
    

LECTURE 3

Population Dynamics

The simplest of all the growth processes which provide models for popula-
tion dynamics is exponential growth. This is a process of constant proportional
growth whereby each time period witnesses the same percentage increase in
numbers. If the proportional rate of growth ρ is constant; and, if ρ > 0, then
the absolute rate of growth must be ever-increasing. When ρ < 0, there is a
constant proportional rate of decline in the population and a diminishing ab-
solute rate. A zero population is approached as time elapses, but it is never
reached.

Let y ≥ 0 represent the size of the population which, for convenience, we
take to be a real number instead of an integer. Then the differential equation
governing exponential growth is

(1)
dy

dt
= ρy,

where t stands for time. The solution of the equation is the exponential function

(2) y = y0e
ρt,

where y0, which stands for the size of the population at time t = 0, is described
as the initial condition, and where e ' 2.7183 is the so-called natural num-
ber. To confirm that this function satisfies the differential equation, we simply
differentiate it via the chain rule to obtain dy/dt = ρy0e

ρt = ρy.
To find the value of y at time t when ρ and y0 are given, we may take

natural logarithms—ie. logs to the base e—of equation (2) to give

(3) ln y = ln y0 + ρt.

Once the value of ln y has been calculated, the value of y may be recovered
from a table of antilogarithms. We can also use logs to the base 10. In that
case, we have

(4) log10 y = log10 y0 + (log10 e)ρt.
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Figure 1. The population in millions of East Africa, comprising the coun-

tries of Uganda, Kenya, Tanzania and Rwanda and Burundi.

Whatever of the base of the logarithms, the log of an exponential function is a
linear function of t.

Example. Some of the highest rates of population growth are to be found in
East Africa. In 1950, the population in the area which now comprises Kenya,
Uganda and Tanzania was estimated at 23 million. By 1975, this had become
49 million. We may use the formula ρ = (ln y − ln y0)/t in showing that

(5)

y = y0e
ρt

= 23, 000, 000× e(0.03025×25)

= 49, 000, 000,

which indicates that the growth rate was in excess of 3% per annum. To get the
measure of this rate of increase, we may calculate that, if it were it to continue,
there would be 104.39 million people by the turn of the century 222.40 million
by 2025 and 473.81 million by 2050. That is to say, by the year 2050, the East
African population would equal that of China in the year 1900 and it would
exceed the Indian population of the year 1975. These numbers are impossible;
and an epidemic of AIDS has already supervened which seems bound to retard
the growth of population.
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For some purposes, it is simpler to analyse the growth of population in
terms of discrete-time models which generate a sequences of values instead of
a continuous trajectories. The discrete-time analogue of exponential growth is
geometric growth which is represented by the equation

(6) yt = y0(1 + r)t.

On comparing equations (2) and (6), we find that yt/y0 = (1+ r)t = eρt; which
indicates that 1 + r = eρ. The exponential and the geometric rates, which are
denoted by ρ and r respectively, differ with r > ρ. However, the geometric rate
tends to the exponential rate as the length of the unit time period decreases.

To demonstrate the convergence of geometric and exponential growth, and
to discover a means of evaluating the natural number, we can take the analogy of
the growth of a fixed-interest financial investment. The aim is to determine the
effect of compounding the earnings with the capital at ever-decreasing intervals
of time.

If the earnings were compounded with the investment twice a year, then
the growth factor would be (1 + 1

2r)
2. If they were compounded ever quarter,

the factor would be (1 + 1
4r)

4. If the earnings were compounded continuously,
then the growth factor would be lim(n→∞)(1 + r

n )n. To evaluate this limit,
we may expand the expression in a power series Recall that, according to the
binomial theorem,

(7)
(a+ b)n = an + nan−1b+

n(n− 1)

2
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3

+ · · ·+ n(n− 1)

2
a2bn−2 + nabn−1 + bn.

This indicates that

(8)
(
1 +

r

n

)n
=

{
1 + n

r

n
+
n(n− 1)

2

r2

n2
+
n(n− 1)(n− 2)

3!

r3

n3
+ · · ·

}
.

The consequence is that

(9) lim
n→∞

(
1 +

r

n

)n
=

{
1 + r +

r2

2!
+
r3

3!
+ · · ·

}
.

Setting r = 1 in this expression gives

(10)
lim
n→∞

=

(
1 +

1

n

)n
=

{
1 + 1 +

1

2!
+

1

3!
+ · · ·

}
= e,

3



    

D.S.G. POLLOCK: ENVIRONMENTAL ECONOMICS

and this provides the means of calculating the natural number to any desired
degree of accuracy. Finally, by defining q = n/r and by observing that, if r is
fixed, then q →∞ as n→∞, we can see that

(11) lim
n→∞

(
1 +

r

n

)n
=

{
lim
q→∞

(
1 +

1

q

)q}r
= er.

