
     

LECTURE 3

Multiple Regression 1

Covariance and Orthogonality

Let x = [x1, x2, . . . , xn]′ be a vector of n random elements. Then its
expected value E(x) is simply the vector containing the expected values of the
elements:

(136)
E(x) = [E(x1), E(x2), . . . , E(xn)]′

= [µ1, µ2, . . . , µn]′.

The variance–covariance matrix or dispersion matrix of x is a matrix D(x)
containing the variances and covariances of the elements:

(137) D(x) =


V (x1) C(x1, x2) · · · C(x1, xn)

C(x2, x1) V (x2) · · · C(x2, xn)
...

...
...

C(xn, x1) C(xn, x2) · · · V (xn)

 .
The variance–covariance matrix is specified in terms of the vector x by writing

(138)

D(x) = E
{[
x− E(x)

][
x− E(x)

]′}

= E



x1 − µ1

x2 − µ2
...

xn − µn

 [x1 − µ1 x2 − µ2 · · · xn − µn ]

 .

By forming the outer product within the braces, we get the matrix
(139)

(x1 − µ1)2 (x1 − µ1)(x2 − µ2) · · · (x1 − µ1)(xn − µn)
(x2 − µ2)(x1 − µ1) (x2 − µ2)2 · · · (x2 − µ2)(xn − µn)

...
...

...
(xn − µn)(x1 − µ1) (xn − µn)(x2 − µ2) · · · (xn − µn)2

 .
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On applying the expectation operator to each of the elements, we get the matrix
of variances and covariances.

We are interested in comparing the variance–covariance matrix of x =
[x1, x2, . . . , xn]′ with its empirical counterpart obtained by estimating the vari-
ances and covariances from a set of T observations on x. The deviations of
the observations about their sample means can be gathered into a matrix
X = [xtj − x̄j ] which is written more explicitly as

(140) X =


x11 − x̄1 x12 − x̄2 . . . x1n − x̄n
x21 − x̄1 x22 − x̄2 . . . x2n − x̄n

...
...

...
xT1 − x̄1 xT2 − x̄2 . . . xTn − x̄n

 .
We can easily see that

(141)
1

T
X ′X =


S11 S12 · · · S1n

S21 S22 · · · S2n
...

... · · ·
...

Sn1 Sn2 · · · Snn

 ,
wherein the generic element is the empirical covariance

(142) Sjk =
1

T

T∑
t=1

(xtj − x̄j)(xtk − x̄k).

Now let us reexamine the definition of a covariance. Let x, y be two scalar
random variables. Then their covariance is the given by

(143)
C(x, y) = E

[{
x− E(x)

}{
y − E(y)

}]
= E(xy)− E(x)E(y).

Let f(x, y) = f(x|y)f(y) = f(y|x)f(x) be the joint probability density func-
tion of x, y which is expressed as the product of a conditional and a marginal
distribution. Here f(x) and f(y) are the marginal distributions of x and y
respectively. The expectation of the joint moment of x and y is

(144) E(xy) =

∫
x

∫
y

xyf(x, y)dydx.

In the case that x, y are independent, the conditional distributions become
marginal distributions and we have f(x|y) = f(x) and f(y|x) = f(y). Therefore
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the joint probability density function factorises as f(x, y) = f(x)f(y). It follows
that

(145) E(xy) =

∫
x

xf(x)dx

∫
y

yf(y)dy = E(x)E(y).

Thus, in the case of independence, the covariance becomes

(146)
C(x, y) = E(xy)− E(x)E(y)

= E(x)E(y)− E(x)E(y) = 0.

It is important to understand that, whereas the independence of x, y im-
plies that C(x, y) = 0, the reverse is not generally true—the variables can
have a zero covariance without being independent. Nevertheless, if x, y have
a joint normal distribution, then the condition C(x, y) = 0 does imply their
independence. Often we are prepared to assume that a set of random variables
is normally distributed because this appears to be a reasonable approximation
to the truth.

Our next object is to examine the sample analogue of the condition of
zero covariance. Let x = [x1 − x̄, . . . , xT − x̄]′ and y = [y1 − ȳ, . . . , yT − ȳ]′ be
vectors of the mean-adjusted observations on two random variables taken over
T periods. Then the empirical covariance of the observations is just

(147) Sxy =
1

T

T∑
t=1

(xt − x̄)(yt − ȳ) =
1

T
x′y.

It follows that Sxy = 0 if and only if x′y = 0—which is to say if and only if the
vectors x and y are orthogonal.

