which we may call the true variance of the population variance. We may calculate
that

V (x) = 13.125.

Random sampling. By calling this the population variance, we are invoking a
concept of an ideal population in which the relative frequencies are precisely equal
to the probabilities that we have defined. In that case, the sample experiment that
we described at the beginning is a matter of selecting elements of the population
at random, of recording their values and, thereafter, of returning them to the pop-
ulation to take their place amongst the other elements that have an equal chance
of being selected. In effect, we are providing a definition of random sampling.

The union of mutually exclusive events. Having settled our understanding
of probability, at least within the present context, let us return to the business of
defining compound events.

We might ask ourselves, what is the probability of getting either a 2 or a 4 or a
6 in a single toss of the die? We can denote the event in question by A2 ∪A4 ∪A6.
The corresponding probability is

P (A2 ∪ A4 ∪ A6) = P (A2) + P (A4) + P (A6) =
1
6

+
1
6

+
1
6

=
1
2
.

The result depends on the following principle:

The probability of the union of mutually exclusive events is the sum of
their separate probabilities.

Observe that ∪ (union) means OR in the inclusive sense. That is to say, A1 ∪ A2

means A1 OR A2 OR BOTH. In this case, BOTH is not possible, since the events
are mutually exclusive.

By extending the argument, we can see that

P (A1 ∪ A2 ∪ · · · ∪ A6) = 1,

which is to say that the probability of a certainty is unity.

The intersection of events, or their joint or sequential occurrence. Let
us toss a blue and a red die together or in sequence. For the red die, there are the
outcomes {Ai; i = 1, 2, . . . , 6} and the corresponding numbers {xi; i = 1, . . . , 6} =
{1, 2, . . . , 6}. For the blue die, there are the outcomes {Bj ; i = 1, 2, . . . , 6} and
the corresponding numbers {yj ; i = 1, . . . , 6} = {1, 2, . . . , 6}. Also, we may de-
fine a further set of events {Ck; k = 2, 3, . . . , 12} and the corresponding numbers
{zk=i+j = xi + yj} = {2, 3, . . . , 12}.
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Table 1. The outcomes from tossing a red die and a blue die, indicating the

outcomes for which the joint store is 5.

1 2 3 4 5 6

1 2 3 4 (5) 6 7
2 3 4 (5) 6 7 8
3 4 (5) 6 7 8 9
4 (5) 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

In Table 1 above, the italic figures in the horizontal margin represent the scores
x on the red die whilst the italic figures in the vertical margin represent the scores
y on the blue die. The sums x+ y = z of the scores are the figures within the body
of the table.

The question to be answered is what is the probability of the event C5, which
is composed of the set of all outcomes for which the combined score is 5. The event
is defined by

C5 = {(A1 ∩ B4) ∪ (A2 ∩ B3) ∪ (A3 ∩ B2) ∪ (A4 ∩ B1)}.
Observe that ∩ (intersection) means AND. That is to say (A1 ∩ B4) means that
BOTH A1 AND B4 occur, either together or in sequence.

By applying the first rule of probability, we get
P (C5) = P (A1 ∩ B4) + P (A2 ∩ B3) + P (A3 ∩ B2) + P (A4 ∩ B1)},

which follows from the fact that, here, we have a union of mutually exclusive events.
But Ai and Bj are independent events for all i, j, such that the outcome of one
does not affect the outcome of the other. Therefore,

P (Ai ∩ Bj) = P (Ai) × P (Bj) =
1
36

for all i, j;

and it follows that

P (C5) = P (A1)P (B4) + P (A2)P (B3) + P (A3)P (B2) + P (A4)P (B1) =
4
36

.

The principle that has been invoked in solving this problem, which has provided
the probabilities of the events Ai ∩ Bj , is the following:

The probability of the joint occurrence of two statistically independent
events is the product of their individual or marginal probabilities. Thus, if
A and B are statistically independent, then P (A ∩ B) = P (A) × P (B).

Conditional probabilities. Now let us define a fourth set of events {Dk; k =
2, 3, . . . , 12} corresponding to the values of x + y = z ≥ k ∈ {2, 3, . . . , 12}. For
example, there is the event

D8 = C8 ∪ C9 ∪ · · · ∪ C12,

whereby the joint score equals of exceeds eight, which has the probability

P (D8) = P (C8) + P (C9) + · · · + P (C12) =
15
36

.
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Table 2. The outcomes from tossing a red die and a blue die, indicating, by

the numbers enclosed by brackets [,], the outcomes for which the score on the

red die is 4, as well as the outcomes for which the joint score exceeds 7, by the

numbers enclosed by parentheses (,).

1 2 3 4 5 6

1 2 3 4 [5] 6 7
2 3 4 5 [6] 7 (8)
3 4 5 6 [7] (8) (9)
4 5 6 7 [(8)] (9) (10)
5 6 7 (8) [(9)] (10) (11)
6 7 (8) (9) [(10)] (11) (12)

In Table 2, the event D8 corresponds to the set of cells in the lower triangle that
bear numbers in boldface surrounded by parentheses.

The question to be asked is what is the value of the probability P (D8|A4)
that the event D8 will occur when the event A4 is already know to have occurred?
Equally, we are seeking the probability that x + y ≥ 8 given that x = 4.

The question concerns the event D8 ∩ A4; and, therefore, one can begin by
noting that P (D8∩A4) = 3/36. But it is not intended to consider this event within
the entire sample space S = {Ai∩Bj ; i, j = 1, . . . , 6}, which is the set of all possible
outcomes—the event is to be considered only within the narrower context of A4, as
a sub event or constituent event of the latter.

Since the occurrence of A4 is now a certainty, its probability has a value of
unity; and the probabilities of its constituent events must sum to unity, given that
they are mutually exclusive and exhaustive. This can be achieved by re-scaling the
probabilities in question, and the appropriate scaling factor is 1/P (A4). Thus the
conditional probability that is sought is given by

P (D8|A4) =
P (D8 ∩ A4)

P (A4)
=

3/36
1/6

=
1
2
.

By this form of reasoning, we can arrive at the following law of probability:

The conditional probability of the occurrence of the event A given that the
event B has occurred is given by the probability of their joint occurrence
divided by the probability of B. Thus P (A|B) = P (A ∩ B)/P (B).

The joint occurence of non-exclusive events. To elicit the final law of proba-
bility, we shall consider the probability of the event A4∪D8, which is the probability
of getting x = 4 for the score on the red die or of getting x + y ≥ 8 for the joint
score, or of getting both of these outcomes at the same time. Since A4 ∩ D8 �= ∅,
the law of probability concerning mutually exclusive outcomes, cannot be invoked
directly. It would lead to the double counting of those events that are indicated
in Table 2 by the cells bearing numbers that are surrounded both by brackets and
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by parentheses. Thus P (A4 ∪ D8) �= P (A4) + P (D8). The avoidance of double
counting leads to the formula

P (A4 ∪ D8) = P (A4) + P (D8) − P (A4 ∩ D8)

=
6
36

+
15
36

− 3
36

=
1
2
.

By this form of reasoning, we can arrive at the following law of probability:

The probability that either of events A and B will occur, or that both of
them will occur, is equal to the sum of their separate probabilities less the
probability or their joint occurrence. Thus

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
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