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ALGEBRAIC POLYNOMIALS

Consider the equation φ0+φ1z+φ2z
2 = 0. Once the equation has been divided

by φ2, it can be factorised as (z − λ1)(z − λ2) where λ1, λ2 are the roots or
zeros of the equation which are given by the formula

(1) λ =
−φ1 ±

√
φ2

1 − 4φ2φ0

2φ2
.

If φ2
1 ≥ 4φ2φ0, then the roots λ1, λ2 are real. If φ2

1 = 4φ2φ0, then λ1 = λ2.
If φ2

1 < 4φ2φ0, then the roots are the conjugate complex numbers λ = α + iβ,
λ∗ = α − iβ, where i =

√
−1.

There are three alternative ways of representing the conjugate complex
numbers λ and λ∗ :

(2)
λ = α + iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗ = α − iβ = ρ(cos θ − i sin θ) = ρe−iθ,

where

(3) ρ =
√

α2 + β2 and θ = tan−1

(
β

α

)
.

These are called, respectively, the Cartesian form, the trigonometrical form and
the exponential form.

The Cartesian and trigonometrical representations are understood by con-
sidering the Argand diagram:
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Figure 1. The Argand Diagram showing a complex

number λ = α + iβ and its conjugate λ∗ = α − iβ.

1



ALGEBRAIC POLYNOMIALS

The exponential form is understood by considering the following series
expansions of cos θ and i sin θ about the point θ = 0:

(4)
cos θ =

{
1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ =
{

iθ − iθ3

3!
+

iθ5

5!
− iθ7

7!
+ · · ·

}
.

Adding these gives

(5)
cos θ + i sin θ =

{
1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · ·

}

= eiθ.

Likewise, by subtraction, we get

(6)
cos θ − i sin θ =

{
1 − iθ − θ2

2!
+

iθ3

3!
+

θ4

4!
− · · ·

}

= e−iθ.

These are Euler’s equations. It follows from adding (5) and (6) that

(7) cos θ =
eiθ + e−iθ

2
.

Subtracting (6) from (5) gives

(8)
sin θ =

−i

2
(eiθ − e−iθ)

=
1
2i

(eiθ − e−iθ).

Now consider the general equation of the nth order:

(9) φ0 + φ1z + φ2z
2 + · · · + φnzn = 0.

On dividing by φn, we can factorise this as

(10) (z − λ1)(z − λ2) · · · (z − λn) = 0,

where some of the roots may be real and others may be complex. The complex
roots come in conjugate pairs, so that, if λ = α + iβ is a complex root, then
there is a corresponding root λ∗ = α−iβ such that the product (z−λ)(z−λ∗) =
z2 − 2αz + (α2 + β2) is real and quadratic. When we multiply the n factors
together, we obtain the expansion

(ii) 0 = zn −
∑

i

λiz
n−1 +

∑
i

∑
j

λiλjz
n−2 − · · · (−1)nλ1λ2 · · ·λn.
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This can be compared with the expression (φ0/φn)+(φ1/φn)z+ · · ·+zn =
0. By equating coefficients of the two expressions, we find that (φ0/φn) =
(−1)n

∏
λi or, equivalently,

(12) φn = φ0

n∏
i=1

(−λi)−1.

Thus we can express the polynomial in any of the following forms:

(13)

∑
φiz

i = φn

∏
(z − λi)

= φ0

∏
(−λi)−1

∏
(z − λi)

= φ0

∏(
1 − z

λi

)
.

We should also note that, if λ is a root of the primary equation
∑

φiz
i = 0,

where rising powers of z are associated with rising indices on the coefficients,
then μ = 1/λ is a root of the equation

∑
φiz

n−i = 0, which has declining
powers of z instead. This follows since

∑
φiλ

i =
∑

φiμ
−i = 0 implies that

μn
∑

φiμ
−i =

∑
φiμ

n−i = 0. Confusion can arise from not knowing which of
the two equations one is dealing with.

Rational Functions of Polynomials

If β(z) and φ(z) are polynomial functions of z of degrees d and g respec-
tively with d < g, then the ratio β(z)/φ(z) is described as a proper rational
function. We shall often encounter expressions of the form

(14) y(t) =
β(L)
φ(L)

x(t).