In fact, if the elements of the vectors x and y are continuously distributed
over the real line, then we never expect to find an empirical covariance which
is precisely zero. For the probability of such an event is infinitesimally small.
Nevertheless, if the processes generating the elements of x and y are statistically
independent, then we should expect the empirical autocovariance to have a
value which tends to zero as the number of observations increases.

The Assumptions of the Classical Linear Model

In order to characterise the properties of the ordinary least-squares esti-
mator of the regression parameters, we make some conventional assumptions
regarding the processes which generate the observations.

Let the regression equation be

(148) y = β0 + β1x1 + · · ·+ βkxk + ε,
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which is equation (102) again; and imagine, as before, that there are T obser-
vations on the variables. Then these can be arrayed in the matrix form of (103)
for which the summary notation is

(149) y = Xβ + ε,

where y = [y1, y2, . . . , yT ]′, ε = [ε1, ε2, . . . , εT ]′, β = [β0, β1, . . . , βk]′ and X =
[xtj ] with xt0 = 1 for all t.

The first of the assumptions regarding the disturbances is that they have
an expected value of zero. Thus

(150) E(ε) = 0 or, equivalently, E(εt) = 0, t = 1, . . . , T.

Next it is assumed that the disturbances are mutually uncorrelated and that
they have a common variance. Thus
(151)

D(ε) = E(εε′) = σ2I or, equivalently, E(εtεs) =

{
σ2, if t = s;

0, if t 6= s.

If t is a temporal index, then these assumptions imply that there is no
inter-temporal correlation in the sequence of disturbances. In an econometric
context, this is often implausible, and we shall relax the assumption at a later
stage.

The next set of assumptions concern the matrixX of explanatory variables.
A conventional assumption, borrowed from the experimental sciences, is that

(152) X is a nonstochastic matrix with linearly independent columns.

The condition of linear independence is necessary if the separate effects of
the k variables are to be distinguishable. If the condition is not fulfilled, then
it will not be possible to estimate the parameters in β uniquely, although it
may be possible to estimate certain weighted combination of the parameters.

Often, in the design of experiments, an attempt is made to fix the explana-
tory or experimental variables in such a way that the columns of the matrix
X are mutually orthogonal. The device of manipulating only one variable at a
time will achieve the effect. The danger of miss-attributing the effects of one
variable to another is then minimised.

In an econometric context, it is often more appropriate to regard the ele-
ments of X as random variables in their own right, albeit that we are usually
reluctant to specify in detail the nature of the processes which generate the
variables. Thus we may declare that

(153)
The elements of X are random variables which are

distributed independently of the elements of ε.
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The consequence of either of these assumptions (152) or (153) is that

(154) E(X ′ε|X) = X ′E(ε) = 0.

In fact, for present purposes, it makes little difference which of these assump-
tions regarding X we adopt; and, since the assumption under (152) is more
briefly expressed, we shall adopt it in preference.

The first property to be deduced from the assumptions is that

(155)
The ordinary least-square regression estimator

β̂ = (X ′X)−1X ′y is unbiased such that E(β̂) = β.

To demonstrate this, we may write

(156)

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

Taking expectations gives

(157)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Notice that, in the light of this result, equation (156) now indicates that

(158) β̂ − E(β̂) = (X ′X)−1X ′ε.

The next deduction is that

(159)
The variance–covariance matrix of the ordinary least-squares

regression estimator is D(β̂) = σ2(X ′X)−1.

To demonstrate the latter, we may write a sequence of identities:

(160)

D(β̂) = E
{[
β̂ − E(β̂)

][
β̂ − E(β̂)

]′}
= E

{
(X ′X)−1X ′εε′X(X ′X)−1

}
= (X ′X)−1X ′E(εε′)X(X ′X)−1

= (X ′X)−1X ′{σ2I}X(X ′X)−1

= σ2(X ′X)−1.
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The second of these equalities follows directly from equation (158).

Statistical Inference and the Assumption of Normality

The dispersion matrixD(β̂) = σ2(X ′X)−1 provides the basis for construct-
ing confidence intervals for the regression parameters in β and for conducting
tests of hypotheses relative to these parameters.

For the purposes of statistical inference, it is commonly assumed that the
disturbance vector ε has a normal distribution which is denoted by N(ε; 0, σ2I).
This notation displays the argument of the probability density function together
with its expected value E(ε) = 0 and its dispersion D(ε) = σ2I. The assump-
tion is also conveyed by writing

(161) ε ∼ N(0, σ2I).

