EXERCISES IN STATISTICS
Series A, No. 2

1. Let Ay, As be subsets of a sample space S. Show that
P(A1NAy) < P(A;) < P(A1UA;) < P(Ar) + P(Ag).

Answer:
(1) To prove that P(Al OAQ) S P(Al) we take P(Al ﬂAg) = P(AQ’Al)P(A1>
Dividing throughout by P(A3|A;) gives
P(A;1 N Ay)

P =5

> P(A1 N As)

since P(As]A;) < 1.
(ii) To prove that P(A;) < P(A; U Ay), we take P(A; U Ay) = P(41) +
{P(A2) — P(Al N Ag)} But P(AQ) — P(Al N AQ) 2 0 so
P(A;) < P(A1 U A,).

(111) To prove that P(Al UAQ) S P(A1)+P(A2) we take P(Al UAQ) = P(A1)+
P(A3) — P(A1 N Az) and we simply note that P(A; N As) > 0.

2. Find the probabilities P(A), P(B) when A, B are statistically independent
events such that P(B) = 2P(A) and P(AU B) =5/8.

Answer: The assumption of independence indicates that P(A N B)
= P(A)P(B). Using this, and then the fact that P(B) = 2P(A), we find

that
P(AUB)=P(A) (B)— P(ANB)

) _
(A4) + P(B) — P(A)P(B)
(4) +2P(A) - 2{P(A4)}*
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Hence
2{P(A)}? —3P(A) +

o | Ut

=0,

—
16{P(A)}? —24P(A) +5 =0,
—
[4P(4) — 1]4P(A) - 5] = 0
and therefore the quadratic equation is solved by P(A) = 1/4 and by P(A) =

5/4. But we also have P(A) < 1, so the only viable solution is P(A) = 1/4,
which implies that P(B) = 1/2.
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3. The Police have found the blood of the jewel thief near the hotel safe. 10%
of all women belong to the blood group and 2% of all men. 30% of the
hotel staff are women. Assuming that this was an inside job, what is the
probability that the thief was a woman?

Answer: Let M stand for a man and W for a woman. Then, for example,
P(M) is the unconditional or “prior” probability that the thief is a man, and
P(B|M) is a conditional probability indicating the incidence of the blood group
amongst men. We have the following information:

10 2

P(BIW) = — P(BIM) =—
30 70

P(W) = — P(M) = —.
W) 100’ (M) 100

According to Bayes’ Theorem, the “posterior” probability that the thief was a
woman, given the evidence of the blood, is

P(BIW)P(W)
P(W|B) =
(W|B) P(E)
But
P(B) = P(BIW)P(W)+ P(B|M)P(M)
~ 10 30 N 2 70
~ 1007100 100100
44
~1000°
Therefore 10 30 1000
PWIB) = {05100 42
44 7 3

4. The probability that, on any weekday, the college will receive letters ad-
dressed to Dr. A is 1/3. Dr. A, who arrives earlier than any of his
colleagues, begins the day by collecting his mail. He has told me that
there is a 40% chance that he will attend the college today; and I have
noticed that there are no letters in his pigeon hole. In view of there being
no mail in his box, what is the probability that he is attending today?
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Answer:
Let L be the event of my seeing letters in Dr. A’s pigeon hole.
Let A be the event that Dr. A’s is attending college today.

We are told that
P(L|A) =0, P(L°|A) =1,

2 1
PA = — PLAC:—.
()=, (£]4%) = 5
We may infer that
2 3
P(L°|AC) = = P(A°) = —.
(4 =2, P(A) =3

According to Bayes’ Theorem, the probability that Dr. A is in the college,
given that his pigeon hole is empty, is

P(L]A)P(A)

P(A|L?) = P{L°)
But
P(L¢) = P(L¢|A)P(A) 4+ P(L¢|A°)P(A°)
— 1 X g _|_ g X § — é
B 5 375) 5
Therefore . 2/5 5 5 )
c\ __ X _ = Z_
PAL) = —m==5"1" 7

5. The failure of an electrical circuit is attributable to the failure of either
component A of component B or both. The circuit has a probability of
failure of 0.4. Component B has a probability of failure of 0.2 Assuming
that the probabilities of failure of A and B are independent, what is the
probability of failure of A?

Answer: The failure of the circuit is the event F' = AU B. We have P(F) =
P(AUB) =2/5and P(B) = 1/5. The independence of the components A and
B implies that P(AN B) = P(A)P(B). It follows that

P(AUB) = P(A) + P(B) — P(A)P(B)
= P(A){1- P(B)} + P(B),

whence

P(A)
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1. Prove the rule of De Morgan that asserts that A°N B¢ = (AU B)¢, where
the suffix ¢ denotes complemetation.

Answer. If the sets C' and C°¢ are complementary then C' N C¢ = () and
C'UC° = S. Therefore, we must prove that (i) (AN B°)U(AUB) =S and
that (ii) (AN B°)N(AUB) =1

(i) There is (A°N B°)U(AUB) = {(A°NB°)UA}U{(A°N B°) U B}.
But {(A°NB°)UA} = {([A°UA]N[B°UA])} = B°U A and there
is likewise (A° N B°) U B = A° U B, whence the union of the two is
(BcuA)u(A°UB) =S

(ii) Thereis (A°NB°)N(AUB) ={(A°NB )NA}U{(A°NB°)NB} =
DUd=0.



