
LECTURE 5

Serially Correlated
Regression Disturbances

Autoregressive Disturbance Processes

The interpretation which is given to the disturbance term of a regression
model depends upon the context in which the analysis is conducted. Imagine
that we are are fitting the regression equation

(206) yt = β0 + xt1β1 + · · ·+ xtkβk + εt

to a set of economic variables observed through time. Then it is usual to assume
that the disturbance εt represents the net effect upon the dependent variable yt
of a large number of subsidiary variables which, individually, are of insufficient
importance to be included in the systematic part of the model.

It may be reasonable to imagine that, instead of accumulating over time,
the effects of the subsidiary variables will tend to cancel each other in any
period. Then their overall effect might have a small constant expected value.
The inclusion of the intercept term in the regression equation allows us to
assume that E(εt) = 0; for any nonzero net effect of the subsidiary variables
will be absorbed by β0.

Economic variables are liable to follow slowly-evolving trends and they are
also liable to be strongly correlated with each other. If the disturbance term
is indeed compounded from such variables, then we should expect that it too
will follow a slowly-evolving trend.

The assumptions of the classical regression model regarding the distur-
bance term are at variance with these expectations. In the classical model,
it is assumed that the disturbances constitute a sequence ε(t) = {εt; t =
0,±1,±2, . . .} of independently and identically distributed random variables
such that

(207) E(εtεs) =

{
σ2, if t = s;

0, if t 6= s.
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The process which generates such disturbances is often called a white-noise
process. A sequence of 50 observations generated by a white-noise process is
plotted in figure 1. The sequence is of a highly volatile nature; and its past
values are of no use in predicting its future values.

Our task is to find models for the disturbance process which are more in ac-
cordance with economic circumstances. Given the paucity of econometric data,
we are unlikely to be able to estimate the parameters of complicated models
with any degree of precision; and, in econometrics the traditional means of rep-
resenting the inertial properties of the disturbance process has been to adopt a
simple first-order autoregressive model, or AR(1) model, whose equation takes
the form of

(208) ηt = φηt−1 + εt, where φ ∈ (−1, 1).

Here it continues to be assumed that εt is generated by a white-noise
process with E(εt) = 0. In many econometric applications, the value of φ falls
in the more restricted interval [0, 1).

According to this model, the conditional expectation of ηt given ηt−1 is
E(ηt|ηt−1) = φηt−1. That is to say, the expectation of the current disturbance
is φ times the value of the previous disturbance. This implies that, for a value of
φ which is closer to unity that to zero, there will be a high degree of correlation
amongst successive elements of the sequence η(t) = {ηt; t = 0,±1,±2, . . .}.
This result is illustrated in figure 2 which gives a sequence of 50 observation on
an AR(1) process with φ = 0.9

We can show that the covariance of two elements of the sequence η(t)
which are separated by τ time periods is given by

(209) C(ηt−τ , ηt) = γτ = σ2 φτ

1− φ2
.

It follows that variance of the process, which is formally the autocovariance of
lag τ = 0, is given by

(210) V (ηt) = γ0 =
σ2

1− φ2
.

As φ tends to unity, the variance increases without bound. In fact, the se-
quences in figures 1 and 2 share the same underlying white noise-process which
has a unit variance; and it is evident that the autocorrelated sequence of figure
2 has the wider dispersion.

To find the correlation of two elements from the autoregressive sequence,
we note that

(211) Corr(ηt−τ , ηt) =
C(ηt−τ , ηt)√
V (ηt−τ )V (ηt)

=
C(ηt−τ , ηt)
V (ηt)

=
γτ
γ0
.
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Figure 1. 50 observations on a white-noise process ε(t) of unit variance.
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Figure 2. 50 observations on an AR(1) process η(t) = 0.9η(t− 1) + ε(t).

49



D.S.G. POLLOCK: INTRODUCTORY ECONOMETRICS

This implies that the correlation of the two elements separated by τ periods is
just φτ ; and thus, as the temporal separation increases, the correlation tends
to zero in the manner of a convergent geometric progression.