For this to have a meaningful interpretation in the context of a time-series
model, we normally require that y(t) should be a bounded sequence whenever
x(t) is bounded. The necessary and sufficient condition for the boundedness of
y(t), in that case, is that the series expansion of β(z)/φ(z) should be convergent
whenever |z| ≤ 1. We can determine whether or not the sequence will converge
by expressing the ratio β(z)/φ(z) as a sum of partial fractions. The basic result
is as follows:

(15) If β(z)/φ(z) = β(z)/{φ1(z)φ2(z)} is a proper rational function,
and if φ1(z) and φ2(z) have no common factor, then the function
can be uniquely expressed as

β(z)
φ(z)

=
β1(z)
φ1(z)

+
β2(z)
φ2(z)

,

where β1(z)/φ1(z) and β2(z)/φ2(z) are proper rational functions.
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Example. Consider the following partial fraction expansion

(16)
gz + d

(1 − z/λ1)(1 − z/λ2)
=

c1

(1 − z/λ1)
+

c2

(1 − z/λ2)

To find the value of c1, the equation is multiplied on both sides by 1−z/λ1 and
then z is set to λ1. The result is that c1 = (gλ1 + d)/(1 − λ1/λ2). Likewise, it
is found that c2 = (gλ2 + d)/(1 − λ2/λ1).

Imagine that φ(z) =
∏

(1 − z/λi). Then, repeated applications of this
basic result enables us to write

(16)
β(z)
φ(z)

=
κ1

1 − z/λ1
+

κ2

1 − z/λ2
+ · · · + κg

1 − z/λg
.

By adding the terms on the RHS, we find an expression with a numerator of
degree n − 1. By equating the terms of the numerator with the terms of β(z),
we can find the values κ1, κ2, . . . , κg. The convergence of the expansion of
β(z)/φ(z) is a straightforward matter. For the series converges if and only if
the expansion of each of the partial fractions converges. For the expansion

(17)
κ

1 − z/λ
= κ

{
1 + z/λ + (z/λ)2 + · · ·

}

to converge when |z| ≤ 1, it is necessary and sufficient that |λ| > 1.
The expansion of (17) applies to complex roots as well as to real roots:

(18)

c

1 − z/λ
+

c∗

1 − z/λ∗ =c
{
1 + z/λ + (z/λ)2 + · · ·

}

+ c∗
{
1 + z/λ∗ + (z/λ∗)2 + · · ·

}

=
∞∑

t=0

zt(cλ−t + c∗λ∗−t).

The various complex quantities can be represented in terms of exponentials:

(19)
λ = κ−1e−iω,

= ρe−iθ,

λ∗ = κ−1eiω,

c∗ = ρeiθ.

Then, the generic term of the expansion becomes

(20)
zt(cλ−t + c∗λ∗−t) = ztρκt

{
ei(ωt−θ) + e−i(ωt−θ)

}
= zt2ρκt cos(ωt − θ).
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The expansion converges for all |z| ≤ 1 if and only if |κ| < 1, which is a
condition on the modulus of the complex number λ. But, |κ| = |λ−1| = |λ|−1;
so it is confirmed that the necessary and sufficient condition for convergence is
that |λ| > 1.

Finally, consider the case of a repeated root with a multiplicity of n. Then,
a Maclaurin series expansion is available that gives

(21)
1

(1 − z/λ)n
= 1 + n

z

λ
+

n(n + 1)
2!

( z

λ

)2

+
n(n + 1)(n + 2)

3!

( z

λ

)3

+ · · · .

If λ is real, then |λ| > 1 is the condition for convergence. If λ is complex,
then it can be combined with the conjugate root in the manner of (20) to
create a trigonometric function; and, again, the condition for convergence is
that |λ| > 1.

This result can be understood by regarding the LHS of (21) as a represen-
tation of n transfer functions in series, each of which fulfils the BIBO condition.

The general conclusion is that the transfer function is stable if and only if
all of the roots of the denominator polynomial a(z), which are described as the
poles of the transfer function, lie outside the unit circle in the complex plane.

The Expansion of a Rational Function: The Method of Detached
Coefficients

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

(22)
β0 + β1z

1 − φ1z − φ2z2
=

{
ω0 + ω1z + ω2z

2 + · · ·
}
.

We rewrite this equation as

(23) β0 + β1z =
{
1 − φ1z − φ2z

2
}{

ω0 + ω1z + ω2z
2 + · · ·

}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(24)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.
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