The assumption implies that the vector y of the dependent variable also
has a normal distribution whose mean is the vector E(y|X) = Xβ. Thus

y ∼ N(Xβ, σ2I). Since the estimator β̂ is a linear function of y, it follows that
it too must have a normal distribution:

(162) β̂ ∼ N
{
β, σ2(X ′X)−1

}
.

In order to specify the distribution of the jth element of β̂—which is β̂j—
let us denote the jth diagonal element of (X ′X)−1 by wjj . Then we may assert
that

(163) β̂j ∼ N(βj , σ
2wjj) or, equivalently,

β̂j − βj√
σ2wjj

∼ N(0, 1).

To use this result in making inferences about βj , we should need to know the
value of σ2. In its place, we have to make do with an estimate in the form of

(164) σ̂2 =
1

T − k (y −Xβ̂)′(y −Xβ̂) =
e′e

T − k ,

which is based on the sum of squares of the residuals.
From our assumption that ε has a normal distribution, it follows that the

sum of squares of the residuals, which is (T−k)σ̂2, has a chi-square distribution
of T − k degrees of freedom. When σ̂2 replaces σ2 in the formulae of (163) we
get the result that

(165)
β̂j − βj√
σ̂2wjj

∼ t(T − k),
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where t(T − k) denotes a t distribution of T − k degrees of freedom.
This result provides the basis for the most common of the inferential proce-

dures in linear regression analysis. In particular, the so-called t-ratios which are
displayed in most computer print-outs are simply the quantities β̂j/

√
σ̂2wjj .

We usually declare that the value of the underlying regression parameter is sig-
nificantly different from zero whenever the value of the t-ratio exceeds 2. [Re.
R.J.A. November 23rd].

The assumption that ε has a normal distribution is a particularly conve-
nient theoretical fiction. Even if it is not fulfilled, we can expect β̂ to have
distribution which is approximately a normal distribution. Moreover, the ac-
curacy of this approximation improves as the size of the sample increases. This
is the consequence of the remarkable result known as the law of large numbers.

Orthogonality and Omitted-Variables Bias

Let us now investigate the effect that a condition of orthogonality amongst
the regressors might have upon the ordinary least-squares estimates of the
regression parameters. Let us take the partitioned regression model of equation
(109) which was written as

(166) y = [X1, X2 ]

[
β1

β2

]
+ ε = X1β1 +X2β2 + ε.

We may assume that the variables in this equation are in deviation form. Let
us imagine that the columns of X1 are orthogonal to the columns of X2 such
that X ′1X2 = 0. This is the same as imagining that the empirical correlation
between variables in X1 and variables in X2 is zero.

To see the effect upon the ordinary least-squares estimator, we may exam-
ine the partitioned form of the formula β̂ = (X ′X)−1X ′y. Here we have

(167) X ′X =

[
X ′1
X ′2

]
[X1 X2 ] =

[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
=

[
X ′1X1 0

0 X ′2X2

]
,

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X ′X in the case of X ′1X2 = 0 is

(168) (X ′X)−1 =

[
X ′1X1 0

0 X ′2X2

]−1

=

[
(X ′1X1)−1 0

0 (X ′2X2)−1

]
.

We also have

(169) X ′y =

[
X ′1

X ′2

]
y =

[
X ′1y

X ′2y

]
.
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On combining these elements, we find that

(170)

[
β̂1

β̂2

]
=

[
(X ′1X1)−1 0

0 (X ′2X2)−1

] [
X ′1y

X ′2y

]
=

[
(X ′1X1)−1X ′1y

(X ′2X2)−1X ′2y

]
.

In this special case, the coefficients of the regression of y on X = [X1, X2] can
be obtained from the separate regressions of y on X1 and y on X2.

We should make it clear that this result does not hold true in general. The
general formulae for β̂1 and β̂2 are those which we have given already under
(112) and (117):

(171)
β̂1 = (X ′1X1)−1X ′1(y −X2β̂2),

β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y, P1 = X1(X ′1X1)−1X ′1.

We can easily confirm that these formulae do specialise to those under (170) in
the case of X ′1X2 = 0.

The purpose of including X2 in the regression equation when, in fact, our
interest is confined to the parameters of β1 is to avoid falsely attributing the
explanatory power of the variables of X2 to those of X1.

Let us investigate the effects of erroneously excluding X2 from the regres-
sion. In that case, our estimate will be

(172)

β̃1 = (X ′1X1)−1X ′1y

= (X ′1X1)−1X ′1(X1β1 +X2β2 + ε)

= β1 + (X ′1X1)−1X ′1X2β2 + (X ′1X1)−1X ′1ε.