To demonstrate these results, let us consider substituting for ηt−1 = φηt−2

+εt−1 in the equation under (208) and then substituting for ηt−2 = φηt−3+εt−2,
and so on indefinitely. By this process we find that

(212)

ηt = φηt−1 + εt

= φ2ηt−2 + εt + φεt−1

...
=
{
εt + φεt−1 + φ2εt−1 + · · ·

}
=
∞∑
i=0

φiεt−i.

Here the final expression is justified by the fact that φn → 0 as n → ∞ in
consequence of the restriction that |φ| < 1. Thus we see that ηt is formed as a
geometrically declining weighted average of all past values of the sequence ε(t).

Using this result, we can now write

(213)

γτ = C(ηt−τ , ηt) = E(ηt−τηt)

= E

({ ∞∑
i=0

φiεt−τ−i
}{ ∞∑

j=0

φjεt−j
})

=
∞∑
i=0

∞∑
j=0

φiφjE(εt−τ−iεt−j).

But the assumption that ε(t) is a white-noise process with zero-valued autoco-
variances at all nonzero lags implies that

(214) E(εt−τ−iεt−j) =

{
σ2, if j = τ + i;

0, if j 6= τ + i.

Therefore, on using the above conditions in (213) and on setting j = τ + i, we
find that

(215)

γτ = σ2
∞∑
i

φiφi+τ = σ2φτ
∞∑
i

φ2i

= σ2φτ
{

1 + φ2 + φ4 + φ6 + · · ·
}

= σ2 φτ

1− φ2
.
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This establishes the result under (209).

The Algebra of the Lag Operator

The analysis of stochastic dynamic processes of a more complicated sort
than the first-order autoregressive process can pose problems which are almost
insurmountable without the aid of more powerful algebraic techniques. One of
the techniques which is widely used is the calculus of operators.

The essential operator in the context of discrete-time stochastic systems
is the so-called lag operator L. When this is applied to the sequence x(t) =
{xt, t = 0,±1,±2, . . .}, the effect is to replace each element by its predecessor.
That is to say,

(216)
x(t) = {. . . , x−2, x−1, x0, x1, x2, . . .} becomes

x(t− 1) = {. . . , x−3, x−2, x−1, x0, x1, . . .}.

Using the summary notation of the lag operator, this transformation is ex-
pressed by writing

(217) Lx(t) = x(t− 1).

Now, L{Lx(t)} = Lx(t − 1) = x(t − 2); so it makes sense to define L2 by
L2x(t) = x(t− 2). More generally, Lkx(t) = x(t− k) and, likewise, L−kx(t) =
x(t + k). For the sake of completeness, we also define the identity operator
I = L0 whereby Ix(t) = x(t)

Other operators are the difference operator ∇ = I−L which has the effect
that

(218) ∇x(t) = x(t)− x(t− 1),

the forward-difference operator ∆ = L−1 − I, and the summation operator
S = (I − L)−1 = {I + L+ L2 + · · ·} which has the effect that

(219) Sx(t) =
∞∑
i=0

x(t− i).

In general, we can define polynomials of the lag operator of the form α(L) =
α0 + α1L+ · · ·+ αpL

p having the effect that

(220) α(L)x(t) = α0x(t) + α1x(t− 1) + · · ·+ αpx(t− p).

There is a considerable advantage in using the lag operator when a sum-
mary notation is needed. However, the real importance of the device stems
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from the fact that we may employ the ordinary algebra of polynomials and ra-
tional functions for the purpose of manipulating lag-operator polynomials and
their ratios.

Consider, for example, the following expansion:

(221)
1

1− φz = {1 + φz + φ2z2 + · · ·}.

The expression on the RHS, which is a geometric series, may be obtained by
a variety of means including long division and the binomial expansion. Con-
versely, the sum of the geometric progression is obtained via the following
subtraction:

(222)

S = 1 + φz + φ2z2 + · · ·
φzS = φz + φ2z2 + · · ·
S − φzS = 1.