Logistic Growth

The rate of increase in a population is the difference between the rate of
addition of individuals due to birth B and immigration I and the rate of loss
due to death D and emigration E:

(12)
dy

dt
= B + I −D − E.

Matters are simplified if, for a start, we consider a closed population with
I = E = 0. In most models which are of any interest, the rates of birth and
death are functionally related to the size y of the population itself. This is
certainly true in the case of exponential growth were the births and deaths are
assumed to be directly proportional to y. Thus, with B = βy and D = δy, we
have

(13)
dy

dt
= βy − δy = ρy,

where ρ = β − δ. In the closed population, any increase is due entirely to the
excess of births over deaths.

It is only in rare cases and for short periods that a population can follow
an exponential growth path. Very soon a scarcity of resources or of space, and
perhaps an increasing problem of environmental pollution, will slow or arrest
the growth. The effect will be achieved either via a decline in the birth rate β
or an increase in the death rate δ or in both of these ways. A simple notion is
to postulate that the birth rate is a declining linear function of y and that the
death rate is an increasing linear function of y:

(14)
β = λ0 + λ1y, λ1 < 0

δ = µ0 + µ1y, µ1 > 0.

In that case, there will be a certain population size, say ȳ, where the numbers
of births and deaths are equal. Thus, if

(15) λ0 + λ1ȳ = µ0 + µ1ȳ,
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dy/dt

y0
γ/2 γ

Figure 2. The growth rate in the logistic model.

then

(16) ȳ =
λ0 − µ0

µ1 − λ1
.

Amongst ecologists, this population level is described as the carrying ca-
pacity of the environment. It is useful to adopt special symbols both for the
carrying capacity and for the differential between births and deaths at the point
where y = 0:

(17) γ =
λ0 − µ0

µ1 − λ1
, ρ = λ0 − µ0.

In these terms, the rate of growth of the population is given by

(18)

dy

dt
= (β − δ)y

= ρy

(
γ − y
γ

)
.

The expression on the RHS stands for a quadratic function of y whose curve
passes through the origin and reaches a maximum at y = γ/2. This is the
so-called logistic model of population growth which is also called the Verhulst–
Pearl model.

It is easy to interpret the logistic model which is merely the exponential
model of (1) modified by the factor (γ − y)/γ. To understand the effect of
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Figure 3. The Logistic function y = 1/(1 + e−t) and its derivative. For

large negative values of t, the function and its derivative are close. In the

case of the exponential function y = et, they coincide for all values of t.

this factor, imagine that y is close to zero. Then the value of the factor will
be close to unity and the process of growth will be almost exponential. Now
imagine that y = γ, which is to say that the population has reached the carrying
capacity of the environment. Then the factor will have the value of zero and
there will be no population growth.

The model does not preclude the case where y > γ. In that case dy/dt < 0,
and the population will decline toward the level of γ. However, there might be
a need to explain how the population has come to exceed the carrying capacity
of the environment. The excess population might be due to immigration or it
might be due to a reduction that has occurred in the carrying capacity.

The logistic model is uncommon amongst continuous-time models of pop-
ulation dynamics in that its trajectory can be represented by a simple analytic
function. Usually such trajectories have to be calculated by a process of numer-
ical integration. The form of the solution for the logistic model depends upon
whether the carrying capacity, which represents the steady-state asymptote of
the dynamic system, is being approached from above or below. Assuming that
y < γ, the general solution is given by the equation

(19) y =
γ

1 + eα−ρt
.

The graph of the function for some some special and simplifying choices of
γ, ρ and α is presented in Figure 3. There is no great loss of generality in
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setting γ = 1 and α = 0. When γ = 1, the equation represents the size of the
population as a proportion of the carrying capacity. Setting α = 0 establishes
a new time origin which predates the former origin of t by α/ρ periods.

To confirm that the function of (19) does satisfy equation (18), we need to
differentiate it:

(20)

dy

dt
=

γρeα−ρt

(1 + eα−ρt)2

= ρy
eα−ρt

1 + eα−ρt
.

Then it only remains to be confirm that

(21)
eα−ρt

1 + eα−ρt
=
γ − y
γ

,

which is easily done.

Interpretations of The Logistic Model

In spite of its simplicity, the logistic model can bear the weight of a good
deal of interpretation; and, at the same time, it tends to suggest several avenues
for further enquiry.

Density Effects. The basic issues which are raised by the model concern
the dependence of the birth and death rates on the population size. If we
imagine that the population is confined to a limited area, then the reactions to
population changes can be described as density-dependent effects.

The density effects constitute an equilibrating mechanism which guides the
population towards the level of γ. The effects may be largely attributable to
the environment or they may be the consequence of self-regulating mechanisms
which are inherent in the species.

A high density can have an effect upon mortality by limiting the per-capita
food supply, thereby debilitating the individuals and leaving them prone to the
ravages of disease and famine. It may also affect fertility which is liable to be
lower in unhealthy and malnourished individuals than in healthy and well-fed
ones. In connection with human populations, these effects are described as
Malthusian mechanisms.