On applying the expectations operator to these equations, we find that

(173) E(β̃1) = β1 + (X ′1X1)−1X ′1X2β2,

since E{(X ′1X1)−1X ′1ε} = (X ′1X1)−1X ′1E(ε) = 0. Thus, in general, we have
E(β̃1) 6= β1, which is to say that β̃1 is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X ′1X2 = 0 or
β2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
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the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of
such instruments are provided by interest rates, tax rates, exchange rates and
the like.

On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|x1, . . . , xk) which specifies the conditional expectation of y given
the values of x1, . . . , xn—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness of the regression parameters does not arise.

Multicollinearity

In econometrics, the endeavour to estimate structural parameters is often
thwarted by the fact that economic variables are collinear. That is to say, the
variables tend to move together, to track one another or to display similar time
trends. In the experimental sciences, we can often design an experiment in
such a way that the experimental or explanatory variables are uncorrelated or
orthogonal. In economics, we rarely have such opportunities.

Let us examine the problem of collinearity within the context of the equa-
tion

(174) yt = β0 + β1xt1 + β2xt2 + εt.

If we take the data in deviation form, then we can obtain the estimates β̂1, β̂2

by solving the following set of equations { Re. R.J.A. October 25th }:

(175)

[
S11 S12

S21 S22

] [
β1

β2

]
=

[
S1y

S2y

]
,

wherein

(176) Sij =
1

T

T∑
t=1

(xti − x̄i)(xtj − x̄j).

For ease of notation, let us define

(177) S1 =
√
S11 and S2

1 = S11.

Likewise, we may define S2. The empirical correlation coefficient for x1 and x2

can then be expressed as

(178) r =
S12√
S11S22

, whence S12 = rS1S2.
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β1

β2

Figure 1.

The correlation coefficient r is a measure of the relatedness of x1 and x2 which
varies between +1 and −1. The value r = 1 indicates a perfect positive linear
relationship between the variables whereas the value r = −1 indicates a perfect
negative relationship.

Now consider the matrix D(β) = σ2(X ′X)−1 of the variances and covari-

ances of the estimates β̂1 and β̂2. We have (X ′X)−1 = {TS}−1, where

(179)

S−1 =

[
S11 S12

S21 S22

]−1

=

[
S2

1 rS1S2

rS2S1 S2
2

]−1

=
1

S2
1S

2
2(1− r2)

[
S2

2 −rS1S2

−rS2S1 S2
1

]
is the inverse of the moment matrix of (175).

In the case of r = 0, we would find that

(180) V (β̂1) =
1

T

σ2

S2
1

and V (β̂2) =
1

T

σ2

S2
2

,

which is to say that the variance of an estimated parameter is inversely related
to corresponding the signal-to-noise ratio.

Figure 1 illustrates the case where S1 = S2 and r = 0. The circle is
a contour of the joint probability density function of β̂1 and β̂2, which is a
normal density function on the supposition that the disturbances ε1, . . . , εT are
normally distributed. We can imagine, for example, that 95% of the probability
mass of the joint distribution falls within this contour. The circularity of the
contours indicates that the distribution of β̂2 is invariant with respect to the
realised value of β̂1.
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β1

β2

Figure 2.

In general, when r 6= 0, we have

(181) V (β̂1) =
1

T

σ2

S2
1(1− r2)

and V (β̂2) =
1

T

σ2

S2
2(1− r2)

,

whilst
(182)

C(β̂1, β̂2) =
1

T

−σ2r

S1S2(1− r2)
and Corr(β̂1, β̂2) =

C(β̂1, β̂2)√
V (β̂1)V (β̂2)

= −r.

From this we can see that, as r → 1, the variances V (β̂1) and V (β̂1) of the
two estimates estimates increase without bound whilst their correlation tends
to −1.

Figure 2, depicts the 95% contour of the joint distribution of β̂1 and β̂2

when r = 0.75. The contour is of an elliptical nature which indicates that a
knowledge of the realised value of β̂1 gives a firm indication of the likely value
of β̂2. As r → 1, the ellipse collapses upon the line which is its principal axis.

This result is readily intelligible. Consider the equation

(183) y = β0 + x1β1 + x2β2 + ε,

and imagine that there is an exact linear relationship between x1 and x2 of
the form x2 = λx1 where λ is a constant coefficient. Then we can rewrite the
equation as

(184)

y = β0 + x1β1 + x2β2 + ε

= β0 + x1(β1 + λβ2) + ε

= β0 + x1γ + ε,
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where γ = (β1 + λβ2). The set of values of β1 and β2 which satisfy this
relationship are simply the set of all points on the line defined by the equation
β1 = γ − λβ2.
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