This gives S(1− φz) = 1, from which S = (1− φz)−1.
The symbol z, which is described as an algebraic indeterminate, usually

stands for a real or a complex number. However, it is perfectly in order to
replace z by the lag operator L. In that case, equation (221) becomes

(223)
1

1− φL = {1 + φL+ φ2L2 + · · ·}.

To see the use of this, consider the equation (212). We may replace the
generic elements ηt , ηt−1 and εt by the corresponding sequences so as to obtain
the following equation for the AR(1) process:

(224) η(t) = φη(t− 1) + ε(t).

With the use of the lag operator, this may be rendered as

(225) (I − φL)η(t) = ε(t).

On multiplying both sides by (I −φL)−1 and using the expansion of (223), the
latter becomes

(226)

η(t) =
1

1− φLε(t)

=
{

1 + φL+ φ2L2 + · · ·
}
ε(t)

=
{
ε(t) + φε(t− 1) + φ2ε(t− 2) + · · ·

}
.
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Thus the result which was given under (212) may be obtained without recourse
to a process of susbstitution.

Serial Correlation in the Regression Disturbances

We shall now consider the problems which arise from the serial correlation
of the disturbances of a regression model, as well as the means of treating these
problems.

Recall that, amongst the features of the Classical Linear Regression Model,
there is the assumption that the elements of the disturbance sequence ε(t) =
{εt; t = 0,±1,±2 . . .} are independently and identically distributed (i.i.d) with
zero mean, such that

(227) E(εt) = 0, for all t and C(εt, εs) =

{
σ2, if t = s;

0, if t 6= s.

This may be described as the null hypothesis concerning the disturbances; and
it specifically excludes any serial correlation of the disturbances.

If all of the other assumptions of the Classical Model are granted, then
the presence of serial correlation amongst the disturbances will affect neither
the unbiasedness of the ordinary least-squares estimates nor their consistency.
However, the standard errors and confidence intervals which are calculated
under the i.i.d assumption will be incorrect, which will affect any inferences
which we might make.

To overcome the problems of serial correlation, we should have to build a
model for the disturbance process as an integral part of our regression strategy.
First, however, we have to detect the presence of serial correlation.

The residuals of an ordinary least-squares regression represent estimates
of the disturbances from which they may differ significantly; and the misrepre-
sentation of the disturbances can affect our ability to detect serial correlation.

To demonstrate the differences between the disturbances and the residuals,
we may resort to matrix algebra. Recall that the fitted regression equation is
represented by

(228) y = Xβ̂ + e, where β̂ = (X ′X)−1X ′y.

The residual vector is

(229) e = y −Xβ̂ = y −X(X ′X)−1X ′y;

and, on defining P = X(X ′X)−1X ′, we can write this as

(230) e = (I − P )y = (I − P )(Xβ + ε).
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Now observe that (I − P )X = 0. It follows that

(231) e = (I − P )ε.

This shows that the residuals represent a transformation of the disturbances;
and, since the matrix I − P of the transformation is non-invertible, it is im-
possible to recover the disturbances. Next observe that PP ′ = P and that
(I − P )(I − P )′ = (I − P )2 = (I − P ). It follows that the variance–covariance
or dispersion matrix of the residuals is given by

(232)

D(e) = E
{

(I − P )εε′(I − P )′
}

= (I − P )E(εε′)(I − P )′

= (I − P ){σ2I}(I − P )′ = σ2(I − P ).

This is to be compared with the variance–covariance matrix of the disturbances
which is D(ε) = σ2I. Thus we see that the residuals will be serially correlated
even when the disturbances are independently and identically distributed. Nev-
ertheless, if the remainder of regression model, which is to say its systematic
part, is correctly specified, then we shall find that e→ ε as T →∞. Likewise,
we shall find that, as the sample size increases, D(e) = σ2(I − P ) will tend to
D(ε) = σ2I.

Now let us imagine that the sequence η(t) = {ηt; t = 0,±1,±2, . . .} of the
disturbances follows an AR(1) process such that

(233) η(t) = ρη(t− 1) + ε(t), with ρ ∈ [0, 1).