There may be other, more salutary mechanisms, which limit fertility in
cases of high population density. In some species of animals, the chemical
secretions or the sexual displays which are the prelude to mating are not so
forthcoming in crowded conditions, and these suppressions may be regarded as
instances of self-regulating mechanisms.

In the case of human populations, one may have to look carefully to dis-
cover the self-regulating mechanisms. Even if the stress of living in crowded
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conditions is unlikely to effect human fertility for physical reasons, it may well
affect it for social reasons. Thus, for example, the presence of a mother-in-law
in the same dwelling may have a depressive effect upon the fertility of a young
married couple. This may be a factor in the comparatively low fertility rates
of some Eastern European countries which have long been affected by housing
shortages.

When we recognise that the global human population is increasing at an
unsustainable rate, we are bound to wonder whether the growth will be halted
by a decline in the birth rate or by a rise in the death rate, or by both. In
almost every case, the current high rates of increase are due to a fall in the
death rate bought about, almost exclusively, by a fall in infant mortality. The
hope has been that the birth rate in third-world countries would follow the
downward trend of the death rate, with a brief time-lag, as it has done in the
developed countries. To date, there is little evidence of such a decline; and
there is fear that time is running out.

Extinctions. It is fair to say that populations whose evolution is not governed
by density-dependent effects are in danger of an early extinction. The numbers
in such populations will drift widely under the impact of favourable and adverse
environmental circumstances. If their birth rate is not liable to rise and their
death rate to fall in conditions of low population density, then they might not
be able to respond adequately to an environmental shock which depletes their
numbers.

In this connection, the logistic model is undoubtedly an over-simplification,
for it suggests that the rate of increase is greatest at times when the population
density is lowest, which is when the population is on the verge of extinction.
In such circumstances, the species may suffer from several additional disadvan-
tages. In the first place, mature individuals might have difficulty in finding
mates if the density is too low. In the second place, level of fertility may be
adversely affected by inbreeding which can lead to a loss of genetic diversity
and to an increased likelihood that the offspring will inherit two copies of a
defective recessive gene. Also, populations which lack genetic diversity run a
risk of succumbing, en masse, to a single disease.

A simple elaboration of the logistic model is available which incorporates
a lower limit or survival threshold κ, below which growth is negative and the
species heads for extinction. The modified model simply incorporates an addi-
tional factor so that the equation becomes

(22)
dy

dt
= ρy

(
γ − y
γ

)(
y − κ
y

)
.

The function of the RHS of (22) is a quadratic; but, in contrast to the function
under (18), its curve does not pass through the origin. Instead, it cuts the
horizontal axis at a positive value of y = κ. The extinction effect comes into
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dy/dt

y0
κ γ

Figure 4. The growth function of a modified logistic model incorporating

a survival threshold.

operation when y falls below κ, since the additional factor is then negative.
For values of y which are significantly larger than κ, the effect of the factor is
slight; for, in those cases, it does not differ greatly from unity.

It should be understood that, in common with y = γ, the population level
of y = κ represents a point of equilibrium. However, it differs from γ in that
it represents an unstable equilibrium. If the population falls below κ, then a
process of decline is set in motion which drives it to extinction. If it exceeds
κ, then a process of growth is set in motion which will carry the population
towards the stable equilibrium point of γ.

The Population Strategies of the Species. In some ways, it is misleading
to describe the parameter γ of (17) as the carrying capacity of the environment,
since it is as much a function of the vital parameters which govern the birth
and death rates of the species as it is of the environments in which they live.

In a given environment, the parameters ρ and γ, are determined by the
genetics of the individuals. Therefore, it is natural to suppose that they have
been subject to a process of evolution governed by natural selection. In this
way, one might be able to account for some of the wide variety of population
sizes and inherent growth rates found amongst the species.

Some species are adapted to live in ephemeral environments from which
they must emigrate in large numbers at birth or shortly afterwards. Such
species are likely to have a high inherent growth rate ρ which should enable
them rapidly to colonise favourable environments as well as to sustain the high
rates of mortality to which they are subject whilst migrating to new habitats.

Other species are adapted to live in stable and specialised environments
where territories can be found which individuals or groups can demarcate and
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preserve. These species are liable to be longer-lived than others; and their
reproductive rates are liable to be lower. A good example is provided by the
forest-dwelling gorillas whose low reproductive rates now pose a threat to their
survival as the extent of their natural habitat is reduced by the incursions of
man.

The case can be made that the natural fertility of mankind represents an
adaptation to circumstances which no longer characterise our lives. Our fertility
rates may have been established at a time when man’s hominid forebears were
in the process of dispersing over much wider areas than those inhabited by
their simian ancestors. The ancestral habitats may have resembled those of
the modern gorilla and the chimpanzee. According to this supposition, the
high fertility rates, which were established at the time of the dispersal, are the
feature which has caused the populations of mankind, since time immemorial,
to press so relentlessly against the limits of the available resources.
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