Then, if we could observe the sequence directly, the best way of detecting the
serial correlation would be to estimate the value of ρ and to test the significance
of the estimate. The appropriate estimate would be

(234) r =
∑T

t=2 ηt−1ηt∑T
t=1 η

2
t

.

When residuals are used in the place of disturbances, we face a variety of
options.

The first of these options, which we may be constrained to follow in some
circumstances, is to treat the residuals as if they were equal to the disturbances.
This approach is acceptable when the sample contains sufficient information to
determine estimates of the systematic parameters which are close to the true
values. Thus it may be said that the procedure has asymptotic validity in the
sense that it becomes increasingly acceptable as the sample size increases.

A second approach is to derive a sequence of revised residuals which have
the same statistical properties as the disturbances, such that they are inde-
pendently and identically distributed whenever the disturbances are. Then we
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should be able to make exact inferences based on the usual statistical tables.
The problem with this approach is that the test statistics which are based upon
the revised residuals tend to lack power in small samples.

A third approach, which has become practicable only in recent years, is to
devise tests which take full account of whatever statistical properties the ordi-
nary least-squares residuals would possess if the null hypothesis asserting the
i.i.d nature of the disturbances were true. This means that we must calculate
the exact sampling distribution of the test statistic under the null hypothesis
in view of the precise value of the moment matrix X ′X/T which characterises
the regression. Such an approach requires considerable computing resources.

The traditional approach to the problem of testing for the presence of
serial correlation in a regression model is due to Durbin and Watson. They
have attempted to make an explicit allowance for the uncertainties which arise
from not knowing the precise distribution of the test statistic in any particular
instance. This has led them to acknowledge and to identify the circumstances
where their test statistic delivers inconclusive results.

The test statistic of Durbin and Watson, which is based upon the sequence
{et; t = 1, . . . , T} of ordinary least-square residuals, is defined by

(235) d =
∑T
t=2(et − et−1)2∑T

t=1 e
2
t

.

In fact, this statistic may be used quite generally for detecting any problem of
misspecification whose symptoms are seeming violations of the i.i.d assumption
concerning the disturbances.

In attempting to understand the nature of the statistic, attention should
be focussed on its numerator. The numerator is a sum of squares of differences
between adjacent residuals. Clearly, if the disturbance sequence is highly corre-
lated, with adjacent values lying close to each other, then we should expect the
numerator to have a low value. Conversely, if adjacent values of the disturbance
sequence are uncorrelated, then we should expect adjacent residuals, likewise,
to show little correlation, and we should expect the numerator to have a high
value.

On expanding the numerator of the Durbin–Watson statistic, we find that

(236) d =
1∑T
t=1 e

2
t

{
T∑
t=2

e2
t − 2

T∑
t=2

etet−1 +
T∑
t=2

e2
t−1

}
' 2− 2r,

where

(237) r =
∑T
t=2 etet−1∑T
t=1 e

2
t
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is an estimate of the coefficient ρ of serial correlation which is based on the
ordinary least-squares residuals. If ρ is close to 1, and r likewise, then d will
be close to zero; and we shall have a strong indication of the presence of serial
correlation. If ρ is close to zero, so that the i.i.d assumption is more or less
valid, then d will be close to 2.

The response of Durbin and Watson to the fact that their statistic is based
on residuals rather than on disturbances was to provide a table of critical
values which included a region of indecision. The resulting decision rules can
be expressed as follows

if d < dL, then acknowledge the presence of serial correlation,

if dL ≤ d ≤ dU , then remain undecided,

if dU < d, then deny the presence of serial correlation.

The values of dL and dU to be found in the table depend upon two param-
eters. The first is the number of degrees of freedom available to the regression
and the second is the number of variables included in the regression. The latter
is reckoned without including the intercept term. It is evident from the table
that, as the number of degrees of freedom increase, the region of indecision
lying between dL and dU becomes smaller, until a point is reached were it is no
longer necessary to make any allowance for it.

Estimating a Regression Model with AR(1) Disturbances

Now let us consider various ways of estimating a regression model with
a first-order autoregressive disturbance process. Assume that the regression
equation takes the form of

(238) y(t) = α+ βx(t) + η(t),

where

(239) η(t) = ρη(t− 1) + ε(t) with ρ ∈ [0, 1).

With the use of the lag operator, the latter equation can be written as

(240) η(t) =
1

1− ρLε(t)

which is substituted into equation (238) to give

(241) y(t) = α+ βx(t) +
1

1− ρLε(t).
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Multiplying this equation throughout by I − ρL gives

(242)
(1− ρL)y(t) = (1− ρL)α+ (1− ρL)βx(t) + ε(t)

= µ+ (1− ρL)βx(t) + ε(t),

where µ = (1− ρ)α. This can be written as

(243) q(t) = µ+ βw(t) + ε(t),

where

(244) q(t) = (1− ρL)y(t) and w(t) = (1− ρL)x(t).

If the value of ρ were known, then the sequences q(t) and w(t) could be formed
and the parameters µ and β could be estimated by applying ordinary least-
squares regression to equation (243). An estimate for α = µ/(1−ρ) would then
be recoverable from the estimate of µ.

There are various various ways in which we may approach the estimation
of the equation (241) when ρ is unknown.

A simple approach to the estimation of the equation, which requires only a
single application of ordinary least-squares regression, depends upon rewriting
equation (242) as

(245) y(t) = µ+ ρy(t− 1) + β0x(t) + β1x(t− 1) + ε(t),

where β0 = β and β1 = −ρβ. The estimation of this equation by ordinary least-
squares regression takes no account of the fact that the parameters are bound
by the restriction that β1 = −ρβ0; and therefore the number of parameters to
be estimated becomes four instead of three. We should expect to loose some
statistical efficiency by ignoring the parametric restriction.

The second approach to the estimation of equation (238) is based on equa-
tion (243), and it involves searching for the optimal value of ρ by running a num-
ber of trial regressions. For a given value of ρ, the elements of q(t) = (1−ρL)y(t)
and w(t) = (1 − ρL)x(t) for t = 2, . . . , T are constructed according to the fol-
lowing scheme:

(246)

q2 = y2 − ρy1,

q3 = y3 − ρy2,
...

qT = yT − ρyT−1,

w2 = x2 − ρx1,

w3 = x3 − ρx2,
...

wT = xT − ρxT−1.

Then the corresponding equation

(247) qt = µ+ βwt + ut
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is subjected to an ordinary least-squares regression; and the value of the residual
sum of squares is recorded. The procedure is repeated for various values of ρ;
and the definitive estimates of ρ, α and β are those which correspond to the
least value of the residual sum of squares.

The procedure of searching for the optimal value of ρ may be conducted in
a systematic and efficient manner by using a line-search algorithm such as the
method of Fibonacci Search or the method of Golden-Section Search. These
algorithms are described in textbooks on unconstrained numerical optimisation.

The third method for estimating the parameters of equation (238) is the
well-known Cochrane–Orcutt procedure. This is an iterative method in which
each stage comprises two ordinary least-squares regressions.

The first of these regressions takes a value for ρ and estimates the param-
eters of the equation

(248)

yt − ρyt−1 = µ+ β(xt − ρxt−1) + εt

or, equivalently,

qt = µ+ βwt + εt

in the manner which we have just described. This gives rise to the conditional
estimates β = β(ρ) and µ = µ(ρ). From the latter, we obtain the estimate
α = α(ρ).

The second of the regressions is applied to the equation

(249)

(yt − α− βxt) = ρ(yt−1 − α− βxt−1) + εt

or, equivalently,

ηt = ρηt−1 + εt

which incorporates the previously-determined values of α and β. This gives
rise to the conditional estimate ρ = ρ(α, β). The later is then fed back into
the previous equation (248); at which point another stage of the iterative pro-
cess may ensue. The process is continued until the estimates generated by
successive stages are virtually identical. The final estimates correspond to the
unconditional minimum of the residual sum of squares